Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Nov 22;64(Pt 12):m1587. doi: 10.1107/S160053680803804X

catena-Poly[[bis­(μ2-4-amino­benzene­sulfonato-κ2 O:O)disilver]-bis­(μ2-4,4′-bipyridine-κ2 N:N′)]

Guang-Chuan Ou a,*, Min Zhang a, Xian-You Yuan a, Yong-Qiang Dai a
PMCID: PMC2960111  PMID: 21581187

Abstract

In the title compound, [Ag2(C6H6NO3S)2(C10H8N2)2]n, the AgI atom is four-coordinated by two N atoms from two symmetry-related 4,4′-bipyridine (bipy) and two O atoms from two independent 4-amino­benzene­sulfonate (ABS) ligands. The two inter-chain AgI atoms are bridged by two independent ABS ligands through weak Ag—O bonds and Ag⋯Ag attractions, forming a ladder-like chain coordination polymer [Ag2(ABS)2(bipy)2]n parallel to [001], which is further linked to generate a two-dimensional structure via N—H⋯O hydrogen-bonding inter­actions.

Related literature

For general background, see: Liu, Kuroda-Sowa et al. (2005); Liu, Liu et al. (2005); Feng et al. (2003); Wei et al. (2004); Dong et al. (2005); Bi et al. (2003); Ding et al. (2005); Yang et al. (2004). For related structures, see: Sampanthar & Vittal (2000); Tong et al. (2000).graphic file with name e-64-m1587-scheme1.jpg

Experimental

Crystal data

  • [Ag2(C6H6NO3S)2(C10H8N2)2]

  • M r = 872.46

  • Monoclinic, Inline graphic

  • a = 9.2105 (19) Å

  • b = 15.774 (3) Å

  • c = 11.433 (2) Å

  • β = 108.004 (4)°

  • V = 1579.8 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.43 mm−1

  • T = 173 (2) K

  • 0.42 × 0.13 × 0.12 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.585, T max = 0.847

  • 7741 measured reflections

  • 3375 independent reflections

  • 2774 reflections with I > 2σ(I)

  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.088

  • S = 1.11

  • 3375 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.69 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680803804X/pv2110sup1.cif

e-64-m1587-sup1.cif (19.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680803804X/pv2110Isup2.hkl

e-64-m1587-Isup2.hkl (165.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3B⋯O2i 0.88 2.04 2.850 (5) 153
N3—H3C⋯O3ii 0.88 2.25 2.905 (4) 131

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the Key Subject Construction Project of Hunan Province (grant No. 2006-180), the Scientific Research Project of the Hunan Provincial Finance Bureau and Education Department (grant No. 08C366), and the Foundation for University Key Teachers of the Education Department of Hunan Province for supporting this study.

supplementary crystallographic information

Comment

In the construction of inorganic–organic supramolecular complexes, the AgI is often a favorable candidate due to its flexible coordination modes and Ag–Ag attractions (Liu et al., 2005; Dong et al., 2005; Bi et al., 2003; Ding et al., 2005; Yang et al., 2004). Bipy (4,4'-bipyridine) and ABS (4-aminobenzenesulfonic acid) are useful building blocks because they contain bifunctional groups, which can coordinate with metal ions in various coordination modes through the oxygen atoms of sulfonic group and the nitrogen atoms of pyridyl ring (Liu et al., 2005; Feng et al., 2003; Wei et al., 2004). Therefore, we also extended these investigations to the use of the ligand ABS and obtained various framework structures. In this paper, we report the structure of the title compound, (I).

As illustrated in Fig. 1, each AgI atom in the title compound is four-coordinated by two nitrogen atoms from bipy (Ag1—N1 = 2.187 (3) Å, Ag1—N2 = 2.179 (3) Å) and two oxygen atoms from two independent ABS (Ag1—O1 = 2.572 (2) Å and Ag1—O1# = 2.654 (2) Å, # 1 - x, -y, 1 - z). These coordination modes are different from those found in structures similar to (I), wherein both oxygen atoms of acetic acid are linked to Ag atoms (Sampanthar & Vittal, 2000; Tong et al., 2000). The two inter-chain AgI atoms are bridged by two independent ABS ligands through week Ag—O bonds and Ag–Ag attractions (Ag1–Ag1# = 3.903 Å, # 1 - x, -y, 1 - z), forming a one-dimensional ladder-like chain coordination polymer [Ag2(bipy)2(ABS)2]n with periodical distance of 11.43 Å, which is further linked to generate a two-dimensional structure via hydrogen-bonding interactions with an average O–O distance of 2.877 Å (Fig. 2).

Experimental

To a mixture of bipy (0.032 g, 0.2 mmol), ABS (0.017 g, 0.1 mmol) and Ag2O (0.028 g, 0.05 mmol) in CH3OH (10 ml) was added ammonia water resulting in a clear solution. After heating at 323 K for 0.5 h, the solution was evaporated slowly in the dark. Five days later, slightly yellow crystals were formed from the solution.

Refinement

H atoms bound to C or N atoms were positioned geometrically and refined using the riding model, and with C—H = 0.95 Å and N—H = 0.88 Å, and with U(H) set to 1.2Ueq(C, N). A small degree of thermal disorder in O2 and O3 atoms could not be ruled out as reflected by large atomic displacement parameters of these atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing displacement ellipsoids at the 30% probability level; H-atoms have been excluded for clarity. The symmetry codes for the generated atoms: a (1 - x, -y, 1 - z), b (1 - x, -y, 2 - z), c (x, y, 1 + z), d (x, y, -1 + z), e (1 - x, -y, -z).

Fig. 2.

Fig. 2.

A view of the packing of the title compound along b axis.

Crystal data

[Ag2(C6H6NO3S)2(C10H8N2)2] F000 = 872
Mr = 872.46 Dx = 1.834 Mg m3
Monoclinic, P21/n Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 2489 reflections
a = 9.2105 (19) Å θ = 2.5–27.0º
b = 15.774 (3) Å µ = 1.43 mm1
c = 11.433 (2) Å T = 173 (2) K
β = 108.004 (4)º Prism, light-yellow
V = 1579.8 (6) Å3 0.42 × 0.13 × 0.12 mm
Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer 3375 independent reflections
Radiation source: fine-focus sealed tube 2774 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.023
T = 173(2) K θmax = 27.0º
φ and ω scans θmin = 2.3º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −11→11
Tmin = 0.585, Tmax = 0.847 k = −17→20
7741 measured reflections l = −13→14

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032 H-atom parameters constrained
wR(F2) = 0.088   w = 1/[σ2(Fo2) + (0.0458P)2 + 0.7557P] where P = (Fo2 + 2Fc2)/3
S = 1.11 (Δ/σ)max = 0.001
3375 reflections Δρmax = 0.79 e Å3
217 parameters Δρmin = −0.69 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ag1 0.72113 (3) 0.011584 (16) 0.56851 (2) 0.02788 (10)
S1 0.43413 (9) 0.19537 (5) 0.48987 (9) 0.0333 (2)
N1 0.7468 (3) 0.01972 (15) 0.3849 (2) 0.0216 (5)
N2 0.7473 (3) 0.01021 (16) 0.7646 (2) 0.0250 (6)
C2 0.7508 (3) 0.01617 (18) 0.1402 (3) 0.0203 (6)
C12 0.1224 (3) 0.19650 (18) 0.4380 (3) 0.0236 (6)
H12A 0.1175 0.1865 0.3549 0.028*
C14 −0.0062 (3) 0.2155 (2) 0.5922 (3) 0.0274 (7)
C1 0.7521 (3) 0.01415 (18) 0.0111 (3) 0.0211 (6)
O1 0.4856 (2) 0.10869 (15) 0.5186 (2) 0.0362 (6)
C11 0.2636 (3) 0.20524 (19) 0.5282 (3) 0.0228 (6)
C15 0.1367 (4) 0.2258 (2) 0.6808 (3) 0.0299 (7)
H15A 0.1427 0.2368 0.7638 0.036*
C10 0.6969 (4) 0.0780 (2) 0.8123 (3) 0.0282 (7)
H10A 0.6607 0.1256 0.7607 0.034*
C7 0.8025 (4) −0.0552 (2) 0.8414 (3) 0.0273 (7)
H7A 0.8388 −0.1036 0.8097 0.033*
C16 0.2681 (4) 0.2204 (2) 0.6487 (3) 0.0288 (7)
H16A 0.3641 0.2270 0.7103 0.035*
C13 −0.0112 (3) 0.2024 (2) 0.4698 (3) 0.0258 (7)
H13A −0.1072 0.1974 0.4078 0.031*
C3 0.8647 (3) −0.02265 (19) 0.2346 (3) 0.0240 (6)
H3A 0.9463 −0.0514 0.2171 0.029*
C6 0.6367 (3) 0.0573 (2) 0.2940 (3) 0.0249 (6)
H6A 0.5563 0.0855 0.3141 0.030*
C5 0.6351 (3) 0.0569 (2) 0.1740 (3) 0.0258 (7)
H5A 0.5547 0.0846 0.1132 0.031*
C4 0.8586 (4) −0.01927 (19) 0.3527 (3) 0.0261 (7)
H4A 0.9379 −0.0460 0.4155 0.031*
O2 0.3940 (4) 0.2091 (3) 0.3591 (3) 0.0931 (15)
N3 −0.1373 (3) 0.2149 (2) 0.6265 (3) 0.0483 (9)
H3B −0.1314 0.2211 0.7043 0.058*
H3C −0.2269 0.2084 0.5705 0.058*
O3 0.5398 (3) 0.25465 (19) 0.5646 (4) 0.0858 (13)
C8 0.8091 (4) −0.0555 (2) 0.9632 (3) 0.0260 (7)
H8 0.8518 −0.1024 1.0143 0.031*
C9 0.6953 (4) 0.0818 (2) 0.9318 (3) 0.0277 (7)
H9 0.6555 0.1304 0.9604 0.033*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ag1 0.03363 (16) 0.03836 (16) 0.01360 (14) 0.00271 (10) 0.01013 (10) 0.00153 (10)
S1 0.0248 (4) 0.0333 (5) 0.0465 (5) 0.0039 (3) 0.0178 (4) 0.0092 (4)
N1 0.0276 (13) 0.0222 (13) 0.0164 (12) −0.0020 (10) 0.0090 (10) −0.0024 (10)
N2 0.0300 (14) 0.0297 (14) 0.0160 (13) 0.0008 (11) 0.0082 (11) 0.0003 (11)
C2 0.0287 (15) 0.0198 (14) 0.0139 (14) −0.0011 (12) 0.0085 (12) −0.0014 (11)
C12 0.0287 (16) 0.0210 (15) 0.0198 (15) 0.0019 (12) 0.0054 (13) 0.0011 (12)
C14 0.0216 (15) 0.0269 (16) 0.0351 (19) 0.0021 (12) 0.0109 (14) −0.0026 (14)
C1 0.0267 (15) 0.0211 (14) 0.0153 (14) −0.0017 (12) 0.0060 (12) −0.0013 (11)
O1 0.0277 (12) 0.0297 (13) 0.0522 (16) 0.0044 (9) 0.0138 (11) −0.0036 (11)
C11 0.0188 (14) 0.0234 (15) 0.0272 (16) 0.0013 (11) 0.0086 (12) 0.0005 (13)
C15 0.0338 (17) 0.0356 (18) 0.0223 (17) −0.0021 (14) 0.0115 (14) −0.0086 (14)
C10 0.0416 (18) 0.0236 (16) 0.0194 (16) 0.0030 (13) 0.0094 (14) 0.0033 (13)
C7 0.0338 (17) 0.0296 (17) 0.0196 (16) 0.0051 (13) 0.0099 (13) −0.0007 (13)
C16 0.0258 (16) 0.0323 (18) 0.0235 (17) −0.0009 (13) 0.0005 (13) −0.0066 (13)
C13 0.0208 (15) 0.0274 (16) 0.0251 (16) 0.0004 (12) 0.0010 (13) 0.0013 (13)
C3 0.0248 (15) 0.0269 (16) 0.0198 (16) 0.0053 (12) 0.0062 (12) −0.0004 (12)
C6 0.0266 (15) 0.0278 (16) 0.0200 (15) 0.0046 (12) 0.0071 (12) −0.0025 (13)
C5 0.0257 (15) 0.0335 (18) 0.0175 (15) 0.0061 (13) 0.0054 (12) 0.0002 (13)
C4 0.0288 (16) 0.0270 (16) 0.0208 (16) 0.0046 (13) 0.0053 (13) −0.0017 (13)
O2 0.064 (2) 0.163 (4) 0.070 (2) 0.054 (2) 0.0474 (19) 0.071 (3)
N3 0.0304 (16) 0.080 (2) 0.0402 (19) 0.0081 (16) 0.0189 (14) −0.0024 (18)
O3 0.0339 (15) 0.0463 (18) 0.185 (4) −0.0175 (14) 0.045 (2) −0.046 (2)
C8 0.0345 (17) 0.0243 (16) 0.0193 (15) 0.0075 (13) 0.0085 (13) 0.0024 (13)
C9 0.0390 (18) 0.0246 (16) 0.0210 (16) 0.0068 (13) 0.0114 (13) 0.0010 (13)

Geometric parameters (Å, °)

Ag1—N2 2.179 (3) C11—C16 1.387 (4)
Ag1—N1 2.187 (3) C15—C16 1.372 (5)
Ag1—O1 2.571 (2) C15—H15A 0.9500
S1—O3 1.428 (3) C10—C9 1.372 (4)
S1—O2 1.441 (3) C10—H10A 0.9500
S1—O1 1.451 (2) C7—C8 1.375 (4)
S1—C11 1.763 (3) C7—H7A 0.9500
N1—C4 1.345 (4) C16—H16A 0.9500
N1—C6 1.345 (4) C13—H13A 0.9500
N2—C10 1.347 (4) C3—C4 1.370 (5)
N2—C7 1.348 (4) C3—H3A 0.9500
C2—C3 1.393 (4) C6—C5 1.368 (4)
C2—C5 1.398 (4) C6—H6A 0.9500
C2—C1 1.480 (4) C5—H5A 0.9500
C12—C13 1.390 (4) C4—H4A 0.9500
C12—C11 1.394 (4) N3—H3B 0.8800
C12—H12A 0.9500 N3—H3C 0.8800
C14—N3 1.380 (4) C8—C1ii 1.399 (4)
C14—C15 1.400 (4) C8—H8 0.9500
C14—C13 1.401 (4) C9—C1ii 1.393 (4)
C1—C9i 1.393 (4) C9—H9 0.9500
C1—C8i 1.399 (4)
N2—Ag1—N1 167.73 (10) N2—C10—C9 123.4 (3)
N2—Ag1—O1 92.98 (9) N2—C10—H10A 118.3
N1—Ag1—O1 94.93 (9) C9—C10—H10A 118.3
O3—S1—O2 115.6 (2) N2—C7—C8 123.5 (3)
O3—S1—O1 111.53 (19) N2—C7—H7A 118.2
O2—S1—O1 109.7 (2) C8—C7—H7A 118.2
O3—S1—C11 106.77 (17) C15—C16—C11 121.2 (3)
O2—S1—C11 106.38 (16) C15—C16—H16A 119.4
O1—S1—C11 106.33 (14) C11—C16—H16A 119.4
C4—N1—C6 116.7 (3) C12—C13—C14 120.8 (3)
C4—N1—Ag1 123.7 (2) C12—C13—H13A 119.6
C6—N1—Ag1 119.2 (2) C14—C13—H13A 119.6
C10—N2—C7 116.8 (3) C4—C3—C2 119.8 (3)
C10—N2—Ag1 117.8 (2) C4—C3—H3A 120.1
C7—N2—Ag1 125.3 (2) C2—C3—H3A 120.1
C3—C2—C5 116.4 (3) N1—C6—C5 123.0 (3)
C3—C2—C1 121.8 (3) N1—C6—H6A 118.5
C5—C2—C1 121.8 (3) C5—C6—H6A 118.5
C13—C12—C11 119.9 (3) C6—C5—C2 120.4 (3)
C13—C12—H12A 120.0 C6—C5—H5A 119.8
C11—C12—H12A 120.0 C2—C5—H5A 119.8
N3—C14—C15 120.3 (3) N1—C4—C3 123.8 (3)
N3—C14—C13 121.4 (3) N1—C4—H4A 118.1
C15—C14—C13 118.2 (3) C3—C4—H4A 118.1
C9i—C1—C8i 117.2 (3) C14—N3—H3B 120.0
C9i—C1—C2 121.0 (3) C14—N3—H3C 120.0
C8i—C1—C2 121.8 (3) H3B—N3—H3C 120.0
S1—O1—Ag1 143.69 (14) C7—C8—C1ii 119.3 (3)
C16—C11—C12 119.1 (3) C7—C8—H8 120.4
C16—C11—S1 120.5 (2) C1ii—C8—H8 120.4
C12—C11—S1 120.4 (2) C10—C9—C1ii 119.8 (3)
C16—C15—C14 120.6 (3) C10—C9—H9 120.1
C16—C15—H15A 119.7 C1ii—C9—H9 120.1
C14—C15—H15A 119.7
N2—Ag1—N1—C4 49.1 (6) N3—C14—C15—C16 175.3 (3)
O1—Ag1—N1—C4 179.0 (2) C13—C14—C15—C16 −2.2 (5)
N2—Ag1—N1—C6 −138.8 (4) C7—N2—C10—C9 −2.1 (5)
O1—Ag1—N1—C6 −8.9 (2) Ag1—N2—C10—C9 174.4 (3)
N1—Ag1—N2—C10 102.1 (5) C10—N2—C7—C8 0.1 (5)
O1—Ag1—N2—C10 −28.0 (2) Ag1—N2—C7—C8 −176.1 (2)
N1—Ag1—N2—C7 −81.8 (5) C14—C15—C16—C11 0.6 (5)
O1—Ag1—N2—C7 148.2 (3) C12—C11—C16—C15 0.8 (5)
C3—C2—C1—C9i −147.0 (3) S1—C11—C16—C15 −178.2 (3)
C5—C2—C1—C9i 33.1 (4) C11—C12—C13—C14 −1.2 (5)
C3—C2—C1—C8i 33.5 (4) N3—C14—C13—C12 −174.9 (3)
C5—C2—C1—C8i −146.4 (3) C15—C14—C13—C12 2.5 (5)
O3—S1—O1—Ag1 −41.8 (3) C5—C2—C3—C4 0.0 (4)
O2—S1—O1—Ag1 87.6 (3) C1—C2—C3—C4 −179.9 (3)
C11—S1—O1—Ag1 −157.8 (2) C4—N1—C6—C5 0.1 (4)
N2—Ag1—O1—S1 102.2 (3) Ag1—N1—C6—C5 −172.5 (2)
N1—Ag1—O1—S1 −68.4 (3) N1—C6—C5—C2 0.1 (5)
C13—C12—C11—C16 −0.5 (5) C3—C2—C5—C6 −0.2 (4)
C13—C12—C11—S1 178.4 (2) C1—C2—C5—C6 179.7 (3)
O3—S1—C11—C16 −37.0 (3) C6—N1—C4—C3 −0.3 (5)
O2—S1—C11—C16 −160.9 (3) Ag1—N1—C4—C3 172.0 (2)
O1—S1—C11—C16 82.2 (3) C2—C3—C4—N1 0.3 (5)
O3—S1—C11—C12 144.1 (3) N2—C7—C8—C1ii 1.9 (5)
O2—S1—C11—C12 20.2 (3) N2—C10—C9—C1ii 2.0 (5)
O1—S1—C11—C12 −96.7 (3)

Symmetry codes: (i) x, y, z−1; (ii) x, y, z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H3B···O2iii 0.88 2.04 2.850 (5) 153
N3—H3C···O3iv 0.88 2.25 2.905 (4) 131

Symmetry codes: (iii) x−1/2, −y+1/2, z+1/2; (iv) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2110).

References

  1. Bi, W. H., Cao, R., Sun, D. F., Yuan, D. Q., Li, X. & Hong, M. C. (2003). Inorg. Chem. Commun.6, 1426–1428.
  2. Brandenburg, K. (2005). DIAMOND Crystal Impact, Bonn, Germany.
  3. Bruker (1997). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2003). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Ding, B., Yi, L., Liu, Y., Cheng, P., Dong, Y. B. & Ma, J. P. (2005). Inorg. Chem. Commun.8, 38–40.
  6. Dong, Y. B., Geng, Y., Ma, J. P. & Huang, R. Q. (2005). Inorg. Chem.44, 1693–1703. [DOI] [PubMed]
  7. Feng, L. Y., Wang, Y. H., Hu, C. W., Li, Y. G. & Wang, E. B. (2003). J. Mol. Struct.650, 115–122.
  8. Liu, S. Q., Kuroda-Sowa, T., Konaka, H., Suenaga, Y., Maekawa, M., Mizutani, T., Ning, G. L. & Munakata, M. (2005). Inorg. Chem.44, 1031–1036. [DOI] [PubMed]
  9. Liu, Z., Liu, P., Chen, Y., Wang, J. & Huang, M. H. (2005). New J. Chem.29, 474–478.
  10. Sampanthar, J. T. & Vittal, J. J. (2000). Cryst. Eng.3, 117–120.
  11. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Tong, M. L., Chen, X. M. & Seik, W. N. (2000). Inorg. Chem. Commun.3, 436–438.
  14. Wei, Q., Nieuwenhuyzen, M., Meunier, F., Hardacre, C. & James, S. L. (2004). J. Chem. Soc. Dalton Trans., pp. 1807–1811. [DOI] [PubMed]
  15. Yang, J. H., Zheng, S. L., Yu, X. L. & Chen, X. M. (2004). Cryst. Growth Des.4, 831–836.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680803804X/pv2110sup1.cif

e-64-m1587-sup1.cif (19.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680803804X/pv2110Isup2.hkl

e-64-m1587-Isup2.hkl (165.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES