Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Nov 29;64(Pt 12):o2502. doi: 10.1107/S1600536808039767

2,5-Bis(9H-carbazol-9-yl)thio­phene

Xu-Liang Jiang a, Er-Fang Huang a, Guo-Wu Rao b,*
PMCID: PMC2960087  PMID: 21581462

Abstract

The mol­ecules of the title compound, C28H18N2S, are built up from two triply-fused rings and one five-membered ring, with dihedral angles of 66.12 (8) and 70.96 (7)° between the central thio­phene ring and the two triply-fused rings.

Related literature

For dicarbazolyl derivatives as potential blue-emitting hole-transporting materials, see: Wu et al. (2000, 2001).graphic file with name e-64-o2502-scheme1.jpg

Experimental

Crystal data

  • C28H18N2S

  • M r = 414.50

  • Orthorhombic, Inline graphic

  • a = 7.8760 (16) Å

  • b = 16.098 (3) Å

  • c = 33.986 (7) Å

  • V = 4309.1 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 298 (2) K

  • 0.20 × 0.18 × 0.16 mm

Data collection

  • Rigaku R-AXIS-IV diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.963, T max = 0.977

  • 12051 measured reflections

  • 3931 independent reflections

  • 3230 reflections with I > 2σ(I)

  • R int = 0.091

  • 3 standard reflections frequency: 60 min intensity decay: 0.3%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.063

  • wR(F 2) = 0.152

  • S = 1.13

  • 3931 reflections

  • 281 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: R-AXIS (Rigaku, 1996); cell refinement: R-AXIS; data reduction: R-AXIS program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808039767/dn2409sup1.cif

e-64-o2502-sup1.cif (22.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808039767/dn2409Isup2.hkl

e-64-o2502-Isup2.hkl (188.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to the Top Key Discipline of Pharmaceutics in Zhejiang Provincial Colleges (grant No. 20060611), the Department of Education of Zhejiang Province of China (grant No. 20060806) and the Creative High Level Personal Project of Zhejiang University of Technology (grant No. 071058) for financial support.

supplementary crystallographic information

Comment

Due to the great potential in flat-panel displays, organic light-emitting diodes (OLEDs) have been received continuous attention for years. Dicarbazolyl derivatives bridged by various aromatic spacers could emit blue light in solution, and could be used as excellent blue-emitting hole-transporting materials (Wu et al., 2000, 2001). As dicarbazolyl derivatives are of great importance in electroluminescent devices, we have undertaken the crystal structure determination of the title compound.

The molecular (I) is built up from two three-fused rings and one five-membered ring. (Fig. 1). The three fused rings are coplanar within 0.0306 (27) and 0.0288 (26) Å, respectively. The five-membered ring is coplanar within 0.0027 (18) Å. The dihedral angles between the thiophene ring and the three-fused rings are 66.12 (8) and 70.96 (7)°, respectively.

Experimental

2,5-dibromothiophene (4.84 g, 20.0 mmol), 9H-carbazole (6.69 g, 40.0 mmol), sodium tert-butoxide (4.61 g, 48.0 mmol), Pd(OAc)2 (90 mg, 0.4 mmol), P(t—Bu)3 (0.4 ml, 1.6 mmol, 0.81 M in o-xylene) and dry o-xylene (60 ml) were placed in a round-bottomed flask, and the solution was stirred at reflux for 72 h. After cooling, 2 ml of water was added, and the solution was then pumped dry, and the residue was extracted with dichloromethane/water, filtered and dried over magnesium sulfate. The pure product (m. p. 250–252°C) was obtained through silica gel chromatography (eluant: petroleum ether). A solution of the compound in n-hexane/dichloromethane (v/v=5/1) was concentrated gradually at room temperature to afford colorless prisms.

Refinement

H atoms were included in calculated positions and refined using a riding model. H atoms were given isotropic displacement parameters equal to 1.2 times the equivalent isotropic displacement parameters of their parent atoms and C—H distances were restrained to 0.93 Å.

Figures

Fig. 1.

Fig. 1.

The structure of (I), showing the atom-labelling scheme. Ellipsoids are drawn at the 30% probability level.

Crystal data

C28H18N2S F000 = 1728
Mr = 414.50 Dx = 1.278 Mg m3
Orthorhombic, Pbca Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 398 reflections
a = 7.8760 (16) Å θ = 2–25.1º
b = 16.098 (3) Å µ = 0.17 mm1
c = 33.986 (7) Å T = 298 (2) K
V = 4309.1 (15) Å3 Prismatic, colorless
Z = 8 0.20 × 0.18 × 0.16 mm

Data collection

Rigaku R-AXIS-IV diffractometer Rint = 0.091
Radiation source: fine-focus sealed tube θmax = 25.5º
Monochromator: graphite θmin = 1.2º
T = 298(2) K h = −9→9
Oscillation frames scans k = −19→0
Absorption correction: multi-scan(ABSCOR; Higashi, 1995) l = −41→41
Tmin = 0.963, Tmax = 0.977 3 standard reflections
12051 measured reflections every 60 min
3931 independent reflections intensity decay: 0.3%
3230 reflections with I > 2σ(I)

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.063   w = 1/[σ2(Fo2) + (0.0561P)2 + 1.4309P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.152 (Δ/σ)max = 0.005
S = 1.13 Δρmax = 0.22 e Å3
3931 reflections Δρmin = −0.23 e Å3
281 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0075 (8)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.42510 (9) 0.38837 (4) 0.134571 (19) 0.0563 (2)
N1 0.1144 (3) 0.45028 (13) 0.15532 (6) 0.0547 (5)
N2 0.5972 (3) 0.31480 (13) 0.07385 (6) 0.0528 (5)
C1 0.1385 (3) 0.52907 (16) 0.17188 (8) 0.0549 (6)
C2 0.2565 (4) 0.5891 (2) 0.16243 (11) 0.0778 (9)
H2A 0.3375 0.5804 0.1429 0.093*
C3 0.2491 (5) 0.6626 (2) 0.18321 (12) 0.0908 (11)
H3A 0.3271 0.7043 0.1776 0.109*
C4 0.1297 (6) 0.6760 (2) 0.21206 (12) 0.0935 (12)
H4A 0.1285 0.7264 0.2254 0.112*
C5 0.0140 (5) 0.6171 (2) 0.22129 (9) 0.0756 (9)
H5A −0.0666 0.6270 0.2407 0.091*
C6 0.0166 (3) 0.54065 (17) 0.20123 (7) 0.0552 (6)
C7 −0.0844 (3) 0.46647 (17) 0.20323 (7) 0.0536 (6)
C8 −0.2183 (4) 0.4410 (2) 0.22699 (8) 0.0706 (8)
H8A −0.2620 0.4764 0.2461 0.085*
C9 −0.2852 (4) 0.3632 (2) 0.22198 (9) 0.0797 (9)
H9A −0.3736 0.3454 0.2381 0.096*
C10 −0.2226 (4) 0.3107 (2) 0.19319 (9) 0.0717 (8)
H10A −0.2705 0.2582 0.1902 0.086*
C11 −0.0908 (4) 0.33396 (17) 0.16874 (8) 0.0595 (7)
H11A −0.0508 0.2988 0.1491 0.071*
C12 −0.0208 (3) 0.41184 (15) 0.17466 (7) 0.0484 (6)
C13 0.2153 (3) 0.41352 (16) 0.12579 (7) 0.0518 (6)
C14 0.1618 (4) 0.3893 (2) 0.08962 (8) 0.0721 (9)
H14A 0.0525 0.3978 0.0801 0.087*
C15 0.2932 (4) 0.3495 (2) 0.06807 (8) 0.0737 (9)
H15A 0.2791 0.3287 0.0427 0.088*
C16 0.4400 (3) 0.34488 (16) 0.08817 (7) 0.0517 (6)
C17 0.6898 (3) 0.35122 (15) 0.04319 (7) 0.0484 (6)
C18 0.6625 (4) 0.42622 (17) 0.02422 (8) 0.0626 (7)
H18A 0.5728 0.4608 0.0312 0.075*
C19 0.7746 (4) 0.44742 (19) −0.00553 (9) 0.0710 (8)
H19A 0.7599 0.4975 −0.0187 0.085*
C20 0.9084 (4) 0.3958 (2) −0.01618 (9) 0.0715 (8)
H20A 0.9806 0.4114 −0.0365 0.086*
C21 0.9348 (3) 0.32234 (19) 0.00301 (8) 0.0625 (7)
H21A 1.0244 0.2879 −0.0042 0.075*
C22 0.8259 (3) 0.29954 (16) 0.03348 (7) 0.0511 (6)
C23 0.8173 (3) 0.22830 (16) 0.05942 (7) 0.0520 (6)
C24 0.9152 (4) 0.1575 (2) 0.06395 (9) 0.0711 (8)
H24A 1.0113 0.1493 0.0486 0.085*
C25 0.8682 (5) 0.0997 (2) 0.09146 (10) 0.0838 (10)
H25A 0.9330 0.0518 0.0945 0.101*
C26 0.7258 (5) 0.1112 (2) 0.11483 (9) 0.0814 (9)
H26A 0.6974 0.0710 0.1333 0.098*
C27 0.6255 (4) 0.18089 (18) 0.11129 (8) 0.0673 (8)
H27A 0.5297 0.1884 0.1269 0.081*
C28 0.6737 (3) 0.23931 (16) 0.08351 (7) 0.0518 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0515 (4) 0.0642 (4) 0.0531 (4) 0.0098 (3) 0.0019 (3) −0.0067 (3)
N1 0.0541 (12) 0.0513 (12) 0.0586 (12) 0.0035 (10) 0.0152 (10) −0.0071 (10)
N2 0.0474 (11) 0.0548 (12) 0.0564 (12) 0.0049 (10) 0.0114 (9) −0.0021 (10)
C1 0.0545 (15) 0.0498 (15) 0.0604 (15) 0.0060 (12) −0.0023 (12) −0.0032 (12)
C2 0.068 (2) 0.0620 (19) 0.103 (2) −0.0023 (16) 0.0013 (17) −0.0029 (17)
C3 0.083 (3) 0.0552 (19) 0.134 (3) −0.0055 (17) −0.020 (2) −0.005 (2)
C4 0.098 (3) 0.064 (2) 0.119 (3) 0.017 (2) −0.036 (2) −0.027 (2)
C5 0.080 (2) 0.073 (2) 0.074 (2) 0.0289 (18) −0.0145 (16) −0.0226 (16)
C6 0.0568 (15) 0.0560 (15) 0.0529 (14) 0.0156 (13) −0.0088 (12) −0.0073 (12)
C7 0.0528 (15) 0.0630 (16) 0.0451 (13) 0.0201 (13) −0.0010 (11) −0.0001 (11)
C8 0.0618 (18) 0.096 (2) 0.0544 (16) 0.0204 (17) 0.0139 (13) −0.0022 (15)
C9 0.0617 (19) 0.106 (3) 0.071 (2) 0.0008 (19) 0.0196 (15) 0.0159 (19)
C10 0.0631 (18) 0.0702 (19) 0.082 (2) −0.0038 (15) 0.0063 (15) 0.0152 (16)
C11 0.0583 (16) 0.0564 (16) 0.0638 (16) 0.0087 (13) 0.0070 (12) −0.0001 (12)
C12 0.0459 (13) 0.0514 (14) 0.0481 (13) 0.0100 (11) 0.0048 (10) 0.0005 (11)
C13 0.0488 (14) 0.0532 (14) 0.0533 (14) 0.0030 (12) 0.0089 (11) −0.0029 (11)
C14 0.0489 (15) 0.107 (2) 0.0605 (17) 0.0097 (16) 0.0022 (12) −0.0179 (16)
C15 0.0494 (16) 0.112 (3) 0.0594 (17) 0.0088 (17) 0.0050 (13) −0.0236 (17)
C16 0.0455 (14) 0.0553 (15) 0.0542 (14) 0.0021 (11) 0.0094 (11) −0.0036 (11)
C17 0.0457 (13) 0.0510 (14) 0.0486 (13) −0.0043 (11) 0.0042 (10) −0.0095 (11)
C18 0.0665 (18) 0.0560 (16) 0.0652 (17) −0.0013 (14) 0.0058 (13) −0.0043 (13)
C19 0.077 (2) 0.0639 (18) 0.0724 (18) −0.0182 (16) 0.0076 (16) 0.0036 (15)
C20 0.0661 (19) 0.084 (2) 0.0645 (17) −0.0250 (17) 0.0170 (14) −0.0064 (16)
C21 0.0470 (15) 0.0776 (19) 0.0629 (16) −0.0076 (14) 0.0120 (12) −0.0205 (15)
C22 0.0447 (13) 0.0586 (15) 0.0501 (13) −0.0056 (11) 0.0025 (10) −0.0168 (12)
C23 0.0495 (14) 0.0572 (15) 0.0494 (13) 0.0041 (12) −0.0014 (11) −0.0134 (12)
C24 0.0687 (19) 0.077 (2) 0.0676 (18) 0.0213 (16) −0.0006 (14) −0.0157 (16)
C25 0.105 (3) 0.071 (2) 0.076 (2) 0.0317 (19) −0.0114 (19) −0.0026 (17)
C26 0.109 (3) 0.069 (2) 0.0669 (19) 0.0126 (19) 0.0003 (19) 0.0067 (16)
C27 0.0769 (19) 0.0672 (18) 0.0579 (16) 0.0052 (15) 0.0090 (14) 0.0010 (14)
C28 0.0528 (14) 0.0536 (15) 0.0490 (14) 0.0038 (12) 0.0012 (11) −0.0067 (11)

Geometric parameters (Å, °)

S1—C13 1.727 (3) C11—H11A 0.9300
S1—C16 1.729 (3) C13—C14 1.356 (4)
N1—C12 1.396 (3) C14—C15 1.421 (4)
N1—C1 1.401 (3) C14—H14A 0.9300
N1—C13 1.410 (3) C15—C16 1.345 (4)
N2—C28 1.396 (3) C15—H15A 0.9300
N2—C17 1.401 (3) C17—C18 1.385 (4)
N2—C16 1.415 (3) C17—C22 1.396 (3)
C1—C2 1.379 (4) C18—C19 1.385 (4)
C1—C6 1.397 (4) C18—H18A 0.9300
C2—C3 1.379 (5) C19—C20 1.390 (4)
C2—H2A 0.9300 C19—H19A 0.9300
C3—C4 1.376 (6) C20—C21 1.366 (4)
C3—H3A 0.9300 C20—H20A 0.9300
C4—C5 1.352 (5) C21—C22 1.394 (4)
C4—H4A 0.9300 C21—H21A 0.9300
C5—C6 1.407 (4) C22—C23 1.448 (4)
C5—H5A 0.9300 C23—C24 1.385 (4)
C6—C7 1.437 (4) C23—C28 1.408 (3)
C7—C8 1.390 (4) C24—C25 1.370 (5)
C7—C12 1.403 (3) C24—H24A 0.9300
C8—C9 1.370 (5) C25—C26 1.387 (5)
C8—H8A 0.9300 C25—H25A 0.9300
C9—C10 1.384 (4) C26—C27 1.377 (4)
C9—H9A 0.9300 C26—H26A 0.9300
C10—C11 1.381 (4) C27—C28 1.386 (4)
C10—H10A 0.9300 C27—H27A 0.9300
C11—C12 1.384 (4)
C13—S1—C16 90.13 (12) C13—C14—C15 111.8 (3)
C12—N1—C1 108.4 (2) C13—C14—H14A 124.1
C12—N1—C13 125.4 (2) C15—C14—H14A 124.1
C1—N1—C13 126.1 (2) C16—C15—C14 112.9 (3)
C28—N2—C17 108.34 (19) C16—C15—H15A 123.6
C28—N2—C16 126.5 (2) C14—C15—H15A 123.6
C17—N2—C16 124.6 (2) C15—C16—N2 126.6 (2)
C2—C1—C6 122.4 (3) C15—C16—S1 112.49 (19)
C2—C1—N1 129.2 (3) N2—C16—S1 120.76 (18)
C6—C1—N1 108.3 (2) C18—C17—C22 121.9 (2)
C3—C2—C1 117.0 (3) C18—C17—N2 129.1 (2)
C3—C2—H2A 121.5 C22—C17—N2 109.0 (2)
C1—C2—H2A 121.5 C19—C18—C17 117.1 (3)
C4—C3—C2 121.9 (4) C19—C18—H18A 121.5
C4—C3—H3A 119.0 C17—C18—H18A 121.5
C2—C3—H3A 119.0 C18—C19—C20 121.7 (3)
C5—C4—C3 121.1 (3) C18—C19—H19A 119.1
C5—C4—H4A 119.5 C20—C19—H19A 119.1
C3—C4—H4A 119.5 C21—C20—C19 120.5 (3)
C4—C5—C6 119.4 (3) C21—C20—H20A 119.7
C4—C5—H5A 120.3 C19—C20—H20A 119.7
C6—C5—H5A 120.3 C20—C21—C22 119.3 (3)
C1—C6—C5 118.2 (3) C20—C21—H21A 120.4
C1—C6—C7 107.7 (2) C22—C21—H21A 120.4
C5—C6—C7 134.1 (3) C21—C22—C17 119.4 (3)
C8—C7—C12 119.2 (3) C21—C22—C23 133.6 (2)
C8—C7—C6 133.8 (3) C17—C22—C23 107.0 (2)
C12—C7—C6 106.9 (2) C24—C23—C28 119.1 (3)
C9—C8—C7 119.3 (3) C24—C23—C22 133.9 (2)
C9—C8—H8A 120.4 C28—C23—C22 107.0 (2)
C7—C8—H8A 120.4 C25—C24—C23 119.0 (3)
C8—C9—C10 120.6 (3) C25—C24—H24A 120.5
C8—C9—H9A 119.7 C23—C24—H24A 120.5
C10—C9—H9A 119.7 C24—C25—C26 121.2 (3)
C11—C10—C9 121.8 (3) C24—C25—H25A 119.4
C11—C10—H10A 119.1 C26—C25—H25A 119.4
C9—C10—H10A 119.1 C27—C26—C25 121.5 (3)
C10—C11—C12 117.2 (3) C27—C26—H26A 119.2
C10—C11—H11A 121.4 C25—C26—H26A 119.2
C12—C11—H11A 121.4 C26—C27—C28 117.1 (3)
C11—C12—N1 129.6 (2) C26—C27—H27A 121.5
C11—C12—C7 121.7 (2) C28—C27—H27A 121.5
N1—C12—C7 108.7 (2) C27—C28—N2 129.3 (2)
C14—C13—N1 126.2 (2) C27—C28—C23 122.1 (2)
C14—C13—S1 112.72 (19) N2—C28—C23 108.6 (2)
N1—C13—S1 120.95 (19)
C12—N1—C1—C2 179.9 (3) C14—C15—C16—N2 −174.8 (3)
C13—N1—C1—C2 3.4 (5) C14—C15—C16—S1 0.4 (4)
C12—N1—C1—C6 −0.9 (3) C28—N2—C16—C15 −106.6 (4)
C13—N1—C1—C6 −177.4 (2) C17—N2—C16—C15 63.8 (4)
C6—C1—C2—C3 −0.4 (5) C28—N2—C16—S1 78.6 (3)
N1—C1—C2—C3 178.6 (3) C17—N2—C16—S1 −111.0 (2)
C1—C2—C3—C4 −0.1 (5) C13—S1—C16—C15 −0.4 (3)
C2—C3—C4—C5 0.1 (6) C13—S1—C16—N2 175.1 (2)
C3—C4—C5—C6 0.4 (5) C28—N2—C17—C18 −179.5 (3)
C2—C1—C6—C5 0.9 (4) C16—N2—C17—C18 8.6 (4)
N1—C1—C6—C5 −178.3 (2) C28—N2—C17—C22 −0.5 (3)
C2—C1—C6—C7 180.0 (3) C16—N2—C17—C22 −172.3 (2)
N1—C1—C6—C7 0.8 (3) C22—C17—C18—C19 1.2 (4)
C4—C5—C6—C1 −0.9 (4) N2—C17—C18—C19 −179.9 (3)
C4—C5—C6—C7 −179.6 (3) C17—C18—C19—C20 0.3 (4)
C1—C6—C7—C8 177.8 (3) C18—C19—C20—C21 −0.9 (5)
C5—C6—C7—C8 −3.4 (5) C19—C20—C21—C22 0.0 (4)
C1—C6—C7—C12 −0.3 (3) C20—C21—C22—C17 1.4 (4)
C5—C6—C7—C12 178.6 (3) C20—C21—C22—C23 −179.8 (3)
C12—C7—C8—C9 0.0 (4) C18—C17—C22—C21 −2.1 (4)
C6—C7—C8—C9 −177.9 (3) N2—C17—C22—C21 178.8 (2)
C7—C8—C9—C10 −1.0 (5) C18—C17—C22—C23 178.8 (2)
C8—C9—C10—C11 0.4 (5) N2—C17—C22—C23 −0.3 (3)
C9—C10—C11—C12 1.3 (4) C21—C22—C23—C24 1.2 (5)
C10—C11—C12—N1 178.2 (3) C17—C22—C23—C24 −179.9 (3)
C10—C11—C12—C7 −2.4 (4) C21—C22—C23—C28 −178.0 (3)
C1—N1—C12—C11 −179.8 (3) C17—C22—C23—C28 0.9 (3)
C13—N1—C12—C11 −3.2 (4) C28—C23—C24—C25 0.8 (4)
C1—N1—C12—C7 0.7 (3) C22—C23—C24—C25 −178.3 (3)
C13—N1—C12—C7 177.2 (2) C23—C24—C25—C26 −0.4 (5)
C8—C7—C12—C11 1.8 (4) C24—C25—C26—C27 0.3 (6)
C6—C7—C12—C11 −179.8 (2) C25—C26—C27—C28 −0.4 (5)
C8—C7—C12—N1 −178.7 (2) C26—C27—C28—N2 −179.7 (3)
C6—C7—C12—N1 −0.3 (3) C26—C27—C28—C23 0.8 (4)
C12—N1—C13—C14 64.9 (4) C17—N2—C28—C27 −178.5 (3)
C1—N1—C13—C14 −119.2 (3) C16—N2—C28—C27 −6.8 (4)
C12—N1—C13—S1 −110.7 (3) C17—N2—C28—C23 1.1 (3)
C1—N1—C13—S1 65.2 (3) C16—N2—C28—C23 172.7 (2)
C16—S1—C13—C14 0.3 (2) C24—C23—C28—C27 −0.9 (4)
C16—S1—C13—N1 176.5 (2) C22—C23—C28—C27 178.4 (2)
N1—C13—C14—C15 −176.0 (3) C24—C23—C28—N2 179.4 (2)
S1—C13—C14—C15 −0.1 (4) C22—C23—C28—N2 −1.2 (3)
C13—C14—C15—C16 −0.2 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2409).

References

  1. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  2. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  3. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  4. Rigaku (1996). R-AXIS Rigaku Corporation, Tokyo, Japan.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Wu, I. Y., Lin, J. T., Tao, Y. T. & Balasubramaniam, E. (2000). Adv. Mater.12, 668–669.
  7. Wu, I.-Y., Lin, J. T., Tao, Y.-T., Balasubramaniam, E., Su, Y. Z. & Ko, C.-W. (2001). Chem. Mater.13, 2626–2631.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808039767/dn2409sup1.cif

e-64-o2502-sup1.cif (22.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808039767/dn2409Isup2.hkl

e-64-o2502-Isup2.hkl (188.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES