Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Nov 8;64(Pt 12):m1488–m1489. doi: 10.1107/S1600536808034983

Bis(di-2-pyridylmethane­diol-κ3 N,O,N′)copper(II) dl-tartrate

Jun Zhao a, Dong-Sheng Li a,*, Wen-Wen Dong a, Dan-Jun Wang b, Li Guo b
PMCID: PMC2960086  PMID: 21581112

Abstract

The reaction of di-2-pyridyl ketone with copper dichloride dihydrate and tartaric acid in water afforded the title compound, [Cu(C11H10N2O2)2]C4H4O6. The CuII atom lies on an inversion center N,O,N′-chelated by two di-2-pyridylmethane­diol ligands in a tetragonally distorted octa­hedral geometry. The tartrate anion is also located on an inversion center and has disordered hydroxyl groups, each with an occupancy factor of 0.5. The hydroxyl groups of the complex cation are hydrogen bonded to the carboxyl­ate groups of the anion, thus connecting the two building units.

Related literature

For backgroung on di-2-pyridylketone complexes, see: Deveson et al. (1996); Sommerer et al. (1993); Wang et al. (1986).graphic file with name e-64-m1488-scheme1.jpg

Experimental

Crystal data

  • [Cu(C11H10N2O2)2]C4H4O6

  • M r = 616.03

  • Triclinic, Inline graphic

  • a = 7.7893 (8) Å

  • b = 8.1068 (8) Å

  • c = 11.3136 (12) Å

  • α = 105.973 (1)°

  • β = 90.431 (1)°

  • γ = 110.584 (1)°

  • V = 638.65 (11) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.92 mm−1

  • T = 293 (2) K

  • 0.45 × 0.30 × 0.18 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.726, T max = 0.850

  • 3231 measured reflections

  • 2235 independent reflections

  • 1978 reflections with I > 2σ(I)

  • R int = 0.015

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.091

  • S = 1.03

  • 2235 reflections

  • 196 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808034983/hy2156sup1.cif

e-64-m1488-sup1.cif (17.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808034983/hy2156Isup2.hkl

e-64-m1488-Isup2.hkl (109.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Cu1—N1 2.003 (2)
Cu1—N2 2.019 (2)
Cu1—O1 2.3920 (19)
N1—Cu1—N2i 91.08 (9)
N1—Cu1—N2 88.92 (9)
N1—Cu1—O1i 104.11 (8)
N2—Cu1—O1i 106.37 (8)
N1—Cu1—O1 75.89 (8)
N2—Cu1—O1 73.63 (8)

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O3ii 0.85 1.73 2.582 (3) 178
O2—H2A⋯O4ii 0.82 1.84 2.648 (3) 170
O5—H5⋯O3 0.82 2.15 2.641 (5) 119
O6—H6⋯O4 0.82 2.22 2.693 (5) 118
C2—H2⋯O5iii 0.93 2.38 3.249 (6) 156
C3—H3⋯O4iv 0.93 2.50 3.217 (4) 134
C4—H4⋯O5 0.93 2.45 3.258 (5) 146

Symmetry codes: (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

This work was supported financially by the National Natural Science Foundation of China (grant No. 20773104), the Program for New Century Excellent Talents in Universities (NCET-06–0891), the Key Project of the Chinese Ministry of Education (grant No. 208143) and the Important Project of Hubei Provincial Education Office (09HB81).

supplementary crystallographic information

Comment

Di-2-pyridylketone (dpk) functions either as a bidentate N,N'-donor or as a tridentate N,O,N'-donor towards metal ions, depending on the reaction medium used in the synthesis of the complexes (Deveson et al., 1996), and several mononuclear and polynuclear transition metal–dpk complexes have been reported (Sommerer et al., 1993; Wang et al., 1986). The structural investigations clearly demonstrate that in each case hydration occurs across the ketone double bond in the ligand and that the resulting hydroxyl group coordinates to metal.

In the title compound, two dipyridin-2-yl-methanediol ligands, each in a tridentate fashion, are bonded to the CuII atom lying on an inversion center (Fig. 1). The pyridyl N atoms are strongly coordinated to the metal in the equatorial plane, while the hydroxyl groups are relatively weakly coordinated in the axial positions (Table 1). The two Cu—O(hydroxy) bonds [2.392 (2) Å], being in a trans arrangement, significantly exceed the Cu—N bond distances, a feature which can be attributed to the Jahn-Teller effect and usually manifests in d9 metal systems. The tartrate anion is located on an inversion center with disordered hydroxyl groups, each has an occupancy factor of 0.5. The hydroxyl groups of the complex cation as donors are involved in hydrogen bonds with the tartrate anion (Table 2).

Experimental

A mixture of di-2-pyridylketone (0.184 g, 1 mmol), CuCl2.2H2O (0.067 g, 0.5 mmol), tartaric acid (0.075 g, 0.5 mmol) and water (18 ml) in a 25 ml Teflon-lined stainless steel reactor was heated from 298 to 453 K in 2 h and maintained at 453 K for 72 h. After the mixture was cooled to 298 K, blue crystals of the title compound were obtained.

Refinement

All H atoms were positioned geometrically. Aromatic H atoms were refined as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The other H atoms were fixed in the refinements, with Uiso(H) = 1.2Ueq(C,O).

Figures

Fig. 1.

Fig. 1.

The structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. The hydroxyl groups (O5 and O6) of the tartrate anion are half-occupied. The disordered H atoms attached to C13 have been omitted. [Symmetry codes: (i) 2 - x, -y, -z; (ii) 1 - x, 1 - y, 1 - z.]

Crystal data

[Cu(C11H10N2O2)2]C4H4O6 Z = 1
Mr = 616.03 F000 = 317
Triclinic, P1 Dx = 1.602 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 7.7893 (8) Å Cell parameters from 1352 reflections
b = 8.1068 (8) Å θ = 2.8–26.5º
c = 11.3136 (12) Å µ = 0.92 mm1
α = 105.973 (1)º T = 293 (2) K
β = 90.431 (1)º Prism, blue
γ = 110.584 (1)º 0.45 × 0.30 × 0.18 mm
V = 638.65 (11) Å3

Data collection

Bruker SMART APEX CCD area-detector diffractometer 2235 independent reflections
Radiation source: fine-focus sealed tube 1978 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.015
T = 293(2) K θmax = 25.1º
φ and ω scans θmin = 1.9º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −9→9
Tmin = 0.726, Tmax = 0.850 k = −9→8
3231 measured reflections l = −13→11

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038 H-atom parameters constrained
wR(F2) = 0.091   w = 1/[σ2(Fo2) + (0.0346P)2 + 0.5737P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
2235 reflections Δρmax = 0.37 e Å3
196 parameters Δρmin = −0.31 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cu1 1.0000 0.0000 0.0000 0.03430 (17)
N1 0.9447 (3) 0.0410 (3) 0.1761 (2) 0.0337 (5)
N2 0.8085 (3) 0.1020 (3) −0.0329 (2) 0.0357 (5)
O1 1.1369 (3) 0.3273 (3) 0.09003 (17) 0.0394 (5)
H1A 1.2267 0.3677 0.1473 0.047*
O2 1.0017 (3) 0.5166 (3) 0.21831 (19) 0.0488 (6)
H2A 1.0963 0.5631 0.2671 0.059*
O3 0.4119 (4) 0.4426 (5) 0.2591 (2) 0.0951 (11)
O4 0.2982 (5) 0.6254 (5) 0.3782 (3) 0.1005 (13)
O5 0.7064 (6) 0.5609 (6) 0.4214 (4) 0.0507 (11) 0.50
H5 0.6847 0.5143 0.3468 0.061* 0.50
O6 0.5874 (7) 0.7540 (6) 0.5538 (4) 0.0569 (12) 0.50
H6 0.5146 0.7973 0.5366 0.068* 0.50
C1 0.9098 (4) −0.0858 (4) 0.2372 (3) 0.0411 (7)
H1 0.9154 −0.2004 0.1977 0.049*
C2 0.8658 (5) −0.0499 (5) 0.3569 (3) 0.0506 (8)
H2 0.8416 −0.1391 0.3979 0.061*
C3 0.8583 (5) 0.1207 (5) 0.4150 (3) 0.0538 (9)
H3 0.8274 0.1468 0.4955 0.065*
C4 0.8970 (4) 0.2526 (5) 0.3533 (3) 0.0459 (8)
H4 0.8936 0.3685 0.3915 0.055*
C5 0.9407 (4) 0.2086 (4) 0.2340 (2) 0.0339 (6)
C6 0.9820 (4) 0.3391 (4) 0.1516 (3) 0.0361 (6)
C7 0.8205 (4) 0.2618 (4) 0.0498 (3) 0.0365 (6)
C8 0.6957 (4) 0.3441 (4) 0.0418 (3) 0.0472 (8)
H8 0.7037 0.4522 0.1017 0.057*
C9 0.5585 (4) 0.2637 (5) −0.0563 (3) 0.0540 (9)
H9 0.4729 0.3174 −0.0638 0.065*
C10 0.5493 (4) 0.1036 (5) −0.1432 (3) 0.0483 (8)
H10 0.4593 0.0492 −0.2111 0.058*
C11 0.6747 (4) 0.0247 (4) −0.1282 (3) 0.0420 (7)
H11 0.6665 −0.0854 −0.1858 0.050*
C12 0.4060 (4) 0.5461 (4) 0.3591 (3) 0.0436 (7)
C13 0.5422 (4) 0.5732 (4) 0.4673 (3) 0.0406 (7)
H13A 0.5713 0.6994 0.5271 0.049* 0.50
H13B 0.6568 0.5597 0.4349 0.049* 0.50

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0397 (3) 0.0388 (3) 0.0277 (3) 0.0214 (2) 0.0000 (2) 0.0060 (2)
N1 0.0388 (13) 0.0359 (13) 0.0302 (12) 0.0188 (11) 0.0011 (10) 0.0092 (10)
N2 0.0385 (13) 0.0404 (13) 0.0289 (12) 0.0186 (11) −0.0017 (10) 0.0063 (10)
O1 0.0425 (11) 0.0413 (11) 0.0322 (10) 0.0143 (9) −0.0019 (9) 0.0090 (9)
O2 0.0607 (14) 0.0365 (12) 0.0458 (13) 0.0235 (10) −0.0110 (11) 0.0002 (9)
O3 0.0785 (19) 0.152 (3) 0.0442 (15) 0.076 (2) −0.0195 (14) −0.0292 (17)
O4 0.130 (3) 0.121 (3) 0.0594 (18) 0.100 (2) −0.0409 (17) −0.0290 (17)
O5 0.041 (2) 0.062 (3) 0.051 (3) 0.019 (2) 0.001 (2) 0.019 (2)
O6 0.068 (3) 0.043 (3) 0.047 (3) 0.011 (2) −0.012 (2) 0.006 (2)
C1 0.0428 (17) 0.0410 (17) 0.0433 (17) 0.0191 (14) 0.0003 (14) 0.0136 (14)
C2 0.053 (2) 0.062 (2) 0.0462 (19) 0.0234 (17) 0.0046 (15) 0.0292 (17)
C3 0.062 (2) 0.078 (2) 0.0307 (16) 0.0362 (19) 0.0097 (15) 0.0165 (17)
C4 0.0552 (19) 0.0545 (19) 0.0335 (16) 0.0310 (16) 0.0035 (14) 0.0077 (14)
C5 0.0353 (15) 0.0404 (16) 0.0290 (14) 0.0200 (13) −0.0005 (12) 0.0070 (12)
C6 0.0447 (16) 0.0324 (15) 0.0325 (15) 0.0193 (13) 0.0014 (13) 0.0053 (12)
C7 0.0409 (16) 0.0378 (16) 0.0357 (16) 0.0178 (13) 0.0031 (13) 0.0143 (13)
C8 0.0534 (19) 0.0406 (17) 0.054 (2) 0.0253 (15) 0.0002 (16) 0.0138 (15)
C9 0.0451 (19) 0.058 (2) 0.069 (2) 0.0278 (17) −0.0049 (17) 0.0218 (18)
C10 0.0428 (17) 0.057 (2) 0.0441 (18) 0.0197 (16) −0.0083 (14) 0.0121 (16)
C11 0.0409 (17) 0.0451 (17) 0.0363 (16) 0.0159 (14) −0.0037 (13) 0.0062 (13)
C12 0.0466 (18) 0.0448 (18) 0.0353 (17) 0.0162 (15) 0.0008 (14) 0.0062 (14)
C13 0.0396 (16) 0.0404 (17) 0.0375 (16) 0.0135 (13) −0.0019 (13) 0.0066 (13)

Geometric parameters (Å, °)

Cu1—N1i 2.003 (2) C1—C2 1.377 (4)
Cu1—N1 2.003 (2) C1—H1 0.9300
Cu1—N2i 2.019 (2) C2—C3 1.380 (5)
Cu1—N2 2.019 (2) C2—H2 0.9300
Cu1—O1i 2.3920 (19) C3—C4 1.382 (5)
Cu1—O1 2.3920 (19) C3—H3 0.9300
N1—C1 1.344 (4) C4—C5 1.375 (4)
N1—C5 1.348 (3) C4—H4 0.9300
N2—C11 1.339 (4) C5—C6 1.549 (4)
N2—C7 1.345 (4) C6—C7 1.526 (4)
O1—C6 1.417 (3) C7—C8 1.373 (4)
O1—H1A 0.8554 C8—C9 1.376 (5)
O2—C6 1.382 (3) C8—H8 0.9300
O2—H2A 0.8209 C9—C10 1.374 (5)
O3—C12 1.222 (4) C9—H9 0.9300
O4—C12 1.213 (4) C10—C11 1.374 (4)
O5—C13 1.409 (5) C10—H10 0.9300
O5—H5 0.8134 C11—H11 0.9300
O5—H13B 0.4145 C12—C13 1.530 (4)
O6—C13 1.440 (5) C13—C13ii 1.527 (6)
O6—H6 0.8117 C13—H13A 1.0044
O6—H13A 0.4359 C13—H13B 0.9970
N1i—Cu1—N1 180.0 N1—C5—C4 121.9 (3)
N1i—Cu1—N2i 88.92 (9) N1—C5—C6 113.5 (2)
N1—Cu1—N2i 91.08 (9) C4—C5—C6 124.6 (3)
N1i—Cu1—N2 91.08 (9) O2—C6—O1 113.9 (2)
N1—Cu1—N2 88.92 (9) O2—C6—C7 109.4 (2)
N2i—Cu1—N2 180.0 O1—C6—C7 105.5 (2)
N1i—Cu1—O1i 75.89 (8) O2—C6—C5 111.9 (2)
N1—Cu1—O1i 104.11 (8) O1—C6—C5 108.2 (2)
N2i—Cu1—O1i 73.63 (8) C7—C6—C5 107.6 (2)
N2—Cu1—O1i 106.37 (8) N2—C7—C8 122.0 (3)
N1i—Cu1—O1 104.11 (8) N2—C7—C6 113.9 (2)
N1—Cu1—O1 75.89 (8) C8—C7—C6 124.1 (3)
N2i—Cu1—O1 106.37 (8) C7—C8—C9 118.8 (3)
N2—Cu1—O1 73.63 (8) C7—C8—H8 120.6
O1i—Cu1—O1 180.00 (10) C9—C8—H8 120.6
C1—N1—C5 119.4 (2) C10—C9—C8 119.4 (3)
C1—N1—Cu1 124.79 (19) C10—C9—H9 120.3
C5—N1—Cu1 115.84 (18) C8—C9—H9 120.3
C11—N2—C7 118.8 (2) C9—C10—C11 119.1 (3)
C11—N2—Cu1 125.7 (2) C9—C10—H10 120.5
C7—N2—Cu1 115.45 (18) C11—C10—H10 120.5
C6—O1—Cu1 93.97 (15) N2—C11—C10 121.8 (3)
C6—O1—H1A 105.5 N2—C11—H11 119.1
Cu1—O1—H1A 116.8 C10—C11—H11 119.1
C6—O2—H2A 109.5 O4—C12—O3 124.4 (3)
C13—O5—H5 108.0 O4—C12—C13 118.5 (3)
C13—O5—H13B 5.1 O3—C12—C13 117.1 (3)
H5—O5—H13B 107.4 O5—C13—O6 107.9 (3)
C13—O6—H6 108.0 O5—C13—C12 108.8 (3)
C13—O6—H13A 2.7 O6—C13—C12 110.1 (3)
H6—O6—H13A 105.4 O5—C13—C13ii 110.6 (3)
N1—C1—C2 121.5 (3) O6—C13—C13ii 109.6 (3)
N1—C1—H1 119.3 C12—C13—C13ii 109.9 (3)
C2—C1—H1 119.3 O5—C13—H13A 108.8
C1—C2—C3 119.0 (3) O6—C13—H13A 1.2
C1—C2—H2 120.5 C12—C13—H13A 109.0
C3—C2—H2 120.5 C13ii—C13—H13A 109.7
C2—C3—C4 119.8 (3) O5—C13—H13B 2.1
C2—C3—H3 120.1 O6—C13—H13B 109.5
C4—C3—H3 120.1 C12—C13—H13B 109.1
C5—C4—C3 118.5 (3) C13ii—C13—H13B 108.6
C5—C4—H4 120.7 H13A—C13—H13B 110.5
C3—C4—H4 120.7

Symmetry codes: (i) −x+2, −y, −z; (ii) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1A···O3iii 0.85 1.73 2.582 (3) 178
O2—H2A···O4iii 0.82 1.84 2.648 (3) 170
O5—H5···O3 0.82 2.15 2.641 (5) 119
O6—H6···O4 0.82 2.22 2.693 (5) 118
C2—H2···O5iv 0.93 2.38 3.249 (6) 156
C3—H3···O4ii 0.93 2.50 3.217 (4) 134
C4—H4···O5 0.93 2.45 3.258 (5) 146

Symmetry codes: (iii) x+1, y, z; (iv) x, y−1, z; (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2156).

References

  1. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Deveson, A. C., Heath, S. L., Harding, C. J. & Powell, A. K. (1996). J. Chem. Soc. Dalton Trans. pp. 3173–3177.
  3. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Sommerer, S. O., Baker, J. D., Jensen, W. P., Hamza, A. & Jacobson, R. A. (1993). Inorg. Chim. Acta, 210, 173–176.
  6. Wang, S. L., Richardson, J. W., Briggs, S. J. & Jacobson, R. A. (1986). Inorg. Chim. Acta, 111, 67–72.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808034983/hy2156sup1.cif

e-64-m1488-sup1.cif (17.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808034983/hy2156Isup2.hkl

e-64-m1488-Isup2.hkl (109.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES