Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Nov 13;64(Pt 12):o2333. doi: 10.1107/S1600536808037112

3-Amino­benzoic acid–4-nitro­benzoic acid (1/1)

Ching Kheng Quah a, Samuel Robinson Jebas a,, Hoong-Kun Fun a,*
PMCID: PMC2960102  PMID: 21581308

Abstract

In the title 1:1 adduct, C7H5NO4·C7H7NO2, the nitro group of the 4-nitro benzoic acid is twisted from the attached ring by 4.40 (8)°. In the crystal, the mol­ecules are linked into ribbon-like structures along [150] and [1Inline graphic0] via O—H⋯O, N—H⋯O, N—H⋯N and C—H⋯O inter­molecular hydrogen bonds.

Related literature

For the applications of 3-amino­benzoic acid, see; Windholz (1976). For related structures, see: Bowers et al. (2005); Tonogaki et al. (1993); Voogd et al. (1980).graphic file with name e-64-o2333-scheme1.jpg

Experimental

Crystal data

  • C7H5NO4·C7H7NO2

  • M r = 304.26

  • Monoclinic, Inline graphic

  • a = 25.3707 (8) Å

  • b = 4.9875 (2) Å

  • c = 21.7276 (7) Å

  • β = 109.230 (2)°

  • V = 2595.93 (16) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 100.0 (1) K

  • 0.24 × 0.09 × 0.06 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.971, T max = 0.993

  • 15472 measured reflections

  • 3759 independent reflections

  • 2197 reflections with I > 2σ(I)

  • R int = 0.068

Refinement

  • R[F 2 > 2σ(F 2)] = 0.068

  • wR(F 2) = 0.179

  • S = 1.01

  • 3759 reflections

  • 215 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808037112/ci2714sup1.cif

e-64-o2333-sup1.cif (18.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808037112/ci2714Isup2.hkl

e-64-o2333-Isup2.hkl (180.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H1O4⋯O5i 0.89 (4) 1.73 (4) 2.612 (2) 171 (3)
O6—H1O6⋯O3ii 0.91 (4) 1.75 (4) 2.652 (2) 171 (4)
N2—H1N1⋯O2iii 1.06 (4) 2.29 (4) 3.309 (3) 161 (3)
N2—H2N2⋯O2iv 0.90 (3) 2.60 (3) 3.351 (3) 142 (2)
C2—H2A⋯O5v 0.95 2.58 3.288 (3) 131
C4—H4A⋯O6iv 0.95 2.55 3.339 (3) 141
C10—H10A⋯O1iii 0.95 2.57 3.460 (3) 156

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a post–doctoral research fellowship. CKQ thanks Universiti Sains Malaysia for a student assistanceship.

supplementary crystallographic information

Comment

3-Aminobenzoic acid is used as an intermediate for dyes, pesticides and in other organic synthesis (Windholz, 1976). The crystal structures of 3-aminobenzoic acid (Voogd et al., 1980) and 4-aminobenzoic acid-4-nitrobenzoic acid have been reported (Bowers et al., 2005). As a part of our investigation of the interactions between acids, we report herein the crystal structure of the title compound.

The asymmetric unit (Fig. 1) contains one 3-aminobenzoic acid molecule and one 4-nitrobenzoic acid molecule. The bond lengths and angles of 3-aminobenzoic acid and 4-nitrobenzoic acid are found to have normal values (Voogd et al., 1980; Tonogaki et al., 1993). Both the molecules are almost planar with the maximum deviation from planarity being 0.026 (2) Å for atom O5 of 3-aminobenzoic acid molecule, and 0.078 (2) Å for atom O1 of nitrobenzoic acid molecule. In the 4-nitrobenzoic acid molecule, the nitro group is twisted slightly from the attached ring; the dihedral angle between C1—C6 and O1—O2/C3/N1 planes is 4.40 (8)°.

The crystal packing is consolidated by O—H···O, N—H···O, N—H···N and C—H···O intermolecular hydrogen bonds (Table 1). These hydrogen bonds link the molecules into ribbon like structures along [1 5 0] and [1 5 0] (Fig.2).

Experimental

3-Aminobenzoic acid and 4-nitrobenzoic acid were mixed in methanol (20 ml) in a 1:1 molar ratio. The clear colourless solution obtained was allowed to evaporate slowly. Colourless crystals were obtained after 2 d.

Refinement

N and O-bound H atoms were located in a difference Fourier map and were allowed to refine freely. All the other H atoms were placed in calculated positions, with C—H = 0.95 Å, and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along the c axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C7H5NO4·C7H7NO2 F000 = 1264
Mr = 304.26 Dx = 1.557 Mg m3
Monoclinic, C2/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 2404 reflections
a = 25.3707 (8) Å θ = 3.0–29.9º
b = 4.9875 (2) Å µ = 0.12 mm1
c = 21.7276 (7) Å T = 100.0 (1) K
β = 109.230 (2)º Plate, yellow
V = 2595.93 (16) Å3 0.24 × 0.09 × 0.06 mm
Z = 8

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 3759 independent reflections
Radiation source: fine-focus sealed tube 2197 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.068
T = 100.0(1) K θmax = 30.0º
φ and ω scans θmin = 2.2º
Absorption correction: multi-scan(SADABS; Bruker, 2005) h = −34→35
Tmin = 0.971, Tmax = 0.993 k = −7→7
15472 measured reflections l = −29→30

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.179   w = 1/[σ2(Fo2) + (0.087P)2 + 1.6119P] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max = 0.001
3759 reflections Δρmax = 0.50 e Å3
215 parameters Δρmin = −0.36 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.82025 (7) 0.6966 (4) 0.14306 (8) 0.0238 (4)
O2 0.81699 (7) 0.7604 (3) 0.04310 (8) 0.0236 (4)
O3 1.01559 (7) −0.2306 (3) 0.07932 (8) 0.0175 (4)
O4 1.01017 (7) −0.3174 (3) 0.17847 (8) 0.0183 (4)
O5 0.57710 (6) 0.7825 (3) 0.18023 (8) 0.0180 (4)
O6 0.58739 (7) 0.8769 (4) 0.08408 (8) 0.0194 (4)
N1 0.83479 (8) 0.6430 (4) 0.09588 (9) 0.0178 (4)
N2 0.73488 (9) 0.2432 (5) 0.06366 (11) 0.0217 (5)
C1 0.93325 (9) 0.0854 (5) 0.16778 (11) 0.0166 (5)
H1A 0.9461 −0.0152 0.2070 0.020*
C2 0.89370 (9) 0.2853 (5) 0.16067 (11) 0.0167 (5)
H2A 0.8792 0.3241 0.1948 0.020*
C3 0.87598 (9) 0.4267 (5) 0.10277 (11) 0.0158 (5)
C4 0.89605 (9) 0.3786 (5) 0.05146 (11) 0.0160 (5)
H4A 0.8831 0.4800 0.0123 0.019*
C5 0.93576 (9) 0.1775 (5) 0.05923 (11) 0.0164 (5)
H5A 0.9503 0.1395 0.0251 0.020*
C6 0.95413 (8) 0.0322 (5) 0.11703 (10) 0.0136 (5)
C7 0.99642 (9) −0.1847 (4) 0.12311 (11) 0.0145 (5)
C8 0.66801 (9) 0.4869 (5) 0.10050 (11) 0.0172 (5)
H8A 0.6584 0.5966 0.0627 0.021*
C9 0.70819 (9) 0.2837 (5) 0.10949 (11) 0.0179 (5)
C10 0.72180 (10) 0.1297 (5) 0.16603 (12) 0.0199 (5)
H10A 0.7492 −0.0069 0.1728 0.024*
C11 0.69646 (9) 0.1707 (5) 0.21230 (12) 0.0203 (5)
H11A 0.7066 0.0630 0.2505 0.024*
C12 0.65613 (9) 0.3688 (5) 0.20347 (11) 0.0180 (5)
H12A 0.6383 0.3962 0.2351 0.022*
C13 0.64223 (9) 0.5267 (5) 0.14746 (11) 0.0152 (5)
C14 0.59973 (9) 0.7398 (4) 0.13881 (11) 0.0143 (5)
H1O4 1.0354 (14) −0.442 (8) 0.1783 (15) 0.056 (11)*
H1O6 0.5600 (15) 0.998 (8) 0.0809 (16) 0.063 (11)*
H1N1 0.7575 (14) 0.064 (8) 0.0643 (16) 0.063 (11)*
H2N2 0.7158 (12) 0.302 (6) 0.0233 (14) 0.029 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0264 (9) 0.0247 (10) 0.0238 (10) 0.0060 (7) 0.0131 (8) −0.0027 (7)
O2 0.0266 (9) 0.0214 (10) 0.0227 (9) 0.0058 (7) 0.0079 (7) 0.0042 (7)
O3 0.0198 (8) 0.0161 (9) 0.0190 (8) 0.0049 (7) 0.0095 (7) 0.0019 (7)
O4 0.0226 (9) 0.0164 (9) 0.0182 (9) 0.0086 (7) 0.0098 (7) 0.0039 (7)
O5 0.0213 (8) 0.0155 (9) 0.0190 (9) 0.0037 (7) 0.0090 (7) 0.0012 (7)
O6 0.0222 (9) 0.0206 (9) 0.0185 (9) 0.0069 (7) 0.0108 (7) 0.0035 (7)
N1 0.0180 (9) 0.0171 (10) 0.0187 (10) 0.0008 (8) 0.0067 (8) −0.0014 (8)
N2 0.0229 (11) 0.0244 (12) 0.0197 (11) 0.0051 (9) 0.0096 (9) 0.0015 (9)
C1 0.0168 (11) 0.0159 (12) 0.0173 (12) 0.0005 (9) 0.0060 (9) 0.0008 (9)
C2 0.0180 (11) 0.0171 (12) 0.0173 (12) −0.0008 (9) 0.0091 (9) −0.0019 (9)
C3 0.0123 (10) 0.0125 (12) 0.0227 (12) 0.0023 (8) 0.0057 (9) −0.0028 (9)
C4 0.0180 (11) 0.0138 (11) 0.0173 (12) 0.0020 (9) 0.0073 (9) 0.0034 (9)
C5 0.0181 (11) 0.0164 (12) 0.0168 (12) 0.0000 (9) 0.0087 (9) 0.0002 (9)
C6 0.0121 (10) 0.0125 (11) 0.0164 (11) −0.0018 (8) 0.0051 (8) −0.0007 (9)
C7 0.0139 (10) 0.0132 (12) 0.0169 (12) −0.0018 (9) 0.0058 (9) −0.0010 (9)
C8 0.0174 (11) 0.0155 (12) 0.0195 (12) −0.0017 (9) 0.0073 (9) −0.0011 (9)
C9 0.0151 (11) 0.0173 (12) 0.0222 (12) −0.0025 (9) 0.0075 (9) −0.0058 (9)
C10 0.0172 (11) 0.0151 (12) 0.0251 (13) 0.0029 (9) 0.0040 (10) −0.0019 (10)
C11 0.0193 (12) 0.0179 (13) 0.0224 (13) 0.0012 (9) 0.0052 (10) 0.0006 (9)
C12 0.0184 (11) 0.0163 (12) 0.0197 (12) 0.0025 (9) 0.0069 (9) 0.0000 (9)
C13 0.0126 (10) 0.0138 (11) 0.0201 (12) 0.0010 (9) 0.0066 (9) −0.0014 (9)
C14 0.0140 (10) 0.0137 (11) 0.0155 (11) 0.0000 (9) 0.0053 (8) −0.0014 (9)

Geometric parameters (Å, °)

O1—N1 1.228 (2) C3—C4 1.391 (3)
O2—N1 1.233 (2) C4—C5 1.392 (3)
O3—C7 1.225 (3) C4—H4A 0.95
O4—C7 1.315 (3) C5—C6 1.391 (3)
O4—H1O4 0.89 (4) C5—H5A 0.95
O5—C14 1.235 (3) C6—C7 1.498 (3)
O6—C14 1.317 (3) C8—C13 1.396 (3)
O6—H1O6 0.91 (4) C8—C9 1.405 (3)
N1—C3 1.475 (3) C8—H8A 0.95
N2—C9 1.391 (3) C9—C10 1.392 (3)
N2—H1N1 1.06 (4) C10—C11 1.375 (3)
N2—H2N2 0.90 (3) C10—H10A 0.95
C1—C2 1.387 (3) C11—C12 1.390 (3)
C1—C6 1.397 (3) C11—H11A 0.95
C1—H1A 0.95 C12—C13 1.394 (3)
C2—C3 1.382 (3) C12—H12A 0.95
C2—H2A 0.95 C13—C14 1.481 (3)
C7—O4—H1O4 109 (2) C1—C6—C7 120.9 (2)
C14—O6—H1O6 111 (2) O3—C7—O4 124.3 (2)
O1—N1—O2 123.7 (2) O3—C7—C6 121.5 (2)
O1—N1—C3 118.17 (19) O4—C7—C6 114.23 (19)
O2—N1—C3 118.17 (18) C13—C8—C9 119.6 (2)
C9—N2—H1N1 120.1 (18) C13—C8—H8A 120.2
C9—N2—H2N2 114.7 (18) C9—C8—H8A 120.2
H1N1—N2—H2N2 114 (3) N2—C9—C10 120.9 (2)
C2—C1—C6 119.8 (2) N2—C9—C8 120.5 (2)
C2—C1—H1A 120.1 C10—C9—C8 118.6 (2)
C6—C1—H1A 120.1 C11—C10—C9 121.5 (2)
C3—C2—C1 118.3 (2) C11—C10—H10A 119.2
C3—C2—H2A 120.8 C9—C10—H10A 119.2
C1—C2—H2A 120.8 C10—C11—C12 120.3 (2)
C2—C3—C4 123.1 (2) C10—C11—H11A 119.8
C2—C3—N1 118.23 (19) C12—C11—H11A 119.8
C4—C3—N1 118.6 (2) C11—C12—C13 119.0 (2)
C3—C4—C5 117.9 (2) C11—C12—H12A 120.5
C3—C4—H4A 121.0 C13—C12—H12A 120.5
C5—C4—H4A 121.0 C12—C13—C8 120.9 (2)
C6—C5—C4 119.9 (2) C12—C13—C14 118.7 (2)
C6—C5—H5A 120.0 C8—C13—C14 120.4 (2)
C4—C5—H5A 120.0 O5—C14—O6 122.6 (2)
C5—C6—C1 120.8 (2) O5—C14—C13 121.7 (2)
C5—C6—C7 118.24 (19) O6—C14—C13 115.72 (19)
C6—C1—C2—C3 0.1 (3) C5—C6—C7—O4 −178.0 (2)
C1—C2—C3—C4 −0.3 (3) C1—C6—C7—O4 1.3 (3)
C1—C2—C3—N1 −178.7 (2) C13—C8—C9—N2 −179.2 (2)
O1—N1—C3—C2 3.6 (3) C13—C8—C9—C10 −1.0 (3)
O2—N1—C3—C2 −176.6 (2) N2—C9—C10—C11 178.8 (2)
O1—N1—C3—C4 −175.0 (2) C8—C9—C10—C11 0.7 (3)
O2—N1—C3—C4 4.9 (3) C9—C10—C11—C12 0.1 (4)
C2—C3—C4—C5 0.2 (3) C10—C11—C12—C13 −0.7 (3)
N1—C3—C4—C5 178.7 (2) C11—C12—C13—C8 0.3 (3)
C3—C4—C5—C6 −0.1 (3) C11—C12—C13—C14 −179.2 (2)
C4—C5—C6—C1 0.0 (3) C9—C8—C13—C12 0.5 (3)
C4—C5—C6—C7 179.3 (2) C9—C8—C13—C14 −179.9 (2)
C2—C1—C6—C5 0.0 (3) C12—C13—C14—O5 1.0 (3)
C2—C1—C6—C7 −179.3 (2) C8—C13—C14—O5 −178.6 (2)
C5—C6—C7—O3 1.7 (3) C12—C13—C14—O6 −178.2 (2)
C1—C6—C7—O3 −179.0 (2) C8—C13—C14—O6 2.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O4—H1O4···O5i 0.89 (4) 1.73 (4) 2.612 (2) 171 (3)
O6—H1O6···O3ii 0.91 (4) 1.75 (4) 2.652 (2) 171 (4)
N2—H1N1···O2iii 1.06 (4) 2.29 (4) 3.309 (3) 161 (3)
N2—H2N2···O2iv 0.90 (3) 2.60 (3) 3.351 (3) 142 (2)
C2—H2A···O5v 0.95 2.58 3.288 (3) 131
C4—H4A···O6iv 0.95 2.55 3.339 (3) 141
C10—H10A···O1iii 0.95 2.57 3.460 (3) 156

Symmetry codes: (i) x+1/2, y−3/2, z; (ii) x−1/2, y+3/2, z; (iii) x, y−1, z; (iv) −x+3/2, −y+3/2, −z; (v) −x+3/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2714).

References

  1. Bowers, J. R., Hopkins, G. W., Yap, G. P. A. & Wheeler, K. A. (2005). Cryst. Growth Des.5, 727–736.
  2. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  5. Tonogaki, M., Kawata, T., Ohba, S., Iwata, Y. & Shibuya, I. (1993). Acta Cryst. B49, 1031–1039.
  6. Voogd, J., Verzijl, B. H. M. & Duisenberg, A. J. M. (1980). Acta Cryst. B36, 2805–2806.
  7. Windholz, M. (1976). The Merck Index, 9th ed. Boca Raton, USA: Merck & Co. Inc.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808037112/ci2714sup1.cif

e-64-o2333-sup1.cif (18.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808037112/ci2714Isup2.hkl

e-64-o2333-Isup2.hkl (180.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES