Abstract
In the title compound, C14H11NO2, the benzene rings are inclined to each other with a dihedral angle between their mean planes of 8.42 (6)°. The nitro group is almost coplanar with the attached benzene ring but is rotated about the C—N bond by 5.84 (12)°. This redetermination results in a crystal structure with significantly higher precision than the original determination [Hertel & Romer (1931 ▶). Z. Kristallogr. 76, 467–469], and the intermolecular interactions have been established. In the crystal structure, molecules are linked by C—H⋯O hydrogen bonds to generate C(5), C(13) and edge-fused R 3 3(28) rings.
Related literature
For a previous study of the title compound, see: Hertel & Romer (1931 ▶). For background information on photonic materials, see: Luo et al. (2003 ▶); Vidal et al. (2008 ▶); Park et al. (2004 ▶). For general background, see: Allen et al. (1987 ▶); Etter (1990 ▶); Nardelli (1995 ▶).
Experimental
Crystal data
C14H11NO2
M r = 225.24
Orthorhombic,
a = 10.0839 (3) Å
b = 7.6849 (2) Å
c = 28.1176 (8) Å
V = 2178.94 (11) Å3
Z = 8
Mo Kα radiation
μ = 0.09 mm−1
T = 123 (2) K
0.40 × 0.40 × 0.18 mm
Data collection
Oxford Xcalibur-S diffractometer
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008 ▶) T min = 0.965, T max = 0.985
13263 measured reflections
3173 independent reflections
2202 reflections with I > 2σ(I)
R int = 0.027
Refinement
R[F 2 > 2σ(F 2)] = 0.048
wR(F 2) = 0.135
S = 1.09
3173 reflections
154 parameters
H-atom parameters constrained
Δρmax = 0.32 e Å−3
Δρmin = −0.18 e Å−3
Data collection: CrysAlis CCD (Oxford Diffraction, 2008 ▶); cell refinement: CrysAlis RED (Oxford Diffraction, 2008 ▶); data reduction: CrysAlis RED; program(s) used to solve structure: SIR97 (Altomare et al., 1999 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 ▶); software used to prepare material for publication: PARST95 (Nardelli, 1995 ▶).
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808035459/hg2430sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808035459/hg2430Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
---|---|---|---|---|
C2—H2⋯O1i | 0.95 | 2.55 | 3.3762 (17) | 146 |
C12—H12⋯O1ii | 0.95 | 2.66 | 3.4139 (16) | 137 |
C12—H12⋯O2iii | 0.95 | 2.74 | 3.4046 (17) | 128 |
C11—H11⋯O2iii | 0.95 | 2.90 | 3.4820 (17) | 121 |
Symmetry codes: (i) ; (ii)
; (iii)
.
Acknowledgments
RMF is grateful to the Spanish Research Council (CSIC) for the use of a free-of-charge licence to the Cambridge Structural Database (Allen, 2002 ▶). RMF also thanks the Universidad del Valle, Colombia, for partial financial support.
supplementary crystallographic information
Comment
A great interest in the design of materials with potential applications in photonic technology has been developed in recent years (Luo et al., 2003; Vidal et al., 2008). Significant efforts have been focused on studying of design and the synthesis of organic molecules with potential nonlinear optical response (NLO), improved optical transparency and thermal stability (Park et al., 2004). A specific type of these molecules consists of electron donor and acceptor end groups interacting through a conjugating segment. In a first stage of work in our group, the synthesis of a stilbene molecule with nitro group with electron-withdrawing capacity as a substituent in para position, is considered. In order to obtain detailed structural information on the molecular conformation, its NLO responses, its hydrogen bonded interactions and its supramolecular arrangement, the crystal structure of p-nitrostilbene (I) was undertaken.
Perspective view of the title molecule, showing the atomic numbering scheme, is given in Fig. 1. The benzene rings are twisted out of the ethylene plane, as defined by the torsion angles C3—C4—C7—C8 and C7—C8—C9—C14 therefore the benzene rings are inclined to each other showing a dihedral angle between their mean planes of 8.42 (6)°. The nitro group is almost coplanar with the benzene ring but it is rotated about the C—N bond with an angle of rotation of 5.84 (12)°. If compared with the C7—C8 bond length to the expected value for a localized double bond [1.317 (13) Å, Allen et al., 1987], the title distance shows some lengthening that is indicative of some π conjugation of the two benzene rings through the central ethene bridge. The torsion angle between the benzene rings [C4—C7═C8—C9 = 178.48 (12)°] indicates a trans geometry between them. The crystal structure of (I) is stabilized by weak C—H···O hydrogen-bonding interactions [Nardelli, 1995, Table 1]. The formation of the framework can be explained in terms of three-one substructures. In the first substructure atom C2 in the molecule at (x, y, z) acts as a hydrogen bond donor to nitro atom O1 in the molecule at (-1/2 + x, 1/2 - y, 2 - z) so generating, by 21 screw axes, C(5) chains which are running along [100] (Fig. 2). In the second substructure, atom C12 in the molecule at (x, y, z) acts as hydrogen bond donor to nitro atom O2 in the molecule at (x, 1/2 - y, -1/2 + z) so generating C(13) chains along [001] (Fig. 3). In the third-one dimensional substructure atom C12 in the molecule at (x, y, z) acts simultaneously as hydrogen bond donor to atoms O1 in the molecule at (x, 1/2 - y, -1/2 + z) and atom O1 in the molecule at (3/2 - x, -y, -1/2 + z) so generating a chain of edge-fused with graph motif R33(28) rings along [001] (Etter, 1990), [Fig. 4].
Experimental
The synthesis of (I) was prepared by taking equimolar quantities of benzyltriphenylphosphonium bromide (0.9600 g, 2.20 mmol) and 4-nitrobenzaldehyde (0.3355 g, 2.20 mmol). The mixture was stirred and it was taken to reflux in dry THF in a nitrogen atmosphere at 273 K. 3.3 mmol of potassium tert-butoxide was dissolved in 5 ml of t-butanol and this solution was added drop to drop to the phosphonium mixture obtaining a change in the color of the reaction mixture and completion of the reaction after two hours. Single crystals suitable for X-ray analysis were obtained by evaporation at room temperature using ethyl acetate as solvent.
Refinement
The space group Pbca for p-nitrostilbene was assigned from the systematic absences. All H-atoms were located from difference maps and then treated as riding atoms [C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C)].
Figures
Fig. 1.
An ORTEP-3 (Farrugia, 1997) plot of the (I) compound, with the atomic labelling scheme. The shapes of the ellipsoids correspond to 50% probability contours of atomic displacement and, for the sake of clarity, H atoms are shown as spheres of arbitrary radius.
Fig. 2.
(Part of the crystal structure of (I) showing the formation of C(5) chains which are running parallel to the [100] direction. [Symmetry codes: (i) 1/2 + x, 1/2 - y, 2 - z; (ii) 1 + x, y, z; (iii) -1/2 + x, 1/2 - y, 2 - z; (iv) -1 + x, y, z].
Fig. 3.
Part of the crystal structure of (I) showing the formation of C(13) chains along [001]. [Symmetry codes: (i) x, 1/2 - y, 1/2 + z; (ii) x, 1/2 - y, -1/2 + z;
Fig. 4.
Part of the crystal structure of (I) showing the formation of edge-fused R33(28) rings along [001]. [Symmetry codes: (i) 3/2 - x, -y, 1/2 + z; (ii) x, 1/2 - y, 1/2 + z; (iii) 3/2 - x, 1/2 + y, z; (iv) 3/2 - x, -y, -1/2 + z]; (v) x, 1/2 - y, -1/2 + z; (vi) x, y, -1 + z; (vii) 3/2 - x, y, -1 + z.
Crystal data
C14H11NO2 | Dx = 1.373 Mg m−3 |
Mr = 225.24 | Melting point: 421(1) K |
Orthorhombic, Pbca | Mo Kα radiation λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 5152 reflections |
a = 10.0839 (3) Å | θ = 2.7–30.7º |
b = 7.6849 (2) Å | µ = 0.09 mm−1 |
c = 28.1176 (8) Å | T = 123 (2) K |
V = 2178.94 (11) Å3 | Cut lathe, light yellow |
Z = 8 | 0.40 × 0.40 × 0.18 mm |
F000 = 944 |
Data collection
Oxford Xcalibur-S diffractometer | 2202 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.027 |
Monochromator: graphite | θmax = 30.0º |
ω scans | θmin = 2.9º |
Absorption correction: multi-scan(CrysAlis RED; Oxford Diffraction, 2008) | h = −14→12 |
Tmin = 0.965, Tmax = 0.985 | k = −10→10 |
13263 measured reflections | l = −37→39 |
3173 independent reflections |
Refinement
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.048 | H-atom parameters constrained |
wR(F2) = 0.135 | w = 1/[σ2(Fo2) + (0.0501P)2 + 0.491P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max < 0.001 |
3173 reflections | Δρmax = 0.32 e Å−3 |
154 parameters | Δρmin = −0.18 e Å−3 |
Primary atom site location: structure-invariant direct methods | Extinction correction: none |
Special details
Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x | y | z | Uiso*/Ueq | ||
O1 | 0.69853 (10) | 0.14689 (14) | 1.05469 (3) | 0.0360 (3) | |
O2 | 0.51679 (11) | 0.28695 (16) | 1.04197 (4) | 0.0453 (3) | |
N1 | 0.60967 (11) | 0.19752 (15) | 1.02843 (4) | 0.0267 (3) | |
C1 | 0.61582 (12) | 0.15108 (16) | 0.97771 (4) | 0.0209 (3) | |
C2 | 0.51199 (13) | 0.19912 (17) | 0.94826 (5) | 0.0232 (3) | |
H2 | 0.4364 | 0.2572 | 0.9607 | 0.028* | |
C3 | 0.52059 (13) | 0.16074 (16) | 0.90021 (5) | 0.0239 (3) | |
H3 | 0.4496 | 0.1910 | 0.8796 | 0.029* | |
C4 | 0.63344 (13) | 0.07749 (15) | 0.88166 (4) | 0.0227 (3) | |
C5 | 0.73329 (13) | 0.02692 (17) | 0.91315 (5) | 0.0247 (3) | |
H5 | 0.8083 | −0.0340 | 0.9013 | 0.030* | |
C6 | 0.72573 (13) | 0.06320 (16) | 0.96111 (5) | 0.0244 (3) | |
H6 | 0.7945 | 0.0285 | 0.9822 | 0.029* | |
C7 | 0.65267 (13) | 0.04480 (16) | 0.83078 (5) | 0.0245 (3) | |
H7 | 0.7231 | −0.0309 | 0.8221 | 0.029* | |
C8 | 0.58014 (13) | 0.11181 (16) | 0.79561 (4) | 0.0236 (3) | |
H8 | 0.5084 | 0.1851 | 0.8044 | 0.028* | |
C9 | 0.60077 (12) | 0.08280 (15) | 0.74429 (4) | 0.0218 (3) | |
C10 | 0.50863 (13) | 0.15248 (16) | 0.71267 (4) | 0.0229 (3) | |
H10 | 0.4342 | 0.2142 | 0.7247 | 0.027* | |
C11 | 0.52360 (13) | 0.13330 (17) | 0.66384 (5) | 0.0253 (3) | |
H11 | 0.4599 | 0.1819 | 0.6428 | 0.030* | |
C12 | 0.63151 (13) | 0.04317 (16) | 0.64595 (5) | 0.0261 (3) | |
H12 | 0.6422 | 0.0302 | 0.6126 | 0.031* | |
C13 | 0.72366 (13) | −0.02793 (17) | 0.67678 (5) | 0.0263 (3) | |
H13 | 0.7973 | −0.0904 | 0.6645 | 0.032* | |
C14 | 0.70911 (13) | −0.00852 (16) | 0.72570 (5) | 0.0246 (3) | |
H14 | 0.7730 | −0.0575 | 0.7466 | 0.030* |
Atomic displacement parameters (Å2)
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0325 (6) | 0.0503 (6) | 0.0254 (5) | −0.0005 (5) | −0.0072 (5) | 0.0044 (5) |
O2 | 0.0382 (6) | 0.0687 (8) | 0.0291 (5) | 0.0153 (6) | −0.0009 (5) | −0.0153 (5) |
N1 | 0.0250 (6) | 0.0335 (6) | 0.0217 (5) | −0.0050 (5) | −0.0026 (5) | 0.0008 (5) |
C1 | 0.0213 (6) | 0.0227 (6) | 0.0188 (6) | −0.0036 (5) | −0.0003 (5) | 0.0011 (5) |
C2 | 0.0191 (6) | 0.0269 (6) | 0.0236 (6) | 0.0000 (5) | −0.0005 (5) | −0.0002 (5) |
C3 | 0.0225 (6) | 0.0264 (6) | 0.0226 (6) | −0.0018 (5) | −0.0041 (5) | 0.0024 (5) |
C4 | 0.0263 (6) | 0.0196 (5) | 0.0220 (6) | −0.0040 (5) | 0.0010 (5) | 0.0004 (5) |
C5 | 0.0232 (6) | 0.0242 (6) | 0.0267 (7) | 0.0028 (5) | 0.0023 (5) | 0.0001 (5) |
C6 | 0.0231 (6) | 0.0231 (6) | 0.0271 (7) | 0.0013 (5) | −0.0022 (5) | 0.0039 (5) |
C7 | 0.0244 (6) | 0.0237 (6) | 0.0253 (6) | 0.0008 (5) | 0.0014 (5) | −0.0023 (5) |
C8 | 0.0243 (6) | 0.0223 (6) | 0.0242 (6) | −0.0003 (5) | 0.0012 (5) | −0.0004 (5) |
C9 | 0.0254 (6) | 0.0177 (5) | 0.0222 (6) | −0.0030 (5) | 0.0010 (5) | −0.0002 (5) |
C10 | 0.0222 (6) | 0.0218 (6) | 0.0247 (6) | 0.0007 (5) | 0.0017 (5) | −0.0005 (5) |
C11 | 0.0282 (7) | 0.0238 (6) | 0.0240 (6) | −0.0002 (5) | −0.0028 (5) | 0.0013 (5) |
C12 | 0.0343 (7) | 0.0225 (6) | 0.0215 (6) | −0.0026 (6) | 0.0027 (6) | −0.0023 (5) |
C13 | 0.0257 (7) | 0.0222 (6) | 0.0309 (7) | 0.0017 (5) | 0.0057 (6) | −0.0039 (5) |
C14 | 0.0240 (7) | 0.0213 (6) | 0.0285 (7) | 0.0000 (5) | −0.0038 (5) | 0.0012 (5) |
Geometric parameters (Å, °)
O1—N1 | 1.2246 (14) | C7—H7 | 0.9500 |
O2—N1 | 1.2225 (15) | C8—C9 | 1.4750 (17) |
N1—C1 | 1.4712 (16) | C8—H8 | 0.9500 |
C1—C6 | 1.3793 (17) | C9—C10 | 1.3931 (17) |
C1—C2 | 1.3851 (18) | C9—C14 | 1.3998 (17) |
C2—C3 | 1.3855 (17) | C10—C11 | 1.3890 (18) |
C2—H2 | 0.9500 | C10—H10 | 0.9500 |
C3—C4 | 1.4058 (18) | C11—C12 | 1.3845 (18) |
C3—H3 | 0.9500 | C11—H11 | 0.9500 |
C4—C5 | 1.3960 (18) | C12—C13 | 1.3833 (19) |
C4—C7 | 1.4653 (17) | C12—H12 | 0.9500 |
C5—C6 | 1.3789 (18) | C13—C14 | 1.3914 (18) |
C5—H5 | 0.9500 | C13—H13 | 0.9500 |
C6—H6 | 0.9500 | C14—H14 | 0.9500 |
C7—C8 | 1.3334 (18) | ||
O2—N1—O1 | 123.46 (11) | C4—C7—H7 | 117.1 |
O2—N1—C1 | 118.07 (11) | C7—C8—C9 | 126.15 (12) |
O1—N1—C1 | 118.46 (12) | C7—C8—H8 | 116.9 |
C6—C1—C2 | 122.37 (12) | C9—C8—H8 | 116.9 |
C6—C1—N1 | 118.74 (11) | C10—C9—C14 | 118.36 (12) |
C2—C1—N1 | 118.88 (11) | C10—C9—C8 | 118.19 (11) |
C1—C2—C3 | 118.62 (12) | C14—C9—C8 | 123.45 (12) |
C1—C2—H2 | 120.7 | C11—C10—C9 | 121.17 (12) |
C3—C2—H2 | 120.7 | C11—C10—H10 | 119.4 |
C2—C3—C4 | 120.62 (12) | C9—C10—H10 | 119.4 |
C2—C3—H3 | 119.7 | C12—C11—C10 | 119.85 (12) |
C4—C3—H3 | 119.7 | C12—C11—H11 | 120.1 |
C5—C4—C3 | 118.37 (11) | C10—C11—H11 | 120.1 |
C5—C4—C7 | 118.43 (12) | C13—C12—C11 | 119.86 (12) |
C3—C4—C7 | 123.18 (11) | C13—C12—H12 | 120.1 |
C6—C5—C4 | 121.61 (12) | C11—C12—H12 | 120.1 |
C6—C5—H5 | 119.2 | C12—C13—C14 | 120.42 (12) |
C4—C5—H5 | 119.2 | C12—C13—H13 | 119.8 |
C5—C6—C1 | 118.32 (12) | C14—C13—H13 | 119.8 |
C5—C6—H6 | 120.8 | C13—C14—C9 | 120.34 (11) |
C1—C6—H6 | 120.8 | C13—C14—H14 | 119.8 |
C8—C7—C4 | 125.82 (12) | C9—C14—H14 | 119.8 |
C8—C7—H7 | 117.1 | ||
O2—N1—C1—C6 | 174.44 (12) | C5—C4—C7—C8 | −167.03 (12) |
O1—N1—C1—C6 | −4.53 (17) | C3—C4—C7—C8 | 11.53 (19) |
O2—N1—C1—C2 | −4.71 (18) | C4—C7—C8—C9 | 178.48 (12) |
O1—N1—C1—C2 | 176.32 (11) | C7—C8—C9—C10 | 174.99 (12) |
C6—C1—C2—C3 | −1.49 (19) | C7—C8—C9—C14 | −6.1 (2) |
N1—C1—C2—C3 | 177.63 (11) | C14—C9—C10—C11 | −0.39 (18) |
C1—C2—C3—C4 | −1.10 (18) | C8—C9—C10—C11 | 178.59 (11) |
C2—C3—C4—C5 | 3.13 (18) | C9—C10—C11—C12 | 0.17 (18) |
C2—C3—C4—C7 | −175.43 (12) | C10—C11—C12—C13 | 0.24 (19) |
C3—C4—C5—C6 | −2.73 (18) | C11—C12—C13—C14 | −0.42 (19) |
C7—C4—C5—C6 | 175.91 (11) | C12—C13—C14—C9 | 0.19 (18) |
C4—C5—C6—C1 | 0.27 (19) | C10—C9—C14—C13 | 0.21 (17) |
C2—C1—C6—C5 | 1.90 (19) | C8—C9—C14—C13 | −178.71 (11) |
N1—C1—C6—C5 | −177.22 (11) |
Hydrogen-bond geometry (Å, °)
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O1i | 0.95 | 2.55 | 3.3762 (17) | 146 |
C12—H12···O1ii | 0.95 | 2.66 | 3.4139 (16) | 137 |
C12—H12···O2iii | 0.95 | 2.74 | 3.4046 (17) | 128 |
C11—H11···O2iii | 0.95 | 2.90 | 3.4820 (17) | 121 |
Symmetry codes: (i) x−1/2, −y+1/2, −z+2; (ii) −x+3/2, −y, z−1/2; (iii) x, −y+1/2, z−1/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2430).
References
- Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
- Etter, M. (1990). Acc. Chem. Res.23, 120–126.
- Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
- Hertel, E. & Romer, G. H. (1931). Z. Kristallogr.76, 467–469.
- Luo, J., Haller, M., Li, H., Kim, T.-D. & Jen, A. K.-Y. (2003). Adv. Mater.15, 1635–1638.
- Nardelli, M. (1995). J. Appl. Cryst.28, 659.
- Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED Oxford Diffraction, Wrocław, Poland.
- Park, G., Jung, W. S. & Ra, C. S. (2004). Bull. Korean Chem. Soc.25, 1427–1429.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Vidal, X., Fedyanin, A., Molinos-Gomez, A., Rao, S., Martorell, J. & Petrov, D. (2008). Opt. Lett.33, 699–701. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808035459/hg2430sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808035459/hg2430Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report