Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Nov 22;64(Pt 12):m1589. doi: 10.1107/S1600536808038063

Tetra­kis(μ-2-anilinobenzoato)bis­[methano­lcopper(II)](CuCu)

Chun-Wei Xin a, Fu-Chen Liu a,*
PMCID: PMC2960117  PMID: 21581189

Abstract

The title compound, [Cu2(C13H10NO2)4(CH4O)2], has been prepared by the reaction of 2-anilinobenzoic acid, HL, with copper(II) nitrate in methanol. This dinuclear complex is arranged around an inversion center. Each Cu atom displays a distorted trigonal–pyramidal coordination with four O atoms from the four ligands L and one axial O atom of the methanol solvent mol­ecule. Each carboxyl­ate group of the ligands L links two Cu atoms, building a dinuclear complex with a Cu—Cu distance of 2.5774 (10) Å. There are intra­molecular N—H⋯O hydrogen bonds, and the H atom of the methanol mol­ecule is involved in weak bifurcated hydrogen-bonding inter­actions with two carboxyl­ate O atoms of related mol­ecules, forming a chain developing parallel to the a axis.

Related literature

For general background, see: Melnik et al. (1998); Facchin et al. (1998); Martin & Greenwood (1997); Moulton et al. (2003). For a related structure, see: Churchill et al. (1985).graphic file with name e-64-m1589-scheme1.jpg

Experimental

Crystal data

  • [Cu2(C13H10NO2)4(CH4O)2]

  • M r = 1040.06

  • Monoclinic, Inline graphic

  • a = 7.2467 (14) Å

  • b = 14.171 (3) Å

  • c = 23.813 (5) Å

  • β = 97.11 (3)°

  • V = 2426.6 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.94 mm−1

  • T = 293 (2) K

  • 0.22 × 0.20 × 0.15 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: none

  • 23688 measured reflections

  • 5568 independent reflections

  • 3886 reflections with I > 2σ(I)

  • R int = 0.073

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059

  • wR(F 2) = 0.115

  • S = 1.05

  • 5568 reflections

  • 316 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808038063/dn2398sup1.cif

e-64-m1589-sup1.cif (21KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808038063/dn2398Isup2.hkl

e-64-m1589-Isup2.hkl (272.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.83 2.04 2.690 (4) 135
N2—H2⋯O3 0.83 2.05 2.688 (4) 133
O5—H5A⋯O1i 0.84 2.54 3.306 (4) 152
O5—H5A⋯O4i 0.84 2.55 3.260 (4) 143

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors acknowledge financial support from Tianjin Municipal Education Commission (grant No. 20060503)

supplementary crystallographic information

Comment

There is an increasing interest in the design of metal complexes based on polydentate ligands(Martin & Greenwood, 1997). 2-anilinobenzoato and its derivatives with multifunctional sites can bridge metal ions in different mode allowing a large variety of structures (Melnik et al., 1998). In the copper carboxylate based complexes dinuclear tetracarboxylate paddlewheel clusters have been frequently observed (Moulton et al., 2003 and references therein). Several dimer complexes having similar structure to the title complex were reported (Facchin et al., 1998 and references therein).

The dinuclear copper complex is built up around inversion center. Each copper atom displays a trigonal-bipyramidal coordination with four oxygen atoms from the four ligands L and one axial methanol solvent. Each carboxylate groups of the ligands L link two Cu atoms building a dinuclear complex (Fig. 1) with a Cu-Cu distance of 2.5774 (10) Å , typical of tetracarboxylate paddlewheel Cu dinuclear complex(Churchill et al., 1985).

There are intramolecular N-H···O hydrogen bond whereas the H atom of the methanol is in weak bifurcated interactions with two carboxyalte O atoms of related molecule forming a chain developping parallel to the a axis (Table 1).

Experimental

The title compound was prepared by adding 10 ml of methanol solution of copper nitrate (1 mmol) to 10 ml of methanol solution of L(0.5 mmol) neutralized by sodium aeide(1 mmol). The mixture was stirred for about 2 h and filtered.The filtrate was slowly evaporated at room temperture to yield cubic black crystals of (I) suitable for X-ray analysis. Yield 30% based on copper(II).

Refinement

The H atoms attached to C atoms were included in calculated positions and treated as riding on their parent atoms with C—H = 0.93 Å(aromatic) or 0.96Å (methyl) with Uiso(H) = 1.2Ueq(Caromatic) or Uiso(H) = 1.5Ueq(Cmethyl) . The H atoms attached to N and O atoms were initially refined using N-H or O-H restraints (0.83 (2)Å), then they were treated as riding on their parent atoms in the last cycles of refinement with Uiso(H) = 1.2Ueq(N) or Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the dinuclear complex with the atom-labelling scheme. Ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry code: (i) -x+2, -y, -z+2]

Crystal data

[Cu2(C13H10NO2)4(CH4O)2] F000 = 1076
Mr = 1040.06 Dx = 1.423 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 19383 reflections
a = 7.2467 (14) Å θ = 3.0–27.6º
b = 14.171 (3) Å µ = 0.94 mm1
c = 23.813 (5) Å T = 293 (2) K
β = 97.11 (3)º Block, black
V = 2426.6 (9) Å3 0.22 × 0.20 × 0.15 mm
Z = 2

Data collection

Bruker SMART CCD diffractometer 3886 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.073
Monochromator: graphite θmax = 27.5º
T = 293(2) K θmin = 3.0º
ω scans h = −9→9
Absorption correction: none k = −18→17
23688 measured reflections l = −30→30
5568 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059 H-atom parameters constrained
wR(F2) = 0.115   w = 1/[σ2(Fo2) + (0.0338P)2 + 2.4261P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.001
5568 reflections Δρmax = 0.41 e Å3
316 parameters Δρmin = −0.35 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 1.13786 (5) 0.05253 (3) 0.990416 (16) 0.02737 (12)
N1 0.9279 (4) 0.2080 (2) 0.83101 (12) 0.0481 (8)
H1 0.9928 0.1944 0.8612 0.058*
N2 1.0262 (4) 0.3315 (2) 1.06884 (14) 0.0492 (8)
H2 1.0768 0.2917 1.0500 0.059*
O1 0.7459 (3) 0.00204 (19) 0.93852 (11) 0.0549 (7)
O2 0.9804 (3) 0.09287 (18) 0.92135 (9) 0.0424 (6)
O3 1.0252 (3) 0.15225 (16) 1.03190 (10) 0.0436 (6)
O4 0.7885 (3) 0.06096 (16) 1.04750 (12) 0.0532 (7)
O5 1.3926 (3) 0.12326 (16) 0.97707 (10) 0.0460 (6)
H5A 1.4998 0.0999 0.9789 0.055*
C1 0.8163 (4) 0.0628 (2) 0.90930 (13) 0.0319 (7)
C2 0.6955 (4) 0.0996 (2) 0.85929 (13) 0.0311 (7)
C3 0.5154 (5) 0.0638 (2) 0.84879 (14) 0.0404 (8)
H3 0.4795 0.0165 0.8723 0.049*
C4 0.3890 (5) 0.0955 (3) 0.80525 (16) 0.0502 (10)
H4 0.2712 0.0688 0.7983 0.060*
C5 0.4416 (5) 0.1681 (3) 0.77200 (16) 0.0536 (11)
H5 0.3564 0.1922 0.7432 0.064*
C6 0.6177 (5) 0.2053 (3) 0.78080 (15) 0.0473 (10)
H6 0.6491 0.2544 0.7578 0.057*
C7 0.7506 (4) 0.1714 (2) 0.82325 (14) 0.0354 (8)
C8 1.0119 (5) 0.2737 (2) 0.79817 (15) 0.0391 (8)
C9 1.1365 (5) 0.3380 (3) 0.82540 (16) 0.0464 (9)
H9 1.1578 0.3381 0.8647 0.056*
C10 1.2290 (6) 0.4012 (3) 0.7956 (2) 0.0625 (12)
H10 1.3126 0.4435 0.8147 0.075*
C11 1.1986 (7) 0.4023 (4) 0.7379 (2) 0.0776 (15)
H11 1.2604 0.4456 0.7175 0.093*
C12 1.0764 (6) 0.3393 (4) 0.71023 (19) 0.0752 (15)
H12 1.0554 0.3403 0.6709 0.090*
C13 0.9836 (5) 0.2743 (3) 0.73948 (16) 0.0544 (11)
H13 0.9027 0.2312 0.7200 0.065*
C14 0.8729 (4) 0.1384 (2) 1.05159 (13) 0.0323 (7)
C15 0.7840 (4) 0.2162 (2) 1.07961 (13) 0.0308 (7)
C16 0.6150 (5) 0.1969 (3) 1.10022 (14) 0.0395 (8)
H16 0.5680 0.1358 1.0971 0.047*
C17 0.5161 (5) 0.2646 (3) 1.12476 (16) 0.0454 (9)
H17 0.4044 0.2499 1.1382 0.055*
C18 0.5858 (5) 0.3544 (3) 1.12903 (16) 0.0485 (10)
H18 0.5195 0.4013 1.1451 0.058*
C19 0.7510 (5) 0.3763 (2) 1.11009 (16) 0.0441 (9)
H19 0.7934 0.4383 1.1130 0.053*
C20 0.8583 (4) 0.3083 (2) 1.08640 (14) 0.0353 (8)
C21 1.1236 (5) 0.4172 (2) 1.08019 (18) 0.0446 (9)
C22 1.2051 (5) 0.4608 (3) 1.03751 (19) 0.0583 (11)
H22 1.1940 0.4345 1.0015 0.070*
C23 1.3035 (6) 0.5441 (3) 1.0488 (2) 0.0743 (14)
H23 1.3570 0.5738 1.0200 0.089*
C24 1.3229 (6) 0.5830 (3) 1.1018 (3) 0.0756 (15)
H24 1.3891 0.6388 1.1089 0.091*
C25 1.2444 (6) 0.5391 (3) 1.1442 (2) 0.0630 (12)
H25 1.2570 0.5656 1.1802 0.076*
C26 1.1472 (5) 0.4564 (3) 1.13402 (18) 0.0520 (10)
H26 1.0968 0.4264 1.1634 0.062*
C27 1.4132 (6) 0.2166 (3) 0.95906 (19) 0.0658 (12)
H27A 1.5422 0.2292 0.9568 0.099*
H27B 1.3682 0.2592 0.9856 0.099*
H27C 1.3433 0.2252 0.9225 0.099*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0269 (2) 0.0242 (2) 0.0313 (2) −0.00364 (18) 0.00475 (14) 0.00085 (17)
N1 0.0402 (18) 0.061 (2) 0.0409 (18) −0.0093 (16) −0.0023 (14) 0.0202 (15)
N2 0.0371 (17) 0.0344 (17) 0.080 (2) −0.0060 (14) 0.0218 (16) −0.0171 (16)
O1 0.0446 (15) 0.0644 (18) 0.0516 (16) −0.0184 (14) −0.0104 (12) 0.0285 (14)
O2 0.0358 (14) 0.0535 (15) 0.0366 (14) −0.0067 (12) −0.0015 (11) 0.0123 (12)
O3 0.0407 (14) 0.0362 (14) 0.0571 (16) −0.0074 (12) 0.0189 (12) −0.0157 (12)
O4 0.0511 (16) 0.0295 (14) 0.085 (2) −0.0092 (13) 0.0326 (14) −0.0149 (13)
O5 0.0321 (13) 0.0390 (14) 0.0679 (18) −0.0078 (11) 0.0098 (12) 0.0084 (13)
C1 0.0351 (19) 0.0304 (18) 0.0307 (17) 0.0024 (16) 0.0060 (14) −0.0032 (15)
C2 0.0326 (18) 0.0308 (18) 0.0304 (17) 0.0025 (15) 0.0059 (14) −0.0027 (14)
C3 0.038 (2) 0.042 (2) 0.041 (2) −0.0035 (17) 0.0059 (16) 0.0038 (17)
C4 0.032 (2) 0.068 (3) 0.049 (2) −0.0077 (19) −0.0012 (17) 0.006 (2)
C5 0.037 (2) 0.077 (3) 0.045 (2) 0.009 (2) −0.0025 (17) 0.017 (2)
C6 0.041 (2) 0.056 (2) 0.045 (2) 0.0051 (19) 0.0051 (17) 0.0188 (18)
C7 0.0319 (19) 0.040 (2) 0.0345 (19) 0.0012 (16) 0.0052 (14) 0.0004 (15)
C8 0.0348 (19) 0.040 (2) 0.042 (2) 0.0010 (17) 0.0046 (16) 0.0095 (16)
C9 0.046 (2) 0.047 (2) 0.045 (2) −0.0055 (19) 0.0005 (17) −0.0036 (18)
C10 0.053 (3) 0.046 (3) 0.088 (4) −0.013 (2) 0.006 (2) 0.003 (2)
C11 0.064 (3) 0.083 (4) 0.085 (4) −0.021 (3) 0.006 (3) 0.044 (3)
C12 0.055 (3) 0.120 (4) 0.048 (3) −0.018 (3) 0.000 (2) 0.035 (3)
C13 0.042 (2) 0.074 (3) 0.046 (2) −0.017 (2) 0.0003 (18) 0.010 (2)
C14 0.0312 (18) 0.0302 (19) 0.0347 (19) −0.0006 (15) 0.0004 (14) −0.0009 (14)
C15 0.0272 (17) 0.0312 (18) 0.0335 (18) 0.0007 (14) 0.0014 (14) −0.0026 (14)
C16 0.039 (2) 0.035 (2) 0.045 (2) −0.0044 (16) 0.0083 (16) −0.0021 (16)
C17 0.035 (2) 0.045 (2) 0.060 (2) −0.0055 (18) 0.0168 (18) −0.0112 (19)
C18 0.033 (2) 0.047 (2) 0.066 (3) 0.0111 (18) 0.0081 (18) −0.014 (2)
C19 0.035 (2) 0.0287 (19) 0.068 (3) 0.0007 (16) 0.0032 (18) −0.0070 (17)
C20 0.0268 (18) 0.0327 (19) 0.046 (2) 0.0006 (15) 0.0031 (15) −0.0048 (16)
C21 0.0280 (19) 0.0310 (19) 0.075 (3) −0.0015 (16) 0.0094 (18) −0.0045 (18)
C22 0.047 (2) 0.052 (3) 0.074 (3) −0.005 (2) 0.003 (2) 0.006 (2)
C23 0.058 (3) 0.056 (3) 0.107 (4) −0.018 (2) 0.003 (3) 0.027 (3)
C24 0.057 (3) 0.037 (2) 0.128 (5) −0.011 (2) −0.007 (3) −0.003 (3)
C25 0.043 (2) 0.048 (3) 0.096 (4) 0.000 (2) 0.001 (2) −0.023 (2)
C26 0.037 (2) 0.044 (2) 0.077 (3) −0.0041 (19) 0.0122 (19) −0.012 (2)
C27 0.074 (3) 0.046 (2) 0.077 (3) −0.016 (2) 0.007 (2) 0.014 (2)

Geometric parameters (Å, °)

Cu1—O4i 1.951 (2) C9—H9 0.9300
Cu1—O1i 1.954 (2) C10—C11 1.365 (6)
Cu1—O3 1.959 (2) C10—H10 0.9300
Cu1—O2 1.967 (2) C11—C12 1.367 (6)
Cu1—O5 2.159 (2) C11—H11 0.9300
Cu1—Cu1i 2.5774 (10) C12—C13 1.379 (5)
N1—C7 1.377 (4) C12—H12 0.9300
N1—C8 1.402 (4) C13—H13 0.9300
N1—H1 0.8314 C14—C15 1.477 (4)
N2—C20 1.375 (4) C15—C16 1.402 (4)
N2—C21 1.413 (4) C15—C20 1.413 (4)
N2—H2 0.8323 C16—C17 1.371 (5)
O1—C1 1.254 (4) C16—H16 0.9300
O1—Cu1i 1.954 (2) C17—C18 1.368 (5)
O2—C1 1.263 (4) C17—H17 0.9300
O3—C14 1.266 (4) C18—C19 1.366 (5)
O4—C14 1.255 (4) C18—H18 0.9300
O4—Cu1i 1.951 (2) C19—C20 1.400 (5)
O5—C27 1.404 (4) C19—H19 0.9300
O5—H5A 0.8409 C21—C22 1.383 (5)
C1—C2 1.483 (4) C21—C26 1.388 (5)
C2—C3 1.394 (5) C22—C23 1.387 (6)
C2—C7 1.420 (4) C22—H22 0.9300
C3—C4 1.371 (5) C23—C24 1.368 (7)
C3—H3 0.9300 C23—H23 0.9300
C4—C5 1.380 (5) C24—C25 1.369 (6)
C4—H4 0.9300 C24—H24 0.9300
C5—C6 1.373 (5) C25—C26 1.374 (5)
C5—H5 0.9300 C25—H25 0.9300
C6—C7 1.392 (5) C26—H26 0.9300
C6—H6 0.9300 C27—H27A 0.9600
C8—C9 1.386 (5) C27—H27B 0.9600
C8—C13 1.387 (5) C27—H27C 0.9600
C9—C10 1.369 (5)
O4i—Cu1—O1i 87.77 (12) C11—C10—H10 120.0
O4i—Cu1—O3 169.37 (10) C9—C10—H10 120.0
O1i—Cu1—O3 90.61 (12) C10—C11—C12 119.4 (4)
O4i—Cu1—O2 90.93 (12) C10—C11—H11 120.3
O1i—Cu1—O2 169.23 (10) C12—C11—H11 120.3
O3—Cu1—O2 88.69 (11) C11—C12—C13 121.3 (4)
O4i—Cu1—O5 91.53 (10) C11—C12—H12 119.3
O1i—Cu1—O5 91.52 (10) C13—C12—H12 119.3
O3—Cu1—O5 99.02 (10) C12—C13—C8 119.6 (4)
O2—Cu1—O5 99.21 (10) C12—C13—H13 120.2
O4i—Cu1—Cu1i 82.43 (8) C8—C13—H13 120.2
O1i—Cu1—Cu1i 83.02 (8) O4—C14—O3 123.1 (3)
O3—Cu1—Cu1i 86.94 (7) O4—C14—C15 116.9 (3)
O2—Cu1—Cu1i 86.21 (7) O3—C14—C15 120.0 (3)
O5—Cu1—Cu1i 171.98 (7) C16—C15—C20 118.5 (3)
C7—N1—C8 129.6 (3) C16—C15—C14 117.5 (3)
C7—N1—H1 116.6 C20—C15—C14 124.0 (3)
C8—N1—H1 113.4 C17—C16—C15 122.6 (3)
C20—N2—C21 125.9 (3) C17—C16—H16 118.7
C20—N2—H2 117.8 C15—C16—H16 118.7
C21—N2—H2 116.2 C18—C17—C16 118.4 (3)
C1—O1—Cu1i 126.2 (2) C18—C17—H17 120.8
C1—O2—Cu1 121.6 (2) C16—C17—H17 120.8
C14—O3—Cu1 120.8 (2) C19—C18—C17 121.2 (3)
C14—O4—Cu1i 126.8 (2) C19—C18—H18 119.4
C27—O5—Cu1 127.4 (2) C17—C18—H18 119.4
C27—O5—H5A 104.8 C18—C19—C20 122.0 (3)
Cu1—O5—H5A 127.6 C18—C19—H19 119.0
O1—C1—O2 122.8 (3) C20—C19—H19 119.0
O1—C1—C2 116.5 (3) N2—C20—C19 121.0 (3)
O2—C1—C2 120.6 (3) N2—C20—C15 121.7 (3)
C3—C2—C7 118.6 (3) C19—C20—C15 117.3 (3)
C3—C2—C1 117.6 (3) C22—C21—C26 119.0 (4)
C7—C2—C1 123.7 (3) C22—C21—N2 119.5 (4)
C4—C3—C2 122.6 (3) C26—C21—N2 121.5 (4)
C4—C3—H3 118.7 C21—C22—C23 119.6 (4)
C2—C3—H3 118.7 C21—C22—H22 120.2
C3—C4—C5 118.2 (3) C23—C22—H22 120.2
C3—C4—H4 120.9 C24—C23—C22 120.9 (5)
C5—C4—H4 120.9 C24—C23—H23 119.6
C6—C5—C4 121.1 (3) C22—C23—H23 119.6
C6—C5—H5 119.5 C23—C24—C25 119.6 (4)
C4—C5—H5 119.5 C23—C24—H24 120.2
C5—C6—C7 121.6 (4) C25—C24—H24 120.2
C5—C6—H6 119.2 C24—C25—C26 120.5 (5)
C7—C6—H6 119.2 C24—C25—H25 119.7
N1—C7—C6 121.1 (3) C26—C25—H25 119.7
N1—C7—C2 121.1 (3) C25—C26—C21 120.4 (4)
C6—C7—C2 117.7 (3) C25—C26—H26 119.8
C9—C8—C13 118.2 (3) C21—C26—H26 119.8
C9—C8—N1 118.5 (3) O5—C27—H27A 109.5
C13—C8—N1 123.1 (3) O5—C27—H27B 109.5
C10—C9—C8 121.4 (4) H27A—C27—H27B 109.5
C10—C9—H9 119.3 O5—C27—H27C 109.5
C8—C9—H9 119.3 H27A—C27—H27C 109.5
C11—C10—C9 120.1 (4) H27B—C27—H27C 109.5

Symmetry codes: (i) −x+2, −y, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O2 0.83 2.04 2.690 (4) 135
N2—H2···O3 0.83 2.05 2.688 (4) 133
O5—H5A···O1ii 0.84 2.54 3.306 (4) 152
O5—H5A···O4ii 0.84 2.55 3.260 (4) 143

Symmetry codes: (ii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2398).

References

  1. Bruker (1998). SAINT-Plus and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  3. Churchill, M. R., Li, Y.-J., Nalewajek, D., Schaber, P. M. & Dorfamanii, J. (1985). Inorg. Chem.24, 2684–2687.
  4. Facchin, G., Torre, M. H., Kremer, E., Piro, O. E. & Baran, E. J. (1998). Z. Anorg. Allg. Chem.53, 871–874.
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Martin, J. D. & Greenwood, K. B. (1997). Angew. Chem. Int. Ed.36, 2072–2075.
  7. Melnik, M., Koman, M. & Glowiak, T. (1998). Polyhedron, 17, 1767–1771.
  8. Moulton, B., Abourahma, H., Bradner, M. W., Lu, J.-J., McManus, G. J. & Zaworotko, M. J. (2003). Chem. Commun. pp. 1342–1343. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808038063/dn2398sup1.cif

e-64-m1589-sup1.cif (21KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808038063/dn2398Isup2.hkl

e-64-m1589-Isup2.hkl (272.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES