Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Nov 26;64(Pt 12):o2450. doi: 10.1107/S1600536808037732

4,4′,6,6′-Tetra­bromo-2,2′-(2,8-diazonia-5-azanona-1,8-diene-1,9-diyl)diphenolate

Zhu-Jun Chen a,*, Ke-Wei Lei b
PMCID: PMC2960104  PMID: 21581418

Abstract

In the zwitterionic title compound, C18H17Br4N3O2, the two salicylaldimine groups form a dihedral angle of 51.94 (2)° and the dihedral angle between the aromatic ring planes is 51.14 (2)°. One of the C atoms adjacent to the aza N atom is disordered over two positions; the site-occupancy factors are 0.51 (1) and 0.49 (1). There are two strong intra­molecular N—H⋯O hydrogen bonds in the mol­ecule.

Related literature

For general background on the use of Schiff bases in metal complexes, see: Vigato et al. (2007).graphic file with name e-64-o2450-scheme1.jpg

Experimental

Crystal data

  • C18H17Br4N3O2

  • M r = 626.99

  • Monoclinic, Inline graphic

  • a = 9.4506 (11) Å

  • b = 9.1242 (11) Å

  • c = 23.618 (3) Å

  • β = 94.774 (2)°

  • V = 2029.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.95 mm−1

  • T = 293 (2) K

  • 0.26 × 0.21 × 0.19 mm

Data collection

  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997) T min = 0.149, T max = 0.227

  • 17118 measured reflections

  • 4693 independent reflections

  • 3747 reflections with I > 2σ(I)

  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.095

  • S = 1.05

  • 4693 reflections

  • 256 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 2.07 e Å−3

  • Δρmin = −0.94 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: XP in SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808037732/bq2108sup1.cif

e-64-o2450-sup1.cif (20.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808037732/bq2108Isup2.hkl

e-64-o2450-Isup2.hkl (229.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1 0.97 (6) 1.70 (6) 2.553 (5) 144 (5)
N3—H3A⋯O2 0.87 (6) 1.84 (6) 2.597 (4) 144 (5)

Acknowledgments

The authors are grateful to the Fund of Zhejiang Textile and Fashion College for financial support.

supplementary crystallographic information

Comment

The Schiff bases are widely employed as ligands in coordination chemistry. These ligands are readily available, versatile and, depending on the nature of the starting materials (primary amines and carbonyl precursors), they exhibit various denticities and functionalities. Moreover, the number, the nature, and the relative position of the donor atoms of a Schiff base ligand allow a good control over the stereochemistry of the metallic centers, as well as over the number of the metal ions within homo- and heteropolynuclear complexes. All these advantages make Schiff bases very good candidates in the effort to synthesize metal complexes of interest in bioinorganic chemistry, catalysis, encapsulation, transport and separation processes, magnetochemistry (Vigato et al., 2007). So we report here the crystal structure of the new Schiff base ligand, 4,4',6,6'-Tetrabromo-2,2'-[3-azapentane- 1,5-diylbis(nitrilomethylidyne)]diphenol(I).

The molecular structure of (I) is illustrated in Fig. 1. The two pendant moieties in a cis conformation attach to the ends of the C—C—N—C—C backbone. The N2 atom exhibits tetrahedral sp3 hybridization, whereas the two amide N atoms display planar sp2 hybridization. There is no H atom attached to O1 and O2 atoms. Instead these H atoms are attached to the N1 and N3 atoms. The double-bonds C7—N1 (1.295 (6) Å) and C12—N3 (1.296 (6) Å) show the typical character of Schiff base. The dihedral angle between the salicylaldimine groups is 51.94 (2)°. The crystal structure of (I) is stabilized by intramolecular N—H···O hydrogen bonding. The C10 atom is disorder over two positions with the site-occupancy factors of 0.51 (1) and 0.49 (1). The larger than normal range of thermal motion is mostly due to the difference between the disordered group and the other atoms which are not disordered.

Experimental

N-(2-aminoethyl)ethane-1,2-diamine (0.01 mol, 1.03 g) and 2-hydroxy-3,5-dibromobenzaldehyde(0.02 mol, 5.60 g) were dissolved in 20 ml e thanol and the solution was stirred for 3 h. After filtration and evaporation, a pure yellow product was recrystallized from ethanol. Yield: 81.7%. Calcd. for C18H17Br4N3O2: C, 34.48; H, 2.73; N, 6.70; Found: C, 34.59; H, 2.62; N, 6.81%.

Refinement

All H atoms except the N attached H1A and H3A which refined freely were placed in geometrically idealized positions and constrained to ride on their parent atoms (C—H = 0.93%A, 0.97%A; N—H = 0.86 Å; and Uiso(H) values equal to 1.2 UeqC.

Figures

Fig. 1.

Fig. 1.

The structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. Dashed lines show H-bondings. Only the major component is shown.

Crystal data

C18H17Br4N3O2 F000 = 1208
Mr = 626.99 Dx = 2.052 Mg m3
Monoclinic, P21/n Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 5793 reflections
a = 9.4506 (11) Å θ = 1.0–27.6º
b = 9.1242 (11) Å µ = 7.95 mm1
c = 23.618 (3) Å T = 293 (2) K
β = 94.774 (2)º BLOCK, yellow
V = 2029.5 (4) Å3 0.26 × 0.21 × 0.19 mm
Z = 4

Data collection

Bruker SMART APEXII diffractometer 4693 independent reflections
Radiation source: fine-focus sealed tube 3747 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.040
T = 293(2) K θmax = 27.6º
φ and ω scans θmin = 1.7º
Absorption correction: multi-scan(SADABS; Sheldrick, 1997) h = −12→12
Tmin = 0.149, Tmax = 0.227 k = −11→10
17118 measured reflections l = −30→30

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.095   w = 1/[σ2(Fo2) + (0.0444P)2 + 3.6177P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.001
4693 reflections Δρmax = 2.07 e Å3
256 parameters Δρmin = −0.94 e Å3
6 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 1.1639 (4) 1.1651 (4) 0.03605 (16) 0.0255 (8)
C2 1.2507 (4) 1.0675 (4) 0.00631 (15) 0.0244 (8)
C3 1.2518 (4) 0.9186 (4) 0.01388 (16) 0.0260 (8)
H3 1.3097 0.8596 −0.0065 0.031*
C4 1.1645 (4) 0.8557 (4) 0.05281 (18) 0.0280 (9)
C5 1.0778 (4) 0.9402 (5) 0.08246 (17) 0.0277 (8)
H5 1.0197 0.8968 0.1076 0.033*
C6 1.0763 (4) 1.0945 (5) 0.07503 (16) 0.0252 (8)
C7 0.9904 (4) 1.1819 (5) 0.10911 (17) 0.0286 (9)
H7 0.9341 1.1363 0.1344 0.034*
C8 0.9087 (5) 1.4217 (5) 0.13912 (18) 0.0362 (10)
H8A 0.9734 1.4858 0.1615 0.043*
H8B 0.8566 1.3647 0.1651 0.043*
C9 0.8055 (5) 1.5135 (5) 0.10130 (19) 0.0367 (10)
H9A 0.7693 1.5925 0.1235 0.044*
H9B 0.8551 1.5567 0.0711 0.044*
C10 0.5604 (11) 1.4631 (12) 0.1098 (5) 0.0500 (18) 0.501 (9)
H10A 0.5928 1.4777 0.1495 0.060* 0.501 (9)
H10B 0.5188 1.5544 0.0955 0.060* 0.501 (9)
C10' 0.5427 (11) 1.4357 (13) 0.0666 (5) 0.0500 (18) 0.499 (9)
H10C 0.5168 1.3988 0.0286 0.060* 0.499 (9)
H10D 0.5160 1.5383 0.0670 0.060* 0.499 (9)
C11 0.4590 (6) 1.3573 (6) 0.1061 (3) 0.0619 (17)
H11A 0.4238 1.3449 0.0666 0.074*
H11B 0.3801 1.3881 0.1270 0.074*
C12 0.4349 (4) 1.1126 (5) 0.14599 (17) 0.0303 (9)
H12 0.3368 1.1242 0.1417 0.036*
C13 0.4899 (4) 0.9821 (4) 0.17117 (15) 0.0235 (8)
C14 0.6423 (4) 0.9637 (4) 0.18085 (15) 0.0228 (8)
C15 0.6853 (4) 0.8296 (4) 0.20880 (15) 0.0227 (8)
C16 0.5925 (4) 0.7256 (4) 0.22511 (16) 0.0259 (8)
H16 0.6260 0.6405 0.2433 0.031*
C17 0.4452 (4) 0.7494 (4) 0.21399 (17) 0.0277 (8)
C18 0.3950 (4) 0.8739 (5) 0.18751 (16) 0.0266 (8)
H18 0.2977 0.8875 0.1802 0.032*
Br1 1.37074 (5) 1.15131 (5) −0.045130 (17) 0.03273 (12)
Br2 1.17523 (5) 0.64919 (5) 0.06248 (2) 0.04388 (14)
Br3 0.88370 (4) 0.79812 (5) 0.222670 (17) 0.03065 (12)
Br4 0.31565 (5) 0.60611 (6) 0.23712 (2) 0.04384 (14)
N1 0.9899 (4) 1.3230 (4) 0.10528 (15) 0.0310 (8)
N2 0.6880 (4) 1.4267 (5) 0.07679 (18) 0.0447 (10)
H2 0.6896 1.3661 0.0490 0.054*
N3 0.5128 (4) 1.2170 (4) 0.12852 (16) 0.0342 (8)
O1 1.1653 (3) 1.3038 (3) 0.02905 (13) 0.0365 (7)
O2 0.7294 (3) 1.0603 (3) 0.16669 (11) 0.0265 (6)
H1A 1.050 (6) 1.358 (6) 0.077 (2) 0.052 (15)*
H3A 0.603 (6) 1.199 (6) 0.137 (2) 0.052 (16)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0248 (19) 0.026 (2) 0.0259 (19) 0.0012 (16) 0.0033 (14) 0.0018 (15)
C2 0.0241 (19) 0.026 (2) 0.0231 (18) −0.0036 (15) 0.0034 (14) 0.0021 (15)
C3 0.0238 (19) 0.024 (2) 0.0295 (19) 0.0033 (15) −0.0026 (15) −0.0002 (16)
C4 0.025 (2) 0.021 (2) 0.037 (2) −0.0015 (16) −0.0051 (16) 0.0068 (17)
C5 0.0217 (19) 0.030 (2) 0.031 (2) −0.0039 (16) −0.0001 (15) 0.0095 (17)
C6 0.0200 (18) 0.030 (2) 0.0259 (19) 0.0013 (16) 0.0020 (14) 0.0043 (16)
C7 0.024 (2) 0.033 (2) 0.029 (2) 0.0017 (17) 0.0043 (15) 0.0062 (17)
C8 0.040 (2) 0.038 (3) 0.032 (2) 0.009 (2) 0.0082 (18) −0.0018 (19)
C9 0.047 (3) 0.028 (2) 0.037 (2) 0.009 (2) 0.0102 (19) −0.0003 (18)
C10 0.050 (4) 0.050 (4) 0.050 (4) 0.000 (3) 0.004 (4) 0.000 (4)
C10' 0.050 (4) 0.050 (4) 0.050 (4) 0.000 (3) 0.004 (4) 0.000 (4)
C11 0.046 (3) 0.049 (3) 0.094 (5) 0.021 (3) 0.026 (3) 0.042 (3)
C12 0.0202 (19) 0.041 (3) 0.030 (2) 0.0029 (17) 0.0028 (15) 0.0027 (18)
C13 0.0210 (18) 0.029 (2) 0.0210 (17) −0.0010 (15) 0.0009 (14) −0.0005 (15)
C14 0.0226 (18) 0.027 (2) 0.0194 (17) −0.0007 (16) 0.0040 (14) −0.0058 (15)
C15 0.0234 (18) 0.024 (2) 0.0205 (17) 0.0015 (15) 0.0031 (14) −0.0046 (15)
C16 0.034 (2) 0.022 (2) 0.0232 (18) 0.0001 (16) 0.0073 (15) −0.0017 (15)
C17 0.030 (2) 0.027 (2) 0.0271 (19) −0.0079 (17) 0.0100 (15) −0.0036 (16)
C18 0.0217 (19) 0.033 (2) 0.0249 (18) 0.0004 (16) 0.0036 (14) −0.0046 (16)
Br1 0.0407 (2) 0.0288 (2) 0.0309 (2) 0.00118 (18) 0.01642 (17) 0.00159 (16)
Br2 0.0412 (3) 0.0226 (2) 0.0680 (3) 0.00063 (19) 0.0055 (2) 0.0134 (2)
Br3 0.0242 (2) 0.0332 (2) 0.0343 (2) 0.00332 (17) 0.00105 (15) 0.00357 (17)
Br4 0.0378 (3) 0.0422 (3) 0.0531 (3) −0.0142 (2) 0.0130 (2) 0.0056 (2)
N1 0.0311 (19) 0.031 (2) 0.0321 (18) 0.0054 (15) 0.0115 (15) 0.0043 (15)
N2 0.040 (2) 0.042 (3) 0.052 (2) −0.0019 (19) 0.0068 (18) 0.0108 (19)
N3 0.0275 (19) 0.035 (2) 0.040 (2) 0.0112 (16) 0.0045 (15) 0.0110 (17)
O1 0.0476 (19) 0.0202 (15) 0.0448 (17) 0.0028 (14) 0.0220 (14) 0.0030 (13)
O2 0.0227 (13) 0.0244 (15) 0.0325 (14) −0.0013 (11) 0.0037 (11) 0.0024 (11)

Geometric parameters (Å, °)

C1—O1 1.277 (5) C10'—N2 1.376 (11)
C1—C2 1.434 (6) C10'—C11 1.459 (12)
C1—C6 1.440 (5) C10'—H10C 0.9700
C2—C3 1.370 (6) C10'—H10D 0.9700
C2—Br1 1.892 (4) C11—N3 1.460 (6)
C3—C4 1.408 (6) C11—H11A 0.9700
C3—H3 0.9300 C11—H11B 0.9700
C4—C5 1.360 (6) C12—N3 1.293 (6)
C4—Br2 1.900 (4) C12—C13 1.411 (6)
C5—C6 1.419 (6) C12—H12 0.9300
C5—H5 0.9300 C13—C18 1.409 (6)
C6—C7 1.433 (6) C13—C14 1.449 (5)
C7—N1 1.290 (6) C14—O2 1.270 (5)
C7—H7 0.9300 C14—C15 1.433 (5)
C8—N1 1.463 (5) C15—C16 1.369 (6)
C8—C9 1.518 (6) C15—Br3 1.898 (4)
C8—H8A 0.9700 C16—C17 1.412 (6)
C8—H8B 0.9700 C16—H16 0.9300
C9—N2 1.445 (6) C17—C18 1.363 (6)
C9—H9A 0.9700 C17—Br4 1.902 (4)
C9—H9B 0.9700 C18—H18 0.9300
C10—C11 1.359 (12) N1—H1A 0.97 (6)
C10—N2 1.526 (11) N2—H2 0.8600
C10—H10A 0.9700 N3—H3A 0.87 (6)
C10—H10B 0.9700
O1—C1—C2 122.7 (4) H10C—C10'—H10D 107.3
O1—C1—C6 122.6 (4) C10—C11—C10' 43.6 (6)
C2—C1—C6 114.7 (4) C10—C11—N3 112.1 (7)
C3—C2—C1 123.4 (4) C10'—C11—N3 118.1 (6)
C3—C2—Br1 119.1 (3) C10—C11—H11A 109.2
C1—C2—Br1 117.5 (3) C10'—C11—H11A 66.7
C2—C3—C4 119.4 (4) N3—C11—H11A 109.2
C2—C3—H3 120.3 C10—C11—H11B 109.2
C4—C3—H3 120.3 C10'—C11—H11B 131.6
C5—C4—C3 121.0 (4) N3—C11—H11B 109.2
C5—C4—Br2 121.9 (3) H11A—C11—H11B 107.9
C3—C4—Br2 117.0 (3) N3—C12—C13 123.8 (4)
C4—C5—C6 119.9 (4) N3—C12—H12 118.1
C4—C5—H5 120.0 C13—C12—H12 118.1
C6—C5—H5 120.0 C18—C13—C12 119.1 (3)
C5—C6—C7 118.9 (4) C18—C13—C14 121.5 (4)
C5—C6—C1 121.5 (4) C12—C13—C14 119.4 (4)
C7—C6—C1 119.5 (4) O2—C14—C15 123.3 (3)
N1—C7—C6 121.0 (4) O2—C14—C13 122.4 (4)
N1—C7—H7 119.5 C15—C14—C13 114.3 (3)
C6—C7—H7 119.5 C16—C15—C14 123.9 (4)
N1—C8—C9 111.0 (4) C16—C15—Br3 119.6 (3)
N1—C8—H8A 109.4 C14—C15—Br3 116.5 (3)
C9—C8—H8A 109.4 C15—C16—C17 119.1 (4)
N1—C8—H8B 109.4 C15—C16—H16 120.5
C9—C8—H8B 109.4 C17—C16—H16 120.5
H8A—C8—H8B 108.0 C18—C17—C16 120.9 (4)
N2—C9—C8 111.6 (4) C18—C17—Br4 119.8 (3)
N2—C9—H9A 109.3 C16—C17—Br4 119.3 (3)
C8—C9—H9A 109.3 C17—C18—C13 120.3 (4)
N2—C9—H9B 109.3 C17—C18—H18 119.8
C8—C9—H9B 109.3 C13—C18—H18 119.8
H9A—C9—H9B 108.0 C7—N1—C8 125.1 (4)
C11—C10—N2 113.3 (8) C7—N1—H1A 112 (3)
C11—C10—H10A 108.9 C8—N1—H1A 123 (3)
N2—C10—H10A 108.9 C10'—N2—C9 139.4 (6)
C11—C10—H10B 108.9 C10'—N2—C10 42.1 (6)
N2—C10—H10B 108.9 C9—N2—C10 106.8 (5)
H10A—C10—H10B 107.7 C10'—N2—H2 89.2
N2—C10'—C11 116.4 (8) C9—N2—H2 126.6
N2—C10'—H10C 108.2 C10—N2—H2 126.6
C11—C10'—H10C 108.2 C12—N3—C11 124.8 (4)
N2—C10'—H10D 108.2 C12—N3—H3A 111 (4)
C11—C10'—H10D 108.2 C11—N3—H3A 123 (4)
O1—C1—C2—C3 179.1 (4) C12—C13—C14—O2 −1.1 (6)
C6—C1—C2—C3 −0.1 (6) C18—C13—C14—C15 −1.0 (5)
O1—C1—C2—Br1 −0.1 (5) C12—C13—C14—C15 177.5 (3)
C6—C1—C2—Br1 −179.3 (3) O2—C14—C15—C16 178.9 (4)
C1—C2—C3—C4 −0.3 (6) C13—C14—C15—C16 0.3 (5)
Br1—C2—C3—C4 178.9 (3) O2—C14—C15—Br3 −1.6 (5)
C2—C3—C4—C5 0.8 (6) C13—C14—C15—Br3 179.8 (3)
C2—C3—C4—Br2 −178.4 (3) C14—C15—C16—C17 0.2 (6)
C3—C4—C5—C6 −1.0 (6) Br3—C15—C16—C17 −179.3 (3)
Br2—C4—C5—C6 178.2 (3) C15—C16—C17—C18 −0.1 (6)
C4—C5—C6—C7 −176.5 (4) C15—C16—C17—Br4 −179.5 (3)
C4—C5—C6—C1 0.7 (6) C16—C17—C18—C13 −0.6 (6)
O1—C1—C6—C5 −179.3 (4) Br4—C17—C18—C13 178.8 (3)
C2—C1—C6—C5 −0.1 (5) C12—C13—C18—C17 −177.4 (4)
O1—C1—C6—C7 −2.2 (6) C14—C13—C18—C17 1.2 (6)
C2—C1—C6—C7 177.0 (3) C6—C7—N1—C8 −178.4 (4)
C5—C6—C7—N1 177.4 (4) C9—C8—N1—C7 −120.1 (5)
C1—C6—C7—N1 0.2 (6) C11—C10'—N2—C9 −101.3 (11)
N1—C8—C9—N2 72.0 (5) C11—C10'—N2—C10 −50.4 (9)
N2—C10—C11—C10' −47.6 (8) C8—C9—N2—C10' 136.5 (8)
N2—C10—C11—N3 60.4 (10) C8—C9—N2—C10 103.6 (6)
N2—C10'—C11—C10 57.2 (10) C11—C10—N2—C10' 53.8 (10)
N2—C10'—C11—N3 −36.2 (12) C11—C10—N2—C9 −158.1 (7)
N3—C12—C13—C18 −178.6 (4) C13—C12—N3—C11 −175.4 (5)
N3—C12—C13—C14 2.9 (6) C10—C11—N3—C12 158.2 (7)
C18—C13—C14—O2 −179.6 (3) C10'—C11—N3—C12 −153.8 (7)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O1 0.97 (6) 1.70 (6) 2.553 (5) 144 (5)
N3—H3A···O2 0.87 (6) 1.84 (6) 2.597 (4) 144 (5)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2108).

References

  1. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Sheldrick, G. M. (1997). SADABS University of Göttingen, Germany.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Vigato, P. A., Tamburini, S. & Bertolo, L. (2007). Coord. Chem. Rev.251, 1311–1492.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808037732/bq2108sup1.cif

e-64-o2450-sup1.cif (20.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808037732/bq2108Isup2.hkl

e-64-o2450-Isup2.hkl (229.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES