Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Nov 20;64(Pt 12):o2384. doi: 10.1107/S1600536808037471

Isopropyl 2-(5-iodo-3-methyl­sulfinyl-1-benzofuran-2-yl)acetate

Hong Dae Choi a, Pil Ja Seo a, Byeng Wha Son b, Uk Lee b,*
PMCID: PMC2960084  PMID: 21581355

Abstract

In the title compound, C14H15IO4S, the O atom and the methyl group of the methyl­sulfinyl substituent lie on opposite sides of the plane of the benzofuran fragment. The crystal structure is stabilized by C—H⋯π inter­actions between a methyl H atom and the benzene ring of an adjacent mol­ecule, and by weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For the crystal structures of similar isopropyl 2-(3-methyl­sulfinyl-1-benzofuran-2-yl)acetate derivatives, see: Choi et al. (2008a ,b ).graphic file with name e-64-o2384-scheme1.jpg

Experimental

Crystal data

  • C14H15IO4S

  • M r = 406.22

  • Triclinic, Inline graphic

  • a = 8.0584 (7) Å

  • b = 10.1959 (9) Å

  • c = 10.8367 (9) Å

  • α = 70.369 (2)°

  • β = 81.926 (2)°

  • γ = 66.882 (1)°

  • V = 771.24 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.22 mm−1

  • T = 298 (2) K

  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1999) T min = 0.595, T max = 0.806

  • 4396 measured reflections

  • 2965 independent reflections

  • 2639 reflections with I > 2σ(I)

  • R int = 0.011

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.079

  • S = 1.13

  • 2965 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.57 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808037471/bq2107sup1.cif

e-64-o2384-sup1.cif (18.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808037471/bq2107Isup2.hkl

e-64-o2384-Isup2.hkl (145.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C2–C7 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O4i 0.93 2.57 3.451 (4) 159
C9—H9B⋯O4ii 0.97 2.41 3.373 (4) 170
C13—H13CCgiii 0.96 2.78 3.532 (5) 136

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

supplementary crystallographic information

Comment

As a part of our ongoing studies of the synthesis and structure of isopropyl 2-(3-methylsulfinyl-1-benzofuran-2-yl)acetate analogues, we have recently described the crystal structures of isopropyl 2-(5-methyl-3-methylsulfinyl-1-benzofuran-2-yl)acetate (Choi et al., 2008a) and isopropyl 2-(5-bromo-3-methylsulfinyl-1-benzofuran-2-yl) acetate (Choi et al., 2008b). Here we report the crystal structure of the title compound, isopropyl 2-(5-iodo-3-methylsulfinyl-1-benzofuran-2-yl) acetate (Fig. 1). The benzofuran unit is essentially planar, with a mean deviation of 0.013 (2) Å from the least-squares plane defined by the nine constituent atoms. The molecular packing is stabilized by C—H···π interactions between a methyl H atom of isopropyl group and the benzene ring of the benzofuran unit, with a C13—H13C···Cgiii separation of 2.78 Å (Fig. 2 and Table 1; Cg is the centroid of the C2–C7 benzene ring, symmetry code as in Fig. 2). Also weak intermolecular C—H···O hydrogen bonds in the structure were observed (Table 1 & Fig. 2).

Experimental

77% 3-chloroperoxybenzoic acid (197 mg, 0.88 mmol) was added in small portions to a stirred solution of isopropyl 2-(5-iodo-3-methylsulfanyl-1-benzofuran-2-yl)acetate (321 mg, 0.8 mmol) in dichloromethane (30 ml) at 273 K. After being stirred for 3 h at room temperature, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane-ethyl acetate, 1:2 v/v) to afford the title compound as a colorless solid [yield 80%, m.p. 420–421 K; Rf = 0.63 (hexane-ethyl acetate, 1;2 v/v)]. Single crystals suitable for X–ray diffraction were prepared by evaporation of a solution of the title compound in acetone at room temperature. Spectroscopic analysis: 1H NMR (CDCl3, 400 MHz) δ 1.27 (d, J = 6.20 Hz, 6H), 3.07 (s, 3H), 4.0 (s, 2H), 5.01-5.07 (m, 1H), 7.29 (d, J = 8.80 Hz, 1H), 7.66 (d, J = 8.76 Hz, 1H), 8.29 (s, 1H); EI-MS 406 [M+].

Refinement

All H atoms were geometrically positioned and refined using a riding model, with C—H = 0.93 Å for the aryl, 0.97 Å for the methylene, 0.98 Å for the methine, and 0.96 Å for the methyl H atoms. Uiso(H) = 1.2Ueq(C) for the aryl, methine and methylene H atoms, and 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level.

Fig. 2.

Fig. 2.

C—H···π and C—H···O interactions (dotted lines) in the title ompound. Cg denotes ring centroid. [Symmetry code: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1; (iii) x, y-1, z+1.]

Crystal data

C14H15IO4S Z = 2
Mr = 406.22 F000 = 400
Triclinic, P1 Dx = 1.749 Mg m3
Hall symbol: -P 1 Melting point = 420–421 K
a = 8.0584 (7) Å Mo Kα radiation λ = 0.71073 Å
b = 10.1959 (9) Å Cell parameters from 3094 reflections
c = 10.8367 (9) Å θ = 2.5–28.2º
α = 70.369 (2)º µ = 2.22 mm1
β = 81.926 (2)º T = 298 (2) K
γ = 66.882 (1)º Block, colorless
V = 771.24 (12) Å3 0.30 × 0.20 × 0.10 mm

Data collection

Bruker SMART CCD diffractometer 2965 independent reflections
Radiation source: fine-focus sealed tube 2639 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.011
Detector resolution: 10.0 pixels mm-1 θmax = 26.0º
T = 298(2) K θmin = 2.5º
φ and ω scans h = −9→9
Absorption correction: multi-scan(SADABS; Sheldrick, 1999) k = −12→10
Tmin = 0.595, Tmax = 0.806 l = −11→13
4396 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030 H-atom parameters constrained
wR(F2) = 0.079   w = 1/[σ2(Fo2) + (0.0351P)2 + 0.6769P] where P = (Fo2 + 2Fc2)/3
S = 1.13 (Δ/σ)max < 0.001
2965 reflections Δρmax = 0.62 e Å3
182 parameters Δρmin = −0.57 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
I 0.70596 (3) 0.79850 (3) 0.12855 (3) 0.05948 (12)
S 0.25632 (12) 0.39419 (10) 0.46216 (8) 0.0450 (2)
O1 0.1637 (3) 0.5266 (2) 0.0838 (2) 0.0396 (5)
O2 −0.0175 (4) 0.1492 (3) 0.2759 (3) 0.0541 (6)
O3 0.2647 (4) 0.1371 (3) 0.2867 (3) 0.0668 (8)
O4 0.2538 (4) 0.5137 (3) 0.5137 (3) 0.0601 (7)
C1 0.2512 (4) 0.4675 (3) 0.2898 (3) 0.0362 (6)
C2 0.3469 (4) 0.5580 (3) 0.2042 (3) 0.0349 (6)
C3 0.4715 (4) 0.6148 (4) 0.2202 (3) 0.0398 (7)
H3 0.5164 0.5932 0.3022 0.048*
C4 0.5252 (4) 0.7044 (3) 0.1086 (3) 0.0406 (7)
C5 0.4622 (5) 0.7382 (4) −0.0162 (3) 0.0430 (7)
H5 0.5030 0.7988 −0.0884 0.052*
C6 0.3394 (5) 0.6817 (4) −0.0328 (3) 0.0413 (7)
H6 0.2955 0.7026 −0.1149 0.050*
C7 0.2851 (4) 0.5925 (3) 0.0795 (3) 0.0369 (7)
C8 0.1443 (4) 0.4531 (3) 0.2138 (3) 0.0377 (7)
C9 0.0157 (5) 0.3741 (4) 0.2441 (4) 0.0434 (7)
H9A −0.0662 0.4154 0.1712 0.052*
H9B −0.0556 0.3928 0.3207 0.052*
C10 0.1072 (5) 0.2070 (4) 0.2695 (3) 0.0414 (7)
C11 0.0424 (6) −0.0125 (4) 0.2990 (4) 0.0661 (12)
H11 0.1531 −0.0670 0.3506 0.079*
C12 −0.1125 (10) −0.0567 (7) 0.3724 (6) 0.104 (2)
H12A −0.2185 −0.0037 0.3191 0.125*
H12B −0.1363 −0.0315 0.4526 0.125*
H12C −0.0805 −0.1626 0.3919 0.125*
C13 0.0701 (9) −0.0397 (5) 0.1698 (6) 0.0926 (18)
H13A 0.1579 −0.0006 0.1195 0.111*
H13B −0.0420 0.0096 0.1235 0.111*
H13C 0.1124 −0.1454 0.1828 0.111*
C14 0.4840 (6) 0.2608 (5) 0.4771 (4) 0.0647 (11)
H14A 0.5657 0.3127 0.4443 0.097*
H14B 0.4989 0.1947 0.4273 0.097*
H14C 0.5092 0.2035 0.5675 0.097*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
I 0.05565 (17) 0.05111 (16) 0.0792 (2) −0.03419 (12) −0.00801 (12) −0.00920 (12)
S 0.0496 (5) 0.0512 (5) 0.0385 (4) −0.0270 (4) −0.0031 (3) −0.0082 (4)
O1 0.0425 (12) 0.0397 (12) 0.0418 (12) −0.0179 (10) −0.0069 (9) −0.0131 (10)
O2 0.0601 (15) 0.0406 (13) 0.0698 (17) −0.0273 (12) −0.0179 (12) −0.0099 (12)
O3 0.0509 (16) 0.0473 (15) 0.100 (2) −0.0204 (13) −0.0092 (15) −0.0144 (15)
O4 0.0719 (18) 0.0681 (18) 0.0502 (15) −0.0283 (15) −0.0032 (13) −0.0264 (13)
C1 0.0400 (16) 0.0352 (15) 0.0373 (17) −0.0179 (13) −0.0038 (13) −0.0099 (13)
C2 0.0376 (15) 0.0296 (14) 0.0383 (17) −0.0123 (12) −0.0044 (12) −0.0100 (12)
C3 0.0412 (17) 0.0383 (17) 0.0438 (18) −0.0179 (14) −0.0052 (13) −0.0120 (14)
C4 0.0376 (16) 0.0324 (16) 0.055 (2) −0.0157 (13) −0.0010 (14) −0.0135 (14)
C5 0.0472 (18) 0.0347 (16) 0.0434 (19) −0.0159 (14) 0.0017 (14) −0.0073 (14)
C6 0.0462 (18) 0.0385 (17) 0.0371 (17) −0.0140 (14) −0.0040 (13) −0.0097 (13)
C7 0.0394 (16) 0.0315 (15) 0.0435 (18) −0.0137 (13) −0.0045 (13) −0.0138 (13)
C8 0.0419 (16) 0.0336 (15) 0.0414 (17) −0.0155 (13) −0.0040 (13) −0.0128 (13)
C9 0.0439 (18) 0.0441 (18) 0.0512 (19) −0.0228 (15) −0.0039 (14) −0.0165 (15)
C10 0.050 (2) 0.0435 (18) 0.0382 (17) −0.0264 (16) −0.0039 (14) −0.0100 (14)
C11 0.085 (3) 0.0381 (19) 0.078 (3) −0.031 (2) −0.034 (2) 0.0010 (19)
C12 0.178 (7) 0.097 (4) 0.080 (4) −0.099 (5) 0.029 (4) −0.032 (3)
C13 0.116 (4) 0.052 (3) 0.104 (4) −0.032 (3) 0.044 (3) −0.034 (3)
C14 0.061 (2) 0.059 (2) 0.060 (2) −0.012 (2) −0.0181 (19) −0.006 (2)

Geometric parameters (Å, °)

I—C4 2.101 (3) C6—C7 1.385 (5)
S—O4 1.494 (3) C6—H6 0.9300
S—C1 1.763 (3) C8—C9 1.488 (4)
S—C14 1.794 (4) C9—C10 1.509 (5)
O1—C7 1.375 (4) C9—H9A 0.9700
O1—C8 1.375 (4) C9—H9B 0.9700
O2—C10 1.335 (4) C11—C13 1.487 (7)
O2—C11 1.465 (4) C11—C12 1.521 (7)
O3—C10 1.192 (4) C11—H11 0.9800
C1—C8 1.350 (4) C12—H12A 0.9600
C1—C2 1.445 (4) C12—H12B 0.9600
C2—C7 1.390 (4) C12—H12C 0.9600
C2—C3 1.395 (4) C13—H13A 0.9600
C3—C4 1.380 (5) C13—H13B 0.9600
C3—H3 0.9300 C13—H13C 0.9600
C4—C5 1.396 (5) C14—H14A 0.9600
C5—C6 1.382 (5) C14—H14B 0.9600
C5—H5 0.9300 C14—H14C 0.9600
O4—S—C1 107.22 (15) C10—C9—H9A 108.9
O4—S—C14 106.49 (19) C8—C9—H9B 108.9
C1—S—C14 97.67 (18) C10—C9—H9B 108.9
C7—O1—C8 106.2 (2) H9A—C9—H9B 107.7
C10—O2—C11 118.3 (3) O3—C10—O2 125.4 (3)
C8—C1—C2 107.2 (3) O3—C10—C9 125.4 (3)
C8—C1—S 124.0 (2) O2—C10—C9 109.1 (3)
C2—C1—S 128.7 (2) O2—C11—C13 108.2 (3)
C7—C2—C3 119.4 (3) O2—C11—C12 105.4 (4)
C7—C2—C1 104.7 (3) C13—C11—C12 109.8 (4)
C3—C2—C1 135.9 (3) O2—C11—H11 111.1
C4—C3—C2 116.9 (3) C13—C11—H11 111.1
C4—C3—H3 121.6 C12—C11—H11 111.1
C2—C3—H3 121.6 C11—C12—H12A 109.5
C3—C4—C5 123.2 (3) C11—C12—H12B 109.5
C3—C4—I 118.3 (2) H12A—C12—H12B 109.5
C5—C4—I 118.5 (2) C11—C12—H12C 109.5
C6—C5—C4 120.2 (3) H12A—C12—H12C 109.5
C6—C5—H5 119.9 H12B—C12—H12C 109.5
C4—C5—H5 119.9 C11—C13—H13A 109.5
C5—C6—C7 116.4 (3) C11—C13—H13B 109.5
C5—C6—H6 121.8 H13A—C13—H13B 109.5
C7—C6—H6 121.8 C11—C13—H13C 109.5
O1—C7—C6 125.3 (3) H13A—C13—H13C 109.5
O1—C7—C2 110.7 (3) H13B—C13—H13C 109.5
C6—C7—C2 123.9 (3) S—C14—H14A 109.5
C1—C8—O1 111.1 (3) S—C14—H14B 109.5
C1—C8—C9 132.6 (3) H14A—C14—H14B 109.5
O1—C8—C9 116.3 (3) S—C14—H14C 109.5
C8—C9—C10 113.4 (3) H14A—C14—H14C 109.5
C8—C9—H9A 108.9 H14B—C14—H14C 109.5
O4—S—C1—C8 −135.0 (3) C3—C2—C7—O1 180.0 (3)
C14—S—C1—C8 115.0 (3) C1—C2—C7—O1 −1.5 (3)
O4—S—C1—C2 41.4 (3) C3—C2—C7—C6 −0.2 (5)
C14—S—C1—C2 −68.6 (3) C1—C2—C7—C6 178.3 (3)
C8—C1—C2—C7 0.6 (3) C2—C1—C8—O1 0.6 (4)
S—C1—C2—C7 −176.3 (2) S—C1—C8—O1 177.6 (2)
C8—C1—C2—C3 178.7 (4) C2—C1—C8—C9 179.9 (3)
S—C1—C2—C3 1.9 (6) S—C1—C8—C9 −3.1 (5)
C7—C2—C3—C4 0.5 (4) C7—O1—C8—C1 −1.5 (3)
C1—C2—C3—C4 −177.4 (3) C7—O1—C8—C9 179.1 (3)
C2—C3—C4—C5 −0.6 (5) C1—C8—C9—C10 −78.0 (5)
C2—C3—C4—I 177.9 (2) O1—C8—C9—C10 101.3 (3)
C3—C4—C5—C6 0.3 (5) C11—O2—C10—O3 −3.5 (5)
I—C4—C5—C6 −178.2 (2) C11—O2—C10—C9 179.5 (3)
C4—C5—C6—C7 0.1 (5) C8—C9—C10—O3 12.3 (5)
C8—O1—C7—C6 −177.9 (3) C8—C9—C10—O2 −170.7 (3)
C8—O1—C7—C2 1.8 (3) C10—O2—C11—C13 −92.6 (4)
C5—C6—C7—O1 179.7 (3) C10—O2—C11—C12 150.0 (4)
C5—C6—C7—C2 −0.1 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C3—H3···O4i 0.93 2.57 3.451 (4) 159
C9—H9B···O4ii 0.97 2.41 3.373 (4) 170
C13—H13C···Cgiii 0.96 2.78 3.532 (5) 136

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z+1; (iii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2107).

References

  1. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o2079. [DOI] [PMC free article] [PubMed]
  4. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o2250. [DOI] [PMC free article] [PubMed]
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Sheldrick, G. M. (1999). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808037471/bq2107sup1.cif

e-64-o2384-sup1.cif (18.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808037471/bq2107Isup2.hkl

e-64-o2384-Isup2.hkl (145.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES