Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Nov 29;64(Pt 12):m1634. doi: 10.1107/S1600536808039561

Diaqua­sodium(I) perchlorate bis­[μ-2-(carboxyl­atomethyl­imino­meth­yl)phenolato]bis­[(3-methyl­pyridine)copper(II)]

Xiangru Wen a, Yongmin Liu a, Zhengyi Li a,*
PMCID: PMC2960105  PMID: 21581223

Abstract

In the title compound, [Na(H2O)2]ClO4·[Cu2(C9H7NO3)2(C6H7N)2], the CuII atom is coordinated by one N atom and two O atoms from a tridentate N-salicylideneglycinate Schiff base dianion and one N atom from a 3-methyl­pyridine ligand. Longer Cu⋯O contacts [2.680 (2) Å] complete an approximate square-based pyramidal coordination geometry around CuII, forming a dimeric complex across a centre of inversion. The dimeric complexes form stacks along the a axis, with Cu⋯O contacts of 3.332 (2) Å between them. The Na+ cations and perchlorate anions lie on twofold rotation axes between the stacks. The former are coordinated by two disordered water mol­ecules (each with half-occupancy), and form Na⋯O contacts of 3.698 (3) Å to the perchlorate anions and Na⋯π contacts to neighbouring salicylideneglycinate ligands [shortest Na⋯C = 3.516 (3) Å].

Related literature

For related structures, see: Warda (1998a ,b ,c ,d ). For synthesis details, see: Ueki et al. (1967); Warda (1994).graphic file with name e-64-m1634-scheme1.jpg

Experimental

Crystal data

  • [Na(H2O)2]ClO4·[Cu2(C9H7NO3)2(C6H7N)2]

  • M r = 826.12

  • Monoclinic, Inline graphic

  • a = 7.4677 (5) Å

  • b = 13.2402 (9) Å

  • c = 19.3937 (12) Å

  • β = 109.165 (2)°

  • V = 1811.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.32 mm−1

  • T = 292 (2) K

  • 0.30 × 0.26 × 0.24 mm

Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.68, T max = 0.73

  • 18486 measured reflections

  • 3558 independent reflections

  • 2926 reflections with I > 2σ(I)

  • R int = 0.047

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.100

  • S = 1.13

  • 3558 reflections

  • 237 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.59 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808039561/bi2318sup1.cif

e-64-m1634-sup1.cif (18.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808039561/bi2318Isup2.hkl

e-64-m1634-Isup2.hkl (174.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Copper(II) complexes with tridentate Schiff-base dianions of the N-salicylideneaminoacidato type (TSB2-) have been reported recently (1998ad). These complexes are pyridine adducts. In this paper, we present the structure of the related title compound.

The CuII atom is coordinated by the tridentate N-salicylideneglycinato dianion and the 2-methylpyridine ligand in an approximately square-planar geometry. The pyridine ring is inclined with respect to the mean plane (through O1, O2, N1 and N2) at an angle of 11.5 (2) ° and the CuII atom lies 0.042 (1) Å out of this plane. The Cu—N and Cu—O bond distances [Cu—N 1.919 (2) and 2.018 (2) Å; Cu—O 1.922 (2) and 1.966 (2) Å] do not differ significantly when compared to the 2-ethylpyridine compound (Warda, 1998c). These units are associated into dimers through Cu···O interactions (2.680 (2) Å), and these dimers are associated into stacks along the a axis of the monoclinic unit cell by longer Cu···O contacts (3.332 (2) Å) (Fig. 2). The Na+ cations and perchlorate anions lie between stacks, both on 2-fold axes, forming Na···O contacts of 3.698 (2) Å. The Na+ cation is also coordinated by two water molecules in a bent geometry.

Experimental

The title compound was synthesized from aqua(N-salicylideneglycinato)copper(II) hemihydrate according to the methods of Ueki et al. (1967) and Warda (1994), with 3-methylpyridine and sodium perchlorate in a 4:3 ethanol-water mixture at room temperature. Dark-green prismatic crystals grew within a few days.

Refinement

H atoms bonded to C atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93–0.97 Å and Uiso(H) = 1.2 or 1.5Ueq(C). The H atoms of the water molecules were placed in approximate positions and allowed to ride with O—H = 0.85 Å, Uiso(H) = 1.2 Ueq(O).

Figures

Fig. 1.

Fig. 1.

The structure of the title compound, showing 30% probability displacement ellipsoids for non-H atoms [symmetry codes: (A) 1 - x, 2 - y, 1 - z; (B) -x, y, -z + 1/2]. H atoms of the water molecules are omitted.

Fig. 2.

Fig. 2.

One-dimensional stack running along the a axis.

Crystal data

[Na(H2O)2]ClO4·[Cu2(C9H7NO3)2(C6H7N)2] F000 = 844
Mr = 826.12 Dx = 1.515 Mg m3
Monoclinic, P2/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2yc Cell parameters from 7803 reflections
a = 7.4677 (5) Å θ = 2.2–26.9º
b = 13.2402 (9) Å µ = 1.32 mm1
c = 19.3937 (12) Å T = 292 (2) K
β = 109.165 (2)º Block, dark-green
V = 1811.3 (2) Å3 0.30 × 0.26 × 0.24 mm
Z = 2

Data collection

Bruker SMART APEX CCD diffractometer 3558 independent reflections
Radiation source: sealed tube 2926 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.047
T = 292(2) K θmax = 26.0º
φ and ω scans θmin = 1.5º
Absorption correction: multi-scan(SADABS; Bruker, 2000) h = −9→9
Tmin = 0.68, Tmax = 0.73 k = −16→16
18486 measured reflections l = −23→23

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045 H-atom parameters constrained
wR(F2) = 0.100   w = 1/[σ2(Fo2) + (0.0394P)2 + 1.073P] where P = (Fo2 + 2Fc2)/3
S = 1.13 (Δ/σ)max < 0.001
3558 reflections Δρmax = 0.29 e Å3
237 parameters Δρmin = −0.59 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.1080 (4) 0.8274 (2) 0.06545 (17) 0.0359 (6)
C2 0.0762 (5) 0.7877 (3) 0.1253 (2) 0.0514 (9)
H2 0.0667 0.8309 0.1618 0.062*
C3 0.0578 (5) 0.6847 (3) 0.1330 (2) 0.0555 (9)
H3 0.0363 0.6610 0.1748 0.067*
C4 0.0695 (5) 0.6178 (3) 0.0832 (2) 0.0566 (10)
H4 0.0577 0.5489 0.0901 0.068*
C5 0.1000 (5) 0.6543 (2) 0.0206 (2) 0.0526 (9)
H5 0.1067 0.6090 −0.0151 0.063*
C6 0.1203 (4) 0.7558 (2) 0.01060 (18) 0.0411 (7)
C7 0.1447 (4) 0.7882 (2) −0.05710 (19) 0.0412 (7)
H7 0.1370 0.7392 −0.0923 0.049*
C8 0.1947 (5) 0.8996 (3) −0.14394 (17) 0.0499 (9)
H8A 0.0710 0.8977 −0.1814 0.060*
H8B 0.2744 0.8488 −0.1553 0.060*
C9 0.2828 (5) 1.0035 (2) −0.1416 (2) 0.0478 (8)
C10 0.2917 (4) 1.1111 (3) 0.12608 (17) 0.0427 (7)
H10 0.2641 1.0502 0.1443 0.051*
C11 0.3191 (6) 1.1968 (3) 0.1690 (2) 0.0567 (10)
H11 0.3069 1.1936 0.2152 0.068*
C12 0.3636 (6) 1.2851 (3) 0.1439 (2) 0.0610 (10)
H12 0.3780 1.3432 0.1721 0.073*
C13 0.3882 (5) 1.2894 (3) 0.0754 (2) 0.0547 (9)
C14 0.3530 (4) 1.1998 (2) 0.03434 (18) 0.0421 (7)
H14 0.3645 1.2004 −0.0120 0.050*
C15 0.4383 (6) 1.3829 (3) 0.0458 (2) 0.0591 (10)
H15A 0.4325 1.4385 0.0768 0.089*
H15B 0.3508 1.3942 −0.0024 0.089*
H15C 0.5645 1.3773 0.0436 0.089*
Cl1 0.0000 0.39685 (9) 0.2500 0.0541 (3)
Cu1 0.22475 (5) 0.99364 (3) −0.007850 (19) 0.03341 (12)
N1 0.1759 (4) 0.87901 (19) −0.07187 (12) 0.0360 (6)
N2 0.3039 (3) 1.11394 (19) 0.05920 (13) 0.0351 (5)
Na1 0.5000 0.60089 (17) 0.2500 0.0603 (5)
O1 0.1223 (3) 0.92455 (16) 0.05801 (12) 0.0424 (5)
O2 0.3196 (4) 1.05246 (17) −0.08228 (13) 0.0500 (6)
O3 0.3162 (4) 1.0293 (2) −0.19675 (15) 0.0616 (7)
O4 0.0491 (4) 0.45860 (19) 0.19803 (14) 0.0574 (7)
O5 0.1612 (3) 0.33292 (18) 0.28823 (14) 0.0514 (6)
O6 0.6028 (7) 0.6382 (4) 0.1670 (3) 0.0507 (13) 0.50
H6B 0.5176 0.6692 0.1335 0.061* 0.50
H6C 0.6993 0.6761 0.1836 0.061* 0.50
O7 0.3968 (8) 0.6975 (5) 0.3137 (3) 0.0594 (15) 0.50
H7A 0.3624 0.6626 0.3439 0.071* 0.50
H7B 0.4843 0.7379 0.3367 0.071* 0.50

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0305 (15) 0.0368 (16) 0.0413 (16) −0.0021 (12) 0.0130 (13) 0.0045 (13)
C2 0.0444 (19) 0.058 (2) 0.048 (2) −0.0021 (16) 0.0099 (16) 0.0147 (17)
C3 0.052 (2) 0.051 (2) 0.061 (2) 0.0009 (17) 0.0157 (18) 0.0150 (19)
C4 0.055 (2) 0.045 (2) 0.065 (2) −0.0103 (17) 0.0127 (18) 0.0103 (18)
C5 0.056 (2) 0.0319 (17) 0.066 (2) −0.0034 (15) 0.0139 (18) 0.0067 (16)
C6 0.0376 (16) 0.0337 (15) 0.0485 (18) 0.0022 (13) 0.0095 (14) 0.0042 (14)
C7 0.0358 (16) 0.0351 (16) 0.0522 (19) −0.0062 (13) 0.0136 (14) −0.0014 (14)
C8 0.055 (2) 0.067 (2) 0.0334 (16) −0.0200 (17) 0.0218 (15) −0.0045 (16)
C9 0.065 (2) 0.0381 (17) 0.052 (2) 0.0002 (16) 0.0349 (17) 0.0000 (16)
C10 0.0340 (16) 0.053 (2) 0.0415 (17) −0.0102 (14) 0.0130 (13) −0.0108 (15)
C11 0.077 (3) 0.056 (2) 0.0450 (19) −0.0183 (19) 0.0306 (19) −0.0130 (17)
C12 0.061 (2) 0.058 (2) 0.064 (2) −0.0098 (19) 0.020 (2) −0.0130 (19)
C13 0.0367 (18) 0.051 (2) 0.070 (2) −0.0031 (15) 0.0088 (17) −0.0139 (18)
C14 0.0388 (17) 0.0453 (18) 0.0434 (18) −0.0032 (14) 0.0153 (14) −0.0029 (14)
C15 0.062 (2) 0.048 (2) 0.063 (2) −0.0155 (18) 0.0148 (19) −0.0123 (18)
Cl1 0.0648 (8) 0.0430 (6) 0.0597 (7) 0.000 0.0273 (6) 0.000
Cu1 0.0428 (2) 0.02850 (19) 0.0342 (2) −0.00470 (15) 0.01980 (15) −0.00310 (14)
N1 0.0465 (15) 0.0336 (13) 0.0289 (12) −0.0045 (11) 0.0139 (11) −0.0045 (10)
N2 0.0326 (13) 0.0361 (13) 0.0334 (12) −0.0041 (10) 0.0066 (10) −0.0057 (10)
Na1 0.0548 (12) 0.0636 (13) 0.0564 (12) 0.000 0.0101 (10) 0.000
O1 0.0638 (14) 0.0314 (11) 0.0413 (12) −0.0030 (10) 0.0297 (11) 0.0032 (9)
O2 0.0768 (17) 0.0352 (12) 0.0503 (14) −0.0093 (11) 0.0377 (13) −0.0029 (11)
O3 0.0747 (18) 0.0602 (16) 0.0606 (16) −0.0068 (13) 0.0369 (14) 0.0063 (13)
O4 0.0772 (18) 0.0495 (14) 0.0599 (15) −0.0009 (13) 0.0419 (14) −0.0033 (12)
O5 0.0493 (13) 0.0464 (14) 0.0601 (15) 0.0014 (11) 0.0202 (12) 0.0037 (11)
O6 0.036 (3) 0.060 (3) 0.047 (3) −0.012 (3) 0.001 (2) −0.012 (3)
O7 0.046 (3) 0.059 (4) 0.065 (4) −0.009 (3) 0.007 (3) −0.014 (3)

Geometric parameters (Å, °)

C1—O1 1.303 (4) C12—C13 1.401 (6)
C1—C2 1.364 (5) C12—H12 0.930
C1—C6 1.450 (5) C13—C14 1.405 (5)
C2—C3 1.384 (5) C13—C15 1.464 (5)
C2—H2 0.930 C14—N2 1.333 (4)
C3—C4 1.334 (5) C14—H14 0.930
C3—H3 0.930 C15—H15A 0.960
C4—C5 1.393 (5) C15—H15B 0.960
C4—H4 0.930 C15—H15C 0.960
C5—C6 1.373 (5) Cl1—O4 1.436 (3)
C5—H5 0.930 Cl1—O4i 1.436 (3)
C6—C7 1.448 (5) Cl1—O5i 1.459 (2)
C7—N1 1.275 (4) Cl1—O5 1.459 (2)
C7—H7 0.930 Cu1—N1 1.919 (2)
C8—N1 1.475 (4) Cu1—O1 1.922 (2)
C8—C9 1.519 (5) Cu1—O2 1.966 (2)
C8—H8A 0.970 Cu1—N2 2.018 (2)
C8—H8B 0.970 Na1—O6 2.058 (6)
C9—O3 1.224 (4) Na1—O6ii 2.058 (6)
C9—O2 1.269 (4) Na1—O7ii 2.093 (6)
C10—N2 1.330 (4) Na1—O7 2.093 (6)
C10—C11 1.382 (5) O6—H6B 0.850
C10—H10 0.930 O6—H6C 0.850
C11—C12 1.349 (5) O7—H7A 0.850
C11—H11 0.930 O7—H7B 0.850
O1—C1—C2 121.2 (3) C14—C13—C15 121.1 (4)
O1—C1—C6 122.5 (3) N2—C14—C13 122.5 (3)
C2—C1—C6 116.3 (3) N2—C14—H14 118.7
C1—C2—C3 121.5 (4) C13—C14—H14 118.7
C1—C2—H2 119.2 C13—C15—H15A 109.5
C3—C2—H2 119.2 C13—C15—H15B 109.5
C4—C3—C2 122.9 (4) H15A—C15—H15B 109.5
C4—C3—H3 118.5 C13—C15—H15C 109.5
C2—C3—H3 118.5 H15A—C15—H15C 109.5
C3—C4—C5 118.0 (3) H15B—C15—H15C 109.5
C3—C4—H4 121.0 O4—Cl1—O4i 110.6 (2)
C5—C4—H4 121.0 O4—Cl1—O5i 109.39 (15)
C6—C5—C4 121.3 (4) O4i—Cl1—O5i 109.18 (14)
C6—C5—H5 119.3 O4—Cl1—O5 109.18 (14)
C4—C5—H5 119.3 O4i—Cl1—O5 109.39 (15)
C5—C6—C7 118.1 (3) O5i—Cl1—O5 109.1 (2)
C5—C6—C1 120.0 (3) N1—Cu1—O1 91.20 (10)
C7—C6—C1 121.9 (3) N1—Cu1—O2 82.87 (10)
N1—C7—C6 124.7 (3) O1—Cu1—O2 174.01 (9)
N1—C7—H7 117.6 N1—Cu1—N2 174.05 (10)
C6—C7—H7 117.6 O1—Cu1—N2 92.51 (10)
N1—C8—C9 108.3 (3) O2—Cu1—N2 93.47 (10)
N1—C8—H8A 110.0 C7—N1—C8 117.9 (3)
C9—C8—H8A 110.0 C7—N1—Cu1 127.6 (2)
N1—C8—H8B 110.0 C8—N1—Cu1 114.2 (2)
C9—C8—H8B 110.0 C10—N2—C14 119.5 (3)
H8A—C8—H8B 108.4 C10—N2—Cu1 120.4 (2)
O3—C9—O2 127.1 (3) C14—N2—Cu1 119.8 (2)
O3—C9—C8 115.9 (3) O6—Na1—O6ii 152.2 (3)
O2—C9—C8 116.9 (3) O6ii—Na1—O7ii 128.2 (3)
N2—C10—C11 121.3 (3) O6—Na1—O7 128.2 (3)
N2—C10—H10 119.3 O7ii—Na1—O7 104.7 (4)
C11—C10—H10 119.3 C1—O1—Cu1 127.5 (2)
C12—C11—C10 120.0 (3) C9—O2—Cu1 116.1 (2)
C12—C11—H11 120.0 Na1—O6—H6B 109.6
C10—C11—H11 120.0 Na1—O6—H6C 109.5
C11—C12—C13 120.1 (4) H6B—O6—H6C 109.4
C11—C12—H12 119.9 Na1—O7—H7A 109.1
C13—C12—H12 119.9 Na1—O7—H7B 109.0
C12—C13—C14 116.4 (4) H7A—O7—H7B 109.6
C12—C13—C15 122.4 (3)

Symmetry codes: (i) −x, y, −z+1/2; (ii) −x+1, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2318).

References

  1. Bruker (2000). SAINT, SMART and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  3. Ueki, T., Ashida, T., Sasada, Y. & Kakudo, M. (1967). Acta Cryst.22, 870–878.
  4. Warda, S. A. (1994). In Bioanorganische Kupfer(II) Komplexe mit dreizähnigen O,N,O Chelat-Dianionen und additiven einzähnigen Donorliganden Aachen: Verlag Shaker.
  5. Warda, S. A. (1998a). Acta Cryst. C54, 187–189.
  6. Warda, S. A. (1998b). Acta Cryst. C54, 768–770.
  7. Warda, S. A. (1998c). Acta Cryst. C54, 1236–1238.
  8. Warda, S. A. (1998d). Acta Cryst. C54, 1754–1755.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808039561/bi2318sup1.cif

e-64-m1634-sup1.cif (18.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808039561/bi2318Isup2.hkl

e-64-m1634-Isup2.hkl (174.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES