Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Nov 26;64(Pt 12):o2462. doi: 10.1107/S1600536808039172

(Z)-Ethyl 2-(3-nitro­benzyl­idene)-3-oxo­butanoate

Xiaopeng Shi a,*
PMCID: PMC2960106  PMID: 21581430

Abstract

The title mol­ecule, C13H13NO5, adopts a Z conformation at the C= C double bond. The eth­oxy atoms of the ethyl ester group are disordered over two orientations in a 3:2 ratio. Weak inter­molecular C—H⋯O hydrogen bonds help to establish the packing.

Related literature

For applications of β-keto ester derivatives, see: Benetti et al. (1995); Simon et al. (2004). For the preparation of the title compound, see Correa & Scott (2001).graphic file with name e-64-o2462-scheme1.jpg

Experimental

Crystal data

  • C13H13NO5

  • M r = 263.24

  • Monoclinic, Inline graphic

  • a = 27.6055 (6) Å

  • b = 11.8164 (2) Å

  • c = 8.2934 (1) Å

  • β = 102.829 (2)°

  • V = 2637.75 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 (2) K

  • 0.20 × 0.10 × 0.10 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997) T min = 0.980, T max = 0.990

  • 13516 measured reflections

  • 2593 independent reflections

  • 1793 reflections with I > 2σ(I)

  • R int = 0.138

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059

  • wR(F 2) = 0.158

  • S = 0.97

  • 2593 reflections

  • 194 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808039172/cv2486sup1.cif

e-64-o2462-sup1.cif (18KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808039172/cv2486Isup2.hkl

e-64-o2462-Isup2.hkl (127.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O2i 0.93 2.57 3.414 (3) 152
C6—H6⋯O3ii 0.93 2.49 3.381 (2) 161
C10—H10C⋯O4iii 0.96 2.44 3.350 (3) 159

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The author is grateful to Hua Cheng for helpful discussions.

supplementary crystallographic information

Comment

β-Keto ester derivatives, as important synthetic intermediates, are widely applied in the synthesis of new heterocyclic derivatives presenting new pharmacological properties (Benetti et al., 1995; Simon et al., 2004).

The molecular structure of the title compound is shown in Fig. 1. It adopts a Z-conformation at the carbon-carbon double bond. The EtO atoms of the ethyl ester group are disordered over two orientations with a ratio 3:2. The molecules are connected mainly by intermolecular C—H···O interactions (Table 1).

Experimental

The title compound was synthesized as previously described by Correa & Scott (2001) via Knoevenagel reaction. Colourless crystals suitable for X-ray data collection were obtained by slow evaporation of a 2:5 ratio CH2Cl2:cyclohexane solution at room temperture.

Refinement

All H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding, allowing for free rotation of the methyl groups. The constraint Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) (methyl C) was applied.

Figures

Fig. 1.

Fig. 1.

View of the title molecule showing the atom-labelling scheme. The displacement ellipsoids are drawn at the 30% probability level. Only major parts of disordered atoms are shown.

Crystal data

C13H13NO5 F000 = 1104
Mr = 263.24 Dx = 1.326 Mg m3
Monoclinic, C2/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 4029 reflections
a = 27.6055 (6) Å θ = 2.9–22.6º
b = 11.8164 (2) Å µ = 0.10 mm1
c = 8.29340 (10) Å T = 298 (2) K
β = 102.829 (2)º Block, colourless
V = 2637.75 (8) Å3 0.20 × 0.10 × 0.10 mm
Z = 8

Data collection

Bruker SMART CCD area-detector diffractometer 2593 independent reflections
Radiation source: fine-focus sealed tube 1793 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.138
T = 298(2) K θmax = 26.0º
φ and ω scans θmin = 1.5º
Absorption correction: multi-scan(SADABS; Sheldrick, 1997) h = −34→30
Tmin = 0.980, Tmax = 0.990 k = −14→14
13516 measured reflections l = −10→10

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059 H-atom parameters constrained
wR(F2) = 0.158   w = 1/[σ2(Fo2) + (0.0987P)2] where P = (Fo2 + 2Fc2)/3
S = 0.97 (Δ/σ)max < 0.001
2593 reflections Δρmax = 0.20 e Å3
194 parameters Δρmin = −0.26 e Å3
6 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.15219 (6) 0.41046 (14) −0.0533 (2) 0.0538 (4)
C2 0.11986 (7) 0.33560 (15) −0.1504 (2) 0.0614 (5)
H2 0.1256 0.2581 −0.1407 0.074*
C3 0.07915 (7) 0.37643 (16) −0.2614 (2) 0.0628 (5)
C4 0.06861 (7) 0.49032 (17) −0.2811 (2) 0.0680 (5)
H4 0.0404 0.5158 −0.3555 0.082*
C5 0.10111 (8) 0.56415 (16) −0.1875 (3) 0.0712 (6)
H5 0.0952 0.6415 −0.1992 0.085*
C6 0.14224 (7) 0.52611 (15) −0.0766 (2) 0.0633 (5)
H6 0.1641 0.5783 −0.0154 0.076*
C7 0.19594 (6) 0.37627 (15) 0.0721 (2) 0.0560 (5)
H7 0.2201 0.4319 0.1028 0.067*
C8 0.20630 (6) 0.27679 (14) 0.1490 (2) 0.0527 (4)
C9 0.25275 (7) 0.25541 (17) 0.2757 (2) 0.0606 (5)
C10 0.28732 (8) 0.3502 (2) 0.3368 (3) 0.0772 (6)
H10A 0.3155 0.3219 0.4159 0.116*
H10B 0.2705 0.4060 0.3884 0.116*
H10C 0.2982 0.3838 0.2456 0.116*
C11 0.17337 (7) 0.17457 (15) 0.1156 (2) 0.0560 (5)
C12 0.1062 (3) 0.0766 (7) 0.1660 (8) 0.080 (2) 0.59
H12A 0.1222 0.0066 0.2095 0.095* 0.59
H12B 0.0951 0.0698 0.0469 0.095* 0.59
C13 0.0635 (2) 0.1021 (5) 0.2428 (10) 0.116 (2) 0.59
H13A 0.0755 0.1136 0.3595 0.174* 0.59
H13B 0.0406 0.0399 0.2245 0.174* 0.59
H13C 0.0470 0.1694 0.1939 0.174* 0.59
C13' 0.0614 (2) 0.1029 (7) 0.1166 (11) 0.104 (2) 0.41
H13D 0.0468 0.1698 0.1514 0.156* 0.41
H13E 0.0393 0.0399 0.1158 0.156* 0.41
H13F 0.0668 0.1142 0.0074 0.156* 0.41
C12' 0.1100 (3) 0.0790 (8) 0.2341 (10) 0.067 (2) 0.41
H12C 0.1061 0.0758 0.3473 0.081* 0.41
H12D 0.1241 0.0082 0.2071 0.081* 0.41
N1 0.04577 (8) 0.29598 (17) −0.3646 (2) 0.0920 (6)
O1 0.05676 (9) 0.19660 (18) −0.3537 (3) 0.1630 (11)
O2 0.00831 (7) 0.33048 (16) −0.4573 (2) 0.1147 (7)
O3 0.26098 (5) 0.15976 (13) 0.32832 (18) 0.0838 (5)
O4 0.17660 (6) 0.10267 (12) 0.01722 (17) 0.0800 (5)
O5 0.14066 (5) 0.17397 (11) 0.20985 (18) 0.0728 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0544 (10) 0.0450 (9) 0.0619 (10) 0.0003 (7) 0.0128 (8) 0.0058 (7)
C2 0.0653 (12) 0.0393 (9) 0.0735 (11) 0.0063 (8) 0.0024 (9) 0.0045 (8)
C3 0.0621 (11) 0.0530 (11) 0.0668 (10) 0.0034 (9) 0.0007 (9) 0.0049 (8)
C4 0.0647 (12) 0.0584 (12) 0.0762 (12) 0.0116 (9) 0.0056 (10) 0.0173 (9)
C5 0.0826 (14) 0.0425 (10) 0.0851 (13) 0.0066 (9) 0.0114 (11) 0.0132 (9)
C6 0.0693 (12) 0.0425 (10) 0.0757 (11) −0.0043 (9) 0.0112 (10) 0.0082 (8)
C7 0.0508 (10) 0.0484 (10) 0.0657 (10) −0.0028 (7) 0.0067 (8) 0.0023 (8)
C8 0.0510 (9) 0.0478 (9) 0.0574 (9) 0.0034 (7) 0.0081 (7) 0.0014 (7)
C9 0.0547 (10) 0.0651 (13) 0.0608 (10) 0.0036 (9) 0.0103 (8) 0.0054 (9)
C10 0.0618 (12) 0.0905 (16) 0.0716 (12) −0.0141 (11) −0.0020 (10) 0.0072 (11)
C11 0.0587 (11) 0.0434 (10) 0.0609 (10) 0.0077 (7) 0.0027 (8) 0.0047 (8)
C12 0.079 (4) 0.064 (3) 0.098 (5) −0.026 (2) 0.023 (4) −0.008 (3)
C13 0.076 (3) 0.080 (3) 0.200 (6) −0.016 (3) 0.048 (4) 0.004 (5)
C13' 0.063 (4) 0.069 (4) 0.167 (7) −0.001 (3) −0.003 (5) −0.006 (6)
C12' 0.075 (5) 0.052 (3) 0.075 (5) −0.002 (3) 0.017 (4) 0.010 (4)
N1 0.0897 (14) 0.0633 (12) 0.1012 (14) 0.0036 (10) −0.0255 (11) −0.0002 (10)
O1 0.167 (2) 0.0637 (13) 0.196 (2) 0.0117 (12) −0.0941 (17) −0.0253 (12)
O2 0.0937 (12) 0.0909 (12) 0.1271 (14) 0.0037 (10) −0.0454 (11) 0.0030 (10)
O3 0.0748 (10) 0.0686 (10) 0.0951 (10) 0.0104 (7) −0.0090 (8) 0.0172 (8)
O4 0.1037 (12) 0.0516 (8) 0.0834 (9) 0.0019 (7) 0.0182 (8) −0.0095 (7)
O5 0.0674 (9) 0.0496 (8) 0.1055 (10) −0.0087 (6) 0.0277 (8) −0.0052 (7)

Geometric parameters (Å, °)

C1—C2 1.382 (2) C10—H10C 0.9600
C1—C6 1.399 (2) C11—O4 1.195 (2)
C1—C7 1.465 (2) C11—O5 1.319 (2)
C2—C3 1.372 (3) C12—O5 1.486 (6)
C2—H2 0.9300 C12—C13 1.487 (7)
C3—C4 1.379 (3) C12—H12A 0.9700
C3—N1 1.461 (3) C12—H12B 0.9700
C4—C5 1.364 (3) C13—H13A 0.9600
C4—H4 0.9300 C13—H13B 0.9600
C5—C6 1.369 (3) C13—H13C 0.9600
C5—H5 0.9300 C13'—C12' 1.500 (8)
C6—H6 0.9300 C13'—H13D 0.9600
C7—C8 1.338 (2) C13'—H13E 0.9600
C7—H7 0.9300 C13'—H13F 0.9600
C8—C9 1.488 (3) C12'—O5 1.446 (8)
C8—C11 1.500 (2) C12'—H12C 0.9700
C9—O3 1.215 (2) C12'—H12D 0.9700
C9—C10 1.485 (3) N1—O1 1.211 (3)
C10—H10A 0.9600 N1—O2 1.213 (2)
C10—H10B 0.9600
C2—C1—C6 117.59 (17) C9—C10—H10C 109.5
C2—C1—C7 124.16 (16) H10A—C10—H10C 109.5
C6—C1—C7 118.25 (16) H10B—C10—H10C 109.5
C3—C2—C1 119.53 (16) O4—C11—O5 124.43 (17)
C3—C2—H2 120.2 O4—C11—C8 124.37 (17)
C1—C2—H2 120.2 O5—C11—C8 111.19 (14)
C2—C3—C4 122.85 (18) O5—C12—C13 105.2 (5)
C2—C3—N1 118.70 (17) O5—C12—H12A 110.7
C4—C3—N1 118.44 (17) C13—C12—H12A 110.7
C5—C4—C3 117.52 (17) O5—C12—H12B 110.7
C5—C4—H4 121.2 C13—C12—H12B 110.7
C3—C4—H4 121.2 H12A—C12—H12B 108.8
C4—C5—C6 121.01 (18) C12'—C13'—H13D 109.5
C4—C5—H5 119.5 C12'—C13'—H13E 109.5
C6—C5—H5 119.5 H13D—C13'—H13E 109.5
C5—C6—C1 121.46 (18) C12'—C13'—H13F 109.5
C5—C6—H6 119.3 H13D—C13'—H13F 109.5
C1—C6—H6 119.3 H13E—C13'—H13F 109.5
C8—C7—C1 129.51 (17) O5—C12'—C13' 103.4 (6)
C8—C7—H7 115.2 O5—C12'—H12C 111.1
C1—C7—H7 115.2 C13'—C12'—H12C 111.1
C7—C8—C9 123.05 (17) O5—C12'—H12D 111.1
C7—C8—C11 124.25 (16) C13'—C12'—H12D 111.1
C9—C8—C11 112.68 (15) H12C—C12'—H12D 109.1
O3—C9—C10 121.61 (18) O1—N1—O2 122.5 (2)
O3—C9—C8 118.35 (17) O1—N1—C3 118.14 (19)
C10—C9—C8 120.03 (17) O2—N1—C3 119.4 (2)
C9—C10—H10A 109.5 C11—O5—C12' 125.8 (4)
C9—C10—H10B 109.5 C11—O5—C12 110.2 (3)
H10A—C10—H10B 109.5
C6—C1—C2—C3 −1.6 (3) C11—C8—C9—C10 −173.76 (16)
C7—C1—C2—C3 178.23 (17) C7—C8—C11—O4 91.9 (2)
C1—C2—C3—C4 −0.1 (3) C9—C8—C11—O4 −87.0 (2)
C1—C2—C3—N1 179.14 (17) C7—C8—C11—O5 −88.6 (2)
C2—C3—C4—C5 1.4 (3) C9—C8—C11—O5 92.48 (17)
N1—C3—C4—C5 −177.85 (18) C2—C3—N1—O1 −3.5 (3)
C3—C4—C5—C6 −0.9 (3) C4—C3—N1—O1 175.8 (2)
C4—C5—C6—C1 −0.9 (3) C2—C3—N1—O2 176.3 (2)
C2—C1—C6—C5 2.1 (3) C4—C3—N1—O2 −4.4 (3)
C7—C1—C6—C5 −177.72 (17) O4—C11—O5—C12' 12.4 (5)
C2—C1—C7—C8 −20.0 (3) C8—C11—O5—C12' −167.1 (4)
C6—C1—C7—C8 159.84 (18) O4—C11—O5—C12 −4.6 (4)
C1—C7—C8—C9 −179.60 (16) C8—C11—O5—C12 175.9 (4)
C1—C7—C8—C11 1.6 (3) C13'—C12'—O5—C11 −98.1 (7)
C7—C8—C9—O3 −173.65 (17) C13'—C12'—O5—C12 −49.8 (16)
C11—C8—C9—O3 5.3 (2) C13—C12—O5—C11 −164.4 (4)
C7—C8—C9—C10 7.3 (3) C13—C12—O5—C12' 55.7 (17)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C4—H4···O2i 0.93 2.57 3.414 (3) 152
C6—H6···O3ii 0.93 2.49 3.381 (2) 161
C10—H10C···O4iii 0.96 2.44 3.350 (3) 159

Symmetry codes: (i) −x, −y+1, −z−1; (ii) −x+1/2, y+1/2, −z+1/2; (iii) −x+1/2, −y+1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2486).

References

  1. Benetti, S., Romagnoli, R., Risi, C. D., Spalluto, G. & Zanirato, V. (1995). Chem. Rev.95, 1065–1114.
  2. Bruker (1997). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (1999). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Correa, W. H. & Scott, J. L. (2001). Green Chem.3, 296–301.
  5. Sheldrick, G. M. (1997). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Simon, C., Constantieux, T. & Rodriguez, J. (2004). Eur. J. Org. Chem. pp. 4957–4980.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808039172/cv2486sup1.cif

e-64-o2462-sup1.cif (18KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808039172/cv2486Isup2.hkl

e-64-o2462-Isup2.hkl (127.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES