Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Nov 13;64(Pt 12):o2353. doi: 10.1107/S1600536808037148

4-(Dimethyl­amino)benzaldehyde 4-ethyl­thio­semicarbazone

Abdussalam Salhin a,*, Norfarhah Abdul Razak a, I A Rahman a
PMCID: PMC2960080  PMID: 21581327

Abstract

The title thio­semicarbazone derivative, C12H18N4S, features intra­molecular N—H⋯N and C—H⋯S hydrogen bonds which generate S(5) ring motifs. The dihedral angle between the benzene ring and the thio­urea unit is 6.30 (6)° indicating planarity in the mol­ecule. Inter­molecular N—H⋯S hydrogen bonds generate dimers with an R 2 2(8) ring motif. The methyl group of the N-ethyl residue is disordered and was refined with site occupancies of 0.521 (5) and 0.479 (5).

Related literature

For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures and applications see: Beraldo et al. (2001); Kayed et al. (2008); Valdes-Martinez et al. (1990).graphic file with name e-64-o2353-scheme1.jpg

Experimental

Crystal data

  • C12H18N4S

  • M r = 250.36

  • Monoclinic, Inline graphic

  • a = 9.3687 (2) Å

  • b = 14.1872 (3) Å

  • c = 10.2318 (2) Å

  • β = 96.699 (1)°

  • V = 1350.68 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 100 (1) K

  • 0.59 × 0.36 × 0.22 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.879, T max = 0.953

  • 30229 measured reflections

  • 6825 independent reflections

  • 5566 reflections with I > 2σ(I)

  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.119

  • S = 1.04

  • 6825 reflections

  • 176 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808037148/tk2323sup1.cif

e-64-o2353-sup1.cif (18.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808037148/tk2323Isup2.hkl

e-64-o2353-Isup2.hkl (334KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N3⋯S1i 0.891 (15) 2.613 (15) 3.4910 (7) 168.8 (12)
N4—H1N4⋯N2 0.885 (14) 2.193 (14) 2.6140 (10) 108.7 (11)
C9—H9B⋯S1 0.96 2.78 3.1225 (9) 102

Symmetry code: (i) Inline graphic.

Acknowledgments

We thank the Malysian Government and Universiti Sains Malaysia for Science Fund grant No. 1001/229/PKIMIA/811055

supplementary crystallographic information

Comment

Thiosemicarbazones have been a subject of extensive investigation (Kayed et al., 2008) because of their ability to coordinate metal ions and their wide range of chemical and biological activities (Valdes-Martinez et al., 1990 & Beraldo et al., 2001). We present herein the X-ray structure of the title thiosemicarbazone derivative, (I).

Compound (I), Fig. I, displays bond lengths and angles comparable to those in related structures (Beraldo et al., 2001; Kayed et al., 2008; Valdes-Martinez et al., 1990). Intramolecular N—H···N and C—H···S contacts generate S(5) ring motifs (Bernstein et al. 1995), Table 1. The dihedral angle between the phenyl ring and the thiourea unit is 6.30 (6)° which indicates the molecule is almost planar. Intermolecular N—H···S hydrogen bonds generate R22(8) ring motifs to link molecules into dimers, Fig. 2. The methyl group of the N-ethyl residue is disordered and was refined with site occupancies of 0.521 (5)/0.479 (5).

Experimental

To 4-ethyl-3-thiosemicarbazide (ca. 0.119 g, 1 mmol) dissolved in ethanol (10 ml) was added dropwise an ethanol solution (5 ml) of 4-dimethylaminobenzaldehyde (0.149 g, 1 mmol) with continuous stirring. The solution was heated on a water bath for few minutes until the solution became clear. After cooling to room temperature, yellow crystals of (I) appeared.

Refinement

The N-bound H atoms were located from a difference Fourier map and refined freely. The remaining H were placed in their calculated positions in the riding model approximation with C–H 0.93–0.96 Å, and with U(H) set to 1.2–1.5 times Ueq(C). The presence of large peaks in the difference Fourier map near to the methyl group of (I) was suspected to be due to positional disorder of this fragment. The refined ratio of the site occupancy factors for the disorder parts were calculated to be 0.521 (5)/0.479 (5).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing 50% probability displacement ellipsoids and the atomic numbering. The intramolecular contacts are shown as dashed lines.

Fig. 2.

Fig. 2.

Unit cell contents for the major component of (I), viewed down the b-axis showing dimers linked by R22(8) ring motifs. Intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

C12H18N4S F000 = 536
Mr = 250.36 Dx = 1.231 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 9949 reflections
a = 9.3687 (2) Å θ = 2.5–39.5º
b = 14.1872 (3) Å µ = 0.23 mm1
c = 10.2318 (2) Å T = 100 (1) K
β = 96.699 (1)º Block, yellow
V = 1350.68 (5) Å3 0.59 × 0.36 × 0.22 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 6825 independent reflections
Radiation source: fine-focus sealed tube 5566 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.036
T = 100(1) K θmax = 37.0º
φ and ω scans θmin = 2.2º
Absorption correction: multi-scan(SADABS; Bruker, 2005) h = −15→13
Tmin = 0.879, Tmax = 0.953 k = −24→20
30229 measured reflections l = −15→17

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.119   w = 1/[σ2(Fo2) + (0.0651P)2 + 0.2126P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
6825 reflections Δρmax = 0.74 e Å3
176 parameters Δρmin = −0.39 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1 0.16244 (2) 0.114147 (15) −0.039117 (18) 0.01984 (6)
N1 −0.30894 (9) 0.10562 (6) 0.82869 (8) 0.02457 (15)
N2 −0.01025 (7) 0.10572 (5) 0.29168 (6) 0.01690 (12)
N3 0.02454 (7) 0.08428 (5) 0.16770 (6) 0.01731 (12)
N4 0.18487 (7) 0.20579 (5) 0.19197 (7) 0.01837 (12)
C1 −0.09174 (8) 0.13272 (6) 0.55310 (7) 0.01760 (13)
H1A −0.0138 0.1680 0.5323 0.021*
C2 −0.14161 (8) 0.14561 (6) 0.67363 (7) 0.01834 (13)
H2A −0.0977 0.1900 0.7319 0.022*
C3 −0.25861 (8) 0.09230 (6) 0.70986 (7) 0.01732 (13)
C4 −0.32165 (9) 0.02550 (6) 0.61854 (8) 0.01997 (14)
H4A −0.3979 −0.0113 0.6396 0.024*
C5 −0.27073 (9) 0.01429 (6) 0.49756 (8) 0.01935 (14)
H5A −0.3142 −0.0300 0.4388 0.023*
C6 −0.15624 (8) 0.06743 (5) 0.46132 (7) 0.01601 (12)
C7 −0.10836 (8) 0.05380 (6) 0.33282 (7) 0.01745 (13)
H7A −0.1498 0.0062 0.2786 0.021*
C8 0.12430 (8) 0.13664 (6) 0.11598 (7) 0.01551 (12)
C9 0.29288 (10) 0.27026 (6) 0.15428 (9) 0.02484 (16)
H9A 0.2867 0.3279 0.2024 0.030* 0.521 (5)
H9B 0.2702 0.2848 0.0626 0.030* 0.521 (5)
H9C 0.2877 0.3291 0.1999 0.030* 0.479 (5)
H9D 0.2767 0.2823 0.0614 0.030* 0.479 (5)
C10A 0.4427 (11) 0.2356 (8) 0.1674 (8) 0.0361 (12) 0.521 (5)
H10A 0.5045 0.2841 0.1403 0.054* 0.521 (5)
H10B 0.4486 0.1810 0.1128 0.054* 0.521 (5)
H10C 0.4724 0.2192 0.2575 0.054* 0.521 (5)
C10B 0.4457 (14) 0.2268 (10) 0.1992 (9) 0.0394 (15) 0.479 (5)
H10D 0.4558 0.2160 0.2925 0.059* 0.479 (5)
H10E 0.5188 0.2698 0.1782 0.059* 0.479 (5)
H10F 0.4554 0.1681 0.1544 0.059* 0.479 (5)
C11 −0.43497 (11) 0.05588 (7) 0.86103 (10) 0.02942 (19)
H11A −0.5107 0.0619 0.7898 0.044*
H11B −0.4657 0.0823 0.9395 0.044*
H11C −0.4121 −0.0096 0.8753 0.044*
C12 −0.24779 (10) 0.17816 (8) 0.91858 (9) 0.02932 (19)
H12A −0.1452 0.1710 0.9325 0.044*
H12B −0.2864 0.1722 1.0011 0.044*
H12C −0.2713 0.2392 0.8815 0.044*
H1N4 0.1570 (14) 0.2111 (10) 0.2711 (14) 0.032 (3)*
H1N3 −0.0171 (15) 0.0353 (11) 0.1243 (14) 0.035 (4)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.02294 (10) 0.02210 (11) 0.01529 (9) −0.00401 (7) 0.00569 (6) −0.00261 (6)
N1 0.0315 (4) 0.0243 (4) 0.0202 (3) −0.0016 (3) 0.0121 (3) −0.0011 (2)
N2 0.0198 (3) 0.0176 (3) 0.0137 (2) −0.0005 (2) 0.0038 (2) −0.0006 (2)
N3 0.0206 (3) 0.0178 (3) 0.0141 (2) −0.0036 (2) 0.0043 (2) −0.0018 (2)
N4 0.0212 (3) 0.0178 (3) 0.0166 (3) −0.0039 (2) 0.0044 (2) −0.0022 (2)
C1 0.0179 (3) 0.0185 (3) 0.0166 (3) −0.0026 (2) 0.0028 (2) −0.0005 (2)
C2 0.0199 (3) 0.0199 (3) 0.0152 (3) −0.0015 (3) 0.0024 (2) −0.0015 (2)
C3 0.0205 (3) 0.0157 (3) 0.0166 (3) 0.0026 (2) 0.0057 (2) 0.0018 (2)
C4 0.0215 (3) 0.0171 (3) 0.0226 (3) −0.0025 (3) 0.0082 (3) −0.0007 (3)
C5 0.0213 (3) 0.0167 (3) 0.0208 (3) −0.0040 (2) 0.0060 (2) −0.0031 (2)
C6 0.0181 (3) 0.0149 (3) 0.0153 (3) −0.0008 (2) 0.0032 (2) −0.0001 (2)
C7 0.0199 (3) 0.0168 (3) 0.0160 (3) −0.0013 (2) 0.0034 (2) −0.0013 (2)
C8 0.0162 (3) 0.0156 (3) 0.0148 (3) 0.0000 (2) 0.0017 (2) 0.0010 (2)
C9 0.0294 (4) 0.0199 (4) 0.0269 (4) −0.0092 (3) 0.0107 (3) −0.0057 (3)
C10A 0.0211 (12) 0.032 (2) 0.057 (3) −0.0087 (13) 0.011 (2) −0.015 (2)
C10B 0.0265 (14) 0.036 (2) 0.057 (4) −0.0113 (14) 0.009 (3) −0.011 (3)
C11 0.0374 (5) 0.0252 (4) 0.0291 (4) −0.0005 (4) 0.0190 (4) 0.0033 (3)
C12 0.0275 (4) 0.0409 (6) 0.0199 (3) 0.0028 (4) 0.0037 (3) −0.0083 (3)

Geometric parameters (Å, °)

S1—C8 1.6971 (7) C6—C7 1.4508 (10)
N1—C3 1.3675 (10) C7—H7A 0.9300
N1—C11 1.4466 (12) C9—C10A 1.479 (10)
N1—C12 1.4528 (13) C9—C10B 1.577 (13)
N2—C7 1.2864 (10) C9—H9A 0.9600
N2—N3 1.3800 (9) C9—H9B 0.9600
N3—C8 1.3494 (10) C9—H9C 0.9600
N3—H1N3 0.890 (15) C9—H9D 0.9600
N4—C8 1.3365 (10) C10A—H10A 0.9600
N4—C9 1.4492 (11) C10A—H10B 0.9600
N4—H1N4 0.883 (14) C10A—H10C 0.9600
C1—C2 1.3810 (10) C10B—H10D 0.9600
C1—C6 1.4045 (11) C10B—H10E 0.9600
C1—H1A 0.9300 C10B—H10F 0.9600
C2—C3 1.4162 (11) C11—H11A 0.9600
C2—H2A 0.9300 C11—H11B 0.9600
C3—C4 1.4111 (12) C11—H11C 0.9600
C4—C5 1.3867 (11) C12—H12A 0.9600
C4—H4A 0.9300 C12—H12B 0.9600
C5—C6 1.3961 (11) C12—H12C 0.9600
C5—H5A 0.9300
C3—N1—C11 120.75 (8) C10A—C9—H9A 110.5
C3—N1—C12 120.62 (8) C10B—C9—H9A 106.9
C11—N1—C12 118.22 (7) N4—C9—H9B 108.3
C7—N2—N3 115.40 (7) C10A—C9—H9B 105.1
C8—N3—N2 119.20 (7) C10B—C9—H9B 117.3
C8—N3—H1N3 121.2 (9) H9A—C9—H9B 107.4
N2—N3—H1N3 119.6 (9) N4—C9—H9C 110.0
C8—N4—C9 124.80 (7) C10A—C9—H9C 110.3
C8—N4—H1N4 116.4 (9) C10B—C9—H9C 107.1
C9—N4—H1N4 118.7 (9) H9B—C9—H9C 105.7
C2—C1—C6 121.36 (7) N4—C9—H9D 110.0
C2—C1—H1A 119.3 C10A—C9—H9D 100.8
C6—C1—H1A 119.3 C10B—C9—H9D 113.0
C1—C2—C3 121.05 (7) H9A—C9—H9D 110.1
C1—C2—H2A 119.5 H9C—C9—H9D 108.4
C3—C2—H2A 119.5 C9—C10A—H10A 109.5
N1—C3—C4 121.35 (7) C9—C10A—H10B 109.5
N1—C3—C2 121.11 (7) C9—C10A—H10C 109.5
C4—C3—C2 117.53 (7) C9—C10B—H10D 109.5
C5—C4—C3 120.47 (7) C9—C10B—H10E 109.5
C5—C4—H4A 119.8 H10D—C10B—H10E 109.5
C3—C4—H4A 119.8 C9—C10B—H10F 109.5
C4—C5—C6 122.02 (7) H10D—C10B—H10F 109.5
C4—C5—H5A 119.0 H10E—C10B—H10F 109.5
C6—C5—H5A 119.0 N1—C11—H11A 109.5
C5—C6—C1 117.54 (7) N1—C11—H11B 109.5
C5—C6—C7 119.81 (7) H11A—C11—H11B 109.5
C1—C6—C7 122.65 (7) N1—C11—H11C 109.5
N2—C7—C6 121.90 (7) H11A—C11—H11C 109.5
N2—C7—H7A 119.1 H11B—C11—H11C 109.5
C6—C7—H7A 119.1 N1—C12—H12A 109.5
N4—C8—N3 116.26 (6) N1—C12—H12B 109.5
N4—C8—S1 124.10 (6) H12A—C12—H12B 109.5
N3—C8—S1 119.62 (6) N1—C12—H12C 109.5
N4—C9—C10A 116.8 (4) H12A—C12—H12C 109.5
N4—C9—C10B 108.3 (4) H12B—C12—H12C 109.5
N4—C9—H9A 108.4
C7—N2—N3—C8 178.60 (7) C4—C5—C6—C7 −179.19 (8)
C6—C1—C2—C3 0.93 (12) C2—C1—C6—C5 −1.47 (12)
C11—N1—C3—C4 −4.17 (13) C2—C1—C6—C7 178.59 (8)
C12—N1—C3—C4 −176.68 (8) N3—N2—C7—C6 179.78 (7)
C11—N1—C3—C2 175.45 (8) C5—C6—C7—N2 174.99 (8)
C12—N1—C3—C2 2.93 (13) C1—C6—C7—N2 −5.08 (12)
C1—C2—C3—N1 −179.39 (8) C9—N4—C8—N3 −179.39 (8)
C1—C2—C3—C4 0.24 (12) C9—N4—C8—S1 −1.06 (12)
N1—C3—C4—C5 178.80 (8) N2—N3—C8—N4 1.21 (11)
C2—C3—C4—C5 −0.82 (12) N2—N3—C8—S1 −177.20 (5)
C3—C4—C5—C6 0.26 (13) C8—N4—C9—C10A −81.0 (4)
C4—C5—C6—C1 0.88 (12) C8—N4—C9—C10B −90.9 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H1N3···S1i 0.891 (15) 2.613 (15) 3.4910 (7) 168.8 (12)
N4—H1N4···N2 0.885 (14) 2.193 (14) 2.6140 (10) 108.7 (11)
C9—H9B···S1 0.96 2.78 3.1225 (9) 102

Symmetry codes: (i) −x, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2323).

References

  1. Beraldo, H., Lima, R., Teixeira, L. R., Moura, A. A. & West, D. X. (2001). J. Mol. Struct.559, 99–106.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  3. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Kayed, S. F., Farina, Y., Baba, I. & Simpson, J. (2008). Acta Cryst. E64, o824–o825. [DOI] [PMC free article] [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  7. Valdes-Martinez, J., Toscano, R. A., Salcedo, R., Cea-Olivarres, R. & Melendez, A. (1990). Monatsh. Chem.121, 641–647.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808037148/tk2323sup1.cif

e-64-o2353-sup1.cif (18.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808037148/tk2323Isup2.hkl

e-64-o2353-Isup2.hkl (334KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES