Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Nov 22;64(Pt 12):m1603. doi: 10.1107/S160053680803835X

Bis(dimethyl­malonato-κ2 O,O′)bis­[4-(4-pyridylamino-κN 4)pyridinium]nickel(II) hexa­hydrate

Gregory A Farnum a, Robert L LaDuca a,*
PMCID: PMC2960085  PMID: 21581200

Abstract

In the title compound, [Ni(C5H6O4)2(C10H10N3)2]·6H2O, divalent nickel ions situated on the crystallographic twofold axis are octa­hedrally coordinated by four O atoms from two dimethyl­malonate ligands in a 1,3-chelating mode and two N atoms from two protonated monodentate 4,4′-dipyridylamine mol­ecules. The mol­ecules link into chains via N—H⋯O hydrogen bonding mediated by protonated pyridyl groups. The chains form layer patterns via π–π stacking [centroid–centroid distance = 3.777 (2) Å] . Water mol­ecule hexa­mers are generated from the unligated water mol­ecules (three per asymmetric unit) by inversion centers at Wyckoff position d. These clusters are situated between the pseudolayers, providing hydrogen-bonding pathways that build up the three-dimensional structure.

Related literature

For 4,4′-dipyridylamine (dpa) coordination polymers, see: Martin et al. (2007). For cobalt and nickel malonate dpa coordination polymers, see: Montney et al. (2008).graphic file with name e-64-m1603-scheme1.jpg

Experimental

Crystal data

  • [Ni(C5H6O4)2(C10H10N3)2]·6H2O

  • M r = 771.42

  • Monoclinic, Inline graphic

  • a = 18.428 (4) Å

  • b = 8.0473 (16) Å

  • c = 23.731 (5) Å

  • β = 97.96 (3)°

  • V = 3485.4 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.63 mm−1

  • T = 173 (2) K

  • 0.30 × 0.30 × 0.10 mm

Data collection

  • Bruker SMART 1K diffractometer

  • Absorption correction: multi-scan (TWINABS; Sheldrick, 2007) T min = 0.833, T max = 0.939

  • 49338 measured reflections

  • 3998 independent reflections

  • 3222 reflections with I > 2σ(I)

  • R int = 0.079

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.163

  • S = 1.09

  • 3998 reflections

  • 246 parameters

  • 10 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.84 e Å−3

  • Δρmin = −0.61 e Å−3

Data collection: SMART (Bruker, 2006); cell refinement: SAINT-Plus (Bruker, 2006); data reduction: SAINT-Plus and CELL-NOW (Sheldrick, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Crystal Maker (Palmer, 2007); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680803835X/pk2132sup1.cif

e-64-m1603-sup1.cif (21.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680803835X/pk2132Isup2.hkl

e-64-m1603-Isup2.hkl (196.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O3Wi 0.85 1.96 2.811 (4) 180
O1W—H1WB⋯O2W 0.840 (18) 2.05 (2) 2.870 (3) 166 (4)
O2W—H2WA⋯O3 0.840 (18) 1.904 (19) 2.741 (3) 174 (4)
O2W—H2WB⋯O4ii 0.844 (18) 1.95 (2) 2.751 (3) 158 (4)
O3W—H3WA⋯O1W 0.85 1.90 2.754 (4) 179
O3W—H3WB⋯O3iii 0.85 1.94 2.793 (3) 179
N2—H2N⋯O2Wiv 0.866 (18) 2.16 (2) 2.985 (3) 158 (3)
N3—H3N⋯O2v 0.82 (4) 1.86 (4) 2.683 (3) 176 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

The authors gratefully acknowledge the donors of the American Chemical Society Petroleum Research Fund and Michigan State University for funding this work.

supplementary crystallographic information

Comment

The dipodal tethering ligand 4,4'-dipyridylamine (dpa) has proven beneficial for the construction of coordination polymer solids with novel topologies (Martin et al., 2007). Isostructural cobalt and nickel malonate dpa coordination polymers possess a three-dimensional 4466 sqp (square pyramidal) topology (Montney et al., 2008). In an attempt to probe the effect of alkyl group substitution on coordination polymer structure by using dimethylmalonate, green crystals of the title compound were obtained.

The asymmetric unit of the title compound contains a nickel atom on a crystallographic two-fold axis, one dimethylmalonate dianion, one protonated Hdpa+ ligand and three water molecules of crystallization. Operation of the two-fold axis generates a neutral molecular complex, {[Ni(dimethylmalonate)2(Hdpa)2].6H2O}, in which the nickel atom is octahedrally coordinated (Fig. 1). The dimethylmalonate ligands bind in a 1,3-chelating fashion, each bridging two cis coordination sites. The Hdpa ligands are disposed in a cis fashion relative to each other.

Neighboring [Ni(dimethylmalonate)2(Hdpa)2 molecules are connected into supramolecular chain patterns, parallel to the c crystal direction, through hydrogen bonding between the protonated pyridyl termini of the Hdpa ligands and unligated dimethylmalonate oxygen atoms. These chains interact viaπ–π stacking between protonated pyridyl rings to form supramolecular layers oriented parallel to the bc crystal planes (Fig. 2). The supramolecular layers interact with each other by hydrogen bonding patterns between the dpa central amine groups or dimethylmalonate carboxylate groups and water molecules of crystallization to form the three-dimensional structure of the title compound (Fig. 3). The unligated water molecules themselves form a hydrogen bonded hexameric cluster centered on a cyclic tetrameric unit, as seen in Fig. 1. The centroids of the clusters rest on crystallographic inversion centers (Wyckoff position d).

Experimental

All chemicals were obtained commercially. Nickel perchlorate hexahydrate (135 mg, 0.37 mmol) and dimethylmalonic acid (49 mg, 0.74 mmol) were dissolved in 3 ml water in a glass vial. A 1 ml aliquot of a 1:1 water–ethanol was carefully layered onto the aqueous solution, followed by 3 ml of an ethanolic solution of dpa (127 mg, 0.74 mmol). Green blocks of the title compound formed after 1 week.

Refinement

All H atoms bound to C atoms were placed in calculated positions, with C—H = 0.95 Å and refined in riding mode with Uiso = 1.2Ueq(C). The H atoms bound to O atoms were found via Fourier difference map, restrained at fixed positions or with O—H = 0.85 Å, and refined with Uiso = 1.2Ueq(O). The H atoms bound to N atoms were found via Fourier difference map, restrained with N—H = 0.89 Å, and refined with Uiso = 1.2Ueq(N).

Figures

Fig. 1.

Fig. 1.

A full molecular unit of the title compound, along with hydrogen bonded water molecule hexamer, showing 50% probability ellipsoids and the atom numbering scheme. Hydrogen atom positions are shown as gray sticks. Hydrogen bonding interactions are shown as dashed lines. Color codes: green Ni, light blue N, red O, black C. Symmetry codes: (i) -x, y, -z + 1/2; (ii) -x - 1/2, -y + 5/2, -z

Fig. 2.

Fig. 2.

A single supramolecular layer in the title compound, formed from π–π stacking of hydrogen-bonded [Ni(dimethylmalonate)2(Hdpa)2]n supramolecular chains. Hydrogen bonding is indicated as dashed lines.

Fig. 3.

Fig. 3.

Packing diagram illustrating the AB layer stacking pattern, which forms the 3-D crystal structure of the title compound through hydrogen bonding between water molecules of crystallization and the amine groups of the Hdpa ligands. Individual pseudolayers are shown in blue and red. The oxygen atoms of the water molecules of crystallization are shown in orange.

Crystal data

[Ni(C5H6O4)2(C10H10N3)2]·6H2O F000 = 1624
Mr = 771.42 Dx = 1.470 Mg m3
Monoclinic, C2/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 49338 reflections
a = 18.428 (4) Å θ = 1.7–28.1º
b = 8.0473 (16) Å µ = 0.63 mm1
c = 23.731 (5) Å T = 173 (2) K
β = 97.96 (3)º Block, green
V = 3485.4 (12) Å3 0.30 × 0.30 × 0.10 mm
Z = 4

Data collection

Bruker SMART 1K diffractometer 3998 independent reflections
Radiation source: fine-focus sealed tube 3222 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.079
T = 173(2) K θmax = 28.1º
ω scans θmin = 1.7º
Absorption correction: multi-scan(TWINABS; Sheldrick, 2007) h = −20→24
Tmin = 0.833, Tmax = 0.939 k = −10→0
49338 measured reflections l = −19→31

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.163   w = 1/[σ2(Fo2) + (0.0996P)2 + 4.676P] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max < 0.001
3998 reflections Δρmax = 0.84 e Å3
246 parameters Δρmin = −0.60 e Å3
10 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Experimental. Reflection data were collected on a non-merohedrally twinned crystal. The twin law was determined with CELL-NOW (Sheldrick, 2003). The structure was solved and refined using reflections from only the major twin component, whose reflection file was generated using TWINABS (Sheldrick, 2007). Composite reflections belonging to both twin domains were omitted from the reflection list, causing the loss of 252 reflections from the major twin component data. The data set was still 99.9% complete to 2θ of 50°.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.0000 0.68844 (6) 0.2500 0.01265 (17)
O1 −0.10290 (10) 0.6794 (2) 0.20559 (8) 0.0169 (4)
O1W −0.18013 (13) 1.0666 (3) 0.04163 (11) 0.0386 (6)
H1WA −0.2030 1.1538 0.0492 0.046*
H1WB −0.198 (2) 0.986 (3) 0.0576 (16) 0.046*
O2 −0.03894 (10) 0.5158 (2) 0.30453 (7) 0.0163 (4)
O2W −0.26118 (12) 0.8279 (3) 0.09768 (9) 0.0270 (5)
H2WA −0.2400 (19) 0.746 (3) 0.1144 (14) 0.032*
H2WB −0.2807 (19) 0.888 (4) 0.1206 (13) 0.032*
O3 −0.20007 (10) 0.5600 (3) 0.15784 (8) 0.0207 (4)
O3W −0.2449 (2) 1.1445 (4) −0.06678 (12) 0.0712 (11)
H3WA −0.2253 1.1212 −0.0331 0.085*
H3WB −0.2620 1.0821 −0.0944 0.085*
O4 −0.14160 (11) 0.4853 (3) 0.34207 (8) 0.0277 (5)
N1 0.02492 (12) 0.8724 (3) 0.19288 (9) 0.0151 (5)
N2 0.08802 (13) 1.1902 (3) 0.06757 (10) 0.0199 (5)
H2N 0.1351 (10) 1.203 (4) 0.0737 (15) 0.024*
N3 0.00229 (14) 1.3886 (3) −0.08748 (10) 0.0231 (5)
H3N −0.0118 (19) 1.422 (5) −0.1199 (16) 0.028*
C1 0.07385 (18) 1.3998 (4) −0.06814 (12) 0.0262 (7)
H1 0.1052 1.4516 −0.0902 0.031*
C2 0.10115 (17) 1.3359 (4) −0.01648 (12) 0.0236 (6)
H2 0.1508 1.3467 −0.0031 0.028*
C3 0.05471 (16) 1.2533 (4) 0.01689 (11) 0.0193 (6)
C4 −0.01943 (16) 1.2421 (4) −0.00520 (12) 0.0228 (6)
H4 −0.0521 1.1883 0.0152 0.027*
C5 −0.04357 (17) 1.3111 (4) −0.05712 (13) 0.0251 (6)
H5 −0.0930 1.3040 −0.0716 0.030*
C6 0.09491 (14) 0.9063 (4) 0.18757 (11) 0.0186 (6)
H6 0.1315 0.8551 0.2126 0.022*
C7 0.11574 (15) 1.0124 (4) 0.14740 (11) 0.0193 (6)
H7 0.1651 1.0319 0.1457 0.023*
C8 0.06220 (15) 1.0909 (3) 0.10910 (11) 0.0169 (5)
C9 −0.01058 (15) 1.0630 (4) 0.11588 (11) 0.0205 (6)
H9 −0.0482 1.1167 0.0927 0.025*
C10 −0.02595 (15) 0.9540 (4) 0.15780 (11) 0.0193 (6)
H10 −0.0749 0.9364 0.1618 0.023*
C11 −0.14996 (13) 0.5650 (3) 0.19920 (10) 0.0134 (5)
C12 −0.14587 (14) 0.4205 (3) 0.24216 (11) 0.0159 (5)
C13 −0.22274 (15) 0.3538 (4) 0.24762 (12) 0.0220 (6)
H13A −0.2462 0.3181 0.2110 0.033*
H13B −0.2513 0.4401 0.2618 0.033*
H13C −0.2187 0.2615 0.2735 0.033*
C14 −0.10114 (16) 0.2814 (4) 0.21810 (12) 0.0211 (6)
H14A −0.1258 0.2466 0.1817 0.032*
H14B −0.0965 0.1887 0.2438 0.032*
H14C −0.0533 0.3226 0.2138 0.032*
C15 −0.10720 (14) 0.4782 (3) 0.30049 (11) 0.0163 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.0109 (3) 0.0145 (3) 0.0122 (2) 0.000 0.00056 (16) 0.000
O1 0.0145 (9) 0.0167 (10) 0.0186 (9) −0.0025 (7) −0.0008 (7) 0.0019 (7)
O1W 0.0325 (13) 0.0370 (15) 0.0459 (15) −0.0012 (11) 0.0042 (11) 0.0057 (11)
O2 0.0152 (9) 0.0195 (10) 0.0137 (9) −0.0010 (7) −0.0003 (7) 0.0010 (7)
O2W 0.0282 (12) 0.0304 (13) 0.0228 (11) 0.0086 (9) 0.0044 (9) 0.0049 (9)
O3 0.0183 (10) 0.0239 (11) 0.0180 (9) −0.0021 (8) −0.0049 (7) −0.0008 (8)
O3W 0.108 (3) 0.062 (2) 0.0338 (15) 0.026 (2) −0.0247 (16) −0.0222 (14)
O4 0.0259 (11) 0.0408 (14) 0.0175 (10) −0.0098 (10) 0.0063 (8) −0.0048 (9)
N1 0.0149 (10) 0.0150 (11) 0.0157 (10) −0.0010 (9) 0.0030 (8) −0.0010 (9)
N2 0.0163 (11) 0.0258 (13) 0.0168 (11) −0.0029 (10) −0.0006 (9) 0.0077 (9)
N3 0.0323 (14) 0.0223 (13) 0.0134 (11) 0.0046 (11) −0.0014 (10) 0.0017 (10)
C1 0.0328 (16) 0.0278 (17) 0.0188 (13) 0.0004 (13) 0.0062 (11) 0.0050 (12)
C2 0.0246 (14) 0.0294 (16) 0.0169 (13) −0.0007 (12) 0.0031 (11) 0.0023 (11)
C3 0.0269 (15) 0.0175 (14) 0.0134 (12) 0.0017 (11) 0.0023 (10) −0.0004 (10)
C4 0.0223 (14) 0.0276 (16) 0.0179 (13) −0.0046 (12) 0.0004 (11) −0.0013 (12)
C5 0.0241 (15) 0.0281 (16) 0.0218 (14) 0.0029 (12) −0.0014 (11) −0.0055 (12)
C6 0.0160 (13) 0.0210 (15) 0.0174 (12) −0.0008 (11) −0.0024 (10) 0.0023 (10)
C7 0.0140 (12) 0.0251 (15) 0.0182 (13) −0.0057 (11) 0.0000 (10) 0.0007 (11)
C8 0.0206 (13) 0.0177 (14) 0.0126 (11) −0.0039 (10) 0.0036 (10) −0.0009 (10)
C9 0.0189 (13) 0.0230 (15) 0.0197 (13) 0.0042 (11) 0.0026 (10) 0.0040 (11)
C10 0.0157 (12) 0.0214 (15) 0.0209 (13) 0.0023 (11) 0.0027 (10) 0.0009 (11)
C11 0.0135 (12) 0.0154 (13) 0.0115 (11) 0.0013 (10) 0.0024 (9) −0.0035 (9)
C12 0.0164 (12) 0.0153 (13) 0.0155 (12) −0.0015 (10) 0.0002 (9) 0.0020 (10)
C13 0.0178 (13) 0.0239 (15) 0.0235 (14) −0.0054 (11) 0.0007 (11) 0.0007 (11)
C14 0.0231 (14) 0.0172 (14) 0.0223 (14) −0.0001 (11) 0.0005 (11) −0.0022 (11)
C15 0.0181 (13) 0.0140 (13) 0.0161 (12) 0.0014 (10) −0.0003 (10) 0.0029 (10)

Geometric parameters (Å, °)

Ni1—O1 2.0392 (19) C1—H1 0.9300
Ni1—O1i 2.0392 (19) C2—C3 1.410 (4)
Ni1—O2i 2.0920 (19) C2—H2 0.9300
Ni1—O2 2.0921 (19) C3—C4 1.397 (4)
Ni1—N1i 2.100 (2) C4—C5 1.368 (4)
Ni1—N1 2.100 (2) C4—H4 0.9300
O1—C11 1.259 (3) C5—H5 0.9300
O1W—H1WA 0.8506 C6—C7 1.373 (4)
O1W—H1WB 0.840 (18) C6—H6 0.9300
O2—C15 1.284 (3) C7—C8 1.396 (4)
O2W—H2WA 0.840 (18) C7—H7 0.9300
O2W—H2WB 0.844 (18) C8—C9 1.391 (4)
O3—C11 1.252 (3) C9—C10 1.385 (4)
O3W—H3WA 0.8502 C9—H9 0.9300
O3W—H3WB 0.8499 C10—H10 0.9300
O4—C15 1.246 (3) C11—C12 1.541 (4)
N1—C10 1.337 (3) C12—C13 1.537 (4)
N1—C6 1.341 (3) C12—C15 1.538 (4)
N2—C3 1.370 (3) C12—C14 1.545 (4)
N2—C8 1.402 (3) C13—H13A 0.9600
N2—H2N 0.866 (18) C13—H13B 0.9600
N3—C1 1.338 (4) C13—H13C 0.9600
N3—C5 1.338 (4) C14—H14A 0.9600
N3—H3N 0.82 (4) C14—H14B 0.9600
C1—C2 1.360 (4) C14—H14C 0.9600
O1—Ni1—O1i 175.89 (10) N3—C5—H5 119.2
O1—Ni1—O2i 91.75 (7) C4—C5—H5 119.2
O1i—Ni1—O2i 85.51 (7) N1—C6—C7 123.8 (2)
O1—Ni1—O2 85.51 (7) N1—C6—H6 118.1
O1i—Ni1—O2 91.75 (7) C7—C6—H6 118.1
O2i—Ni1—O2 96.77 (11) C6—C7—C8 119.5 (2)
O1—Ni1—N1i 95.05 (8) C6—C7—H7 120.2
O1i—Ni1—N1i 87.85 (8) C8—C7—H7 120.2
O2i—Ni1—N1i 172.54 (8) C9—C8—C7 117.2 (2)
O2—Ni1—N1i 86.81 (8) C9—C8—N2 126.8 (2)
O1—Ni1—N1 87.85 (8) C7—C8—N2 115.9 (2)
O1i—Ni1—N1 95.05 (8) C10—C9—C8 118.8 (3)
O2i—Ni1—N1 86.81 (8) C10—C9—H9 120.6
O2—Ni1—N1 172.54 (8) C8—C9—H9 120.6
N1i—Ni1—N1 90.39 (12) N1—C10—C9 124.3 (3)
C11—O1—Ni1 131.61 (17) N1—C10—H10 117.9
H1WA—O1W—H1WB 108.1 C9—C10—H10 117.9
C15—O2—Ni1 121.78 (16) O3—C11—O1 122.6 (2)
H2WA—O2W—H2WB 111 (3) O3—C11—C12 117.2 (2)
H3WA—O3W—H3WB 131.1 O1—C11—C12 120.1 (2)
C10—N1—C6 116.2 (2) C13—C12—C15 110.3 (2)
C10—N1—Ni1 123.44 (18) C13—C12—C11 111.0 (2)
C6—N1—Ni1 120.21 (18) C15—C12—C11 110.0 (2)
C3—N2—C8 132.4 (2) C13—C12—C14 108.9 (2)
C3—N2—H2N 115 (2) C15—C12—C14 110.3 (2)
C8—N2—H2N 112 (2) C11—C12—C14 106.4 (2)
C1—N3—C5 120.8 (3) C12—C13—H13A 109.5
C1—N3—H3N 118 (3) C12—C13—H13B 109.5
C5—N3—H3N 121 (3) H13A—C13—H13B 109.5
N3—C1—C2 120.5 (3) C12—C13—H13C 109.5
N3—C1—H1 119.7 H13A—C13—H13C 109.5
C2—C1—H1 119.7 H13B—C13—H13C 109.5
C1—C2—C3 120.5 (3) C12—C14—H14A 109.5
C1—C2—H2 119.8 C12—C14—H14B 109.5
C3—C2—H2 119.8 H14A—C14—H14B 109.5
N2—C3—C4 127.0 (3) C12—C14—H14C 109.5
N2—C3—C2 115.8 (3) H14A—C14—H14C 109.5
C4—C3—C2 117.2 (3) H14B—C14—H14C 109.5
C5—C4—C3 119.4 (3) O4—C15—O2 122.0 (2)
C5—C4—H4 120.3 O4—C15—C12 120.2 (2)
C3—C4—H4 120.3 O2—C15—C12 117.7 (2)
N3—C5—C4 121.5 (3)
O1i—Ni1—O1—C11 18.9 (2) C3—C4—C5—N3 0.3 (5)
O2i—Ni1—O1—C11 67.1 (2) C10—N1—C6—C7 −2.8 (4)
O2—Ni1—O1—C11 −29.5 (2) Ni1—N1—C6—C7 173.3 (2)
N1i—Ni1—O1—C11 −115.9 (2) N1—C6—C7—C8 −0.3 (4)
N1—Ni1—O1—C11 153.9 (2) C6—C7—C8—C9 3.3 (4)
O1—Ni1—O2—C15 −9.1 (2) C6—C7—C8—N2 −176.7 (3)
O1i—Ni1—O2—C15 174.0 (2) C3—N2—C8—C9 −17.2 (5)
O2i—Ni1—O2—C15 −100.3 (2) C3—N2—C8—C7 162.8 (3)
N1i—Ni1—O2—C15 86.2 (2) C7—C8—C9—C10 −3.2 (4)
N1—Ni1—O2—C15 18.1 (7) N2—C8—C9—C10 176.8 (3)
O1—Ni1—N1—C10 15.1 (2) C6—N1—C10—C9 2.9 (4)
O1i—Ni1—N1—C10 −167.8 (2) Ni1—N1—C10—C9 −173.1 (2)
O2i—Ni1—N1—C10 107.0 (2) C8—C9—C10—N1 0.1 (4)
O2—Ni1—N1—C10 −12.0 (7) Ni1—O1—C11—O3 −157.24 (19)
N1i—Ni1—N1—C10 −80.0 (2) Ni1—O1—C11—C12 20.7 (3)
O1—Ni1—N1—C6 −160.7 (2) O3—C11—C12—C13 −32.9 (3)
O1i—Ni1—N1—C6 16.4 (2) O1—C11—C12—C13 149.1 (2)
O2i—Ni1—N1—C6 −68.9 (2) O3—C11—C12—C15 −155.2 (2)
O2—Ni1—N1—C6 172.2 (5) O1—C11—C12—C15 26.7 (3)
N1i—Ni1—N1—C6 104.2 (2) O3—C11—C12—C14 85.4 (3)
C5—N3—C1—C2 −1.6 (5) O1—C11—C12—C14 −92.7 (3)
N3—C1—C2—C3 1.6 (5) Ni1—O2—C15—O4 −127.2 (2)
C8—N2—C3—C4 5.0 (5) Ni1—O2—C15—C12 53.7 (3)
C8—N2—C3—C2 −174.0 (3) C13—C12—C15—O4 −8.5 (4)
C1—C2—C3—N2 178.5 (3) C11—C12—C15—O4 114.2 (3)
C1—C2—C3—C4 −0.6 (4) C14—C12—C15—O4 −128.8 (3)
N2—C3—C4—C5 −179.3 (3) C13—C12—C15—O2 170.6 (2)
C2—C3—C4—C5 −0.3 (4) C11—C12—C15—O2 −66.6 (3)
C1—N3—C5—C4 0.6 (5) C14—C12—C15—O2 50.3 (3)

Symmetry codes: (i) −x, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1W—H1WA···O3Wii 0.85 1.96 2.811 (4) 180
O1W—H1WB···O2W 0.840 (18) 2.05 (2) 2.870 (3) 166 (4)
O2W—H2WA···O3 0.840 (18) 1.904 (19) 2.741 (3) 174 (4)
O2W—H2WB···O4iii 0.844 (18) 1.95 (2) 2.751 (3) 158 (4)
O3W—H3WA···O1W 0.85 1.90 2.754 (4) 179
O3W—H3WB···O3iv 0.85 1.94 2.793 (3) 179
N2—H2N···O2Wv 0.866 (18) 2.16 (2) 2.985 (3) 158 (3)
N3—H3N···O2vi 0.82 (4) 1.86 (4) 2.683 (3) 176 (4)

Symmetry codes: (ii) −x−1/2, −y+5/2, −z; (iii) −x−1/2, y+1/2, −z+1/2; (iv) −x−1/2, −y+3/2, −z; (v) x+1/2, y+1/2, z; (vi) x, −y+2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2132).

References

  1. Bruker (2006). SMART and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Martin, D. P., Supkowski, R. M. & LaDuca, R. L. (2007). Inorg. Chem.46, 7917–7922. [DOI] [PubMed]
  3. Montney, M. R., Supkowski, R. M. & LaDuca, R. L. (2008). Polyhedron, 27, 2997–3003.
  4. Palmer, D. (2007). Crystal Maker CrystalMaker Software, Bicester, Oxfordshire, England.
  5. Sheldrick, G. M. (2003). CELL-NOW University of Göttingen, Germany.
  6. Sheldrick, G. M. (2007). TWINABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680803835X/pk2132sup1.cif

e-64-m1603-sup1.cif (21.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680803835X/pk2132Isup2.hkl

e-64-m1603-Isup2.hkl (196.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES