Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Nov 29;64(Pt 12):m1630. doi: 10.1107/S1600536808039524

4-Ferrocenylphenol

Vincent O Nyamori a, Muhammad D Bala a,*
PMCID: PMC2960122  PMID: 21581220

Abstract

The title compound, [Fe(C5H5)(C11H9O)], is of inter­est as a precursor to the synthesis of cheap ferrocene-based liquid crystals. The –OH substituent only results in weak C—H⋯O weak inter­actions between one of cyclo­penta­dienyl (Cp) ring H atoms and the O atom of a neighbouring mol­ecule with a distance of 3.308 (3) Å between the donor and acceptor atoms. The inter­planar angle between the Cp and benzene rings is 13.0 (4)°. There are also weak O—H⋯π and C—H⋯π inter­actions involving the unsubstituted Cp and the benzene ring, respectively.

Related literature

For general background, see: Togni & Hayashi (1995); Imrie et al. (2002). For related structures, see: Imrie et al. (2003); Nyamori & Bala (2008a ,b ). For related syntheses, see: Guillaneux & Kagan (1995); Foxman & Rosenblum (1993); Tsukazaki et al. (1996); Lin et al. (1995); Knapp & Rehahn, (1993).graphic file with name e-64-m1630-scheme1.jpg

Experimental

Crystal data

  • [Fe(C5H5)(C11H9O)]

  • M r = 278.12

  • Orthorhombic, Inline graphic

  • a = 9.950 (2) Å

  • b = 7.9205 (17) Å

  • c = 31.046 (6) Å

  • V = 2446.8 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.22 mm−1

  • T = 173 (2) K

  • 0.42 × 0.22 × 0.07 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: integration (XPREP; Bruker, 2005) T min = 0.750, T max = 0.929

  • 14324 measured reflections

  • 3039 independent reflections

  • 2214 reflections with I > 2σ(I)

  • R int = 0.051

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.084

  • S = 1.02

  • 3039 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.42 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-NT (Bruker, 2005); data reduction: SAINT-NT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808039524/dn2401sup1.cif

e-64-m1630-sup1.cif (24.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808039524/dn2401Isup2.hkl

e-64-m1630-Isup2.hkl (146.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1i 0.95 2.55 3.308 (3) 137
O1—H1ACg3ii 0.84 2.66 3.281 (2) 141
C2—H2⋯Cg1iii 0.95 2.90 3.766 (2) 155

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic. Cg1 and Cg3 are the centroids of the unsubstituted Cp and the benzene rings, respectively.

Acknowledgments

We thank Dr Manuel Fernandez for data collection, and the University of KwaZulu-Natal and the NRF for financial support.

supplementary crystallographic information

Comment

The synthesis of arylferrocenes especially compounds prepared by the reaction of para-substituted anilines via diazonium reactions to yield phenylferrocenes has evoked the interest of material scientists (Togni & Hayashi, 1995). For example, arylferrocenes have been established as precursors in the synthesis of ferrocenomesogens especially those with ferrocenyl moiety incorporated as a terminal group (Imrie et al., 2002). These class of compounds are most readily prepared by cross-coupling reactions, e.g. of iodoferrocene (Imrie et al., 2003) with arylboronic (Tsukazaki et al., 1996) and organotin compounds (Lin et al., 1995). Alternative cross-coupling reagents include aryl halides with tin (Guillaneux & Kagan, 1995), zinc (Foxman & Rosenblum, 1993) and ferrocenylboronic acids (Knapp & Rehahn, 1993). In this paper we report the synthesis of 4-hydroxyphenylferrocene using 4-aminophenol which was obtained via diazonium reaction.

The title compound (I) (Fig. 1) is a precursor prepared as part of a study to develop starting materials from cheaper sources for the development of new ionic liquid and liquid crystal materials (Nyamori & Bala, 2008a; 2008b). Due to the –OH subtituent on the benzyl ring it was thought that the property of (I) will be dominated by intra- or intermolecular hydrogen bonding, but analysis revealed no classical hydrogen bonds. Hence, the high melting point of 162 oC may be attributed to a concerted contribution from all molecular contacts within the crystal of (I) (Table 1: Cg(1) is the centroid of the unsubstituted Cp and Cg(3) the centroid of the benzene ring).

In the crystal of (I), the two cp rings are marginally tilted towards each other with a tilt angle between the planes of the two rings of 0.41 (5)°, while the interplanar angle between the cp and the phenyl ring is 13.0 (4)°.

Experimental

In an excess of 2M hydrochloric acid at 5 °C was dissolved 4-aminophenol (12.00 g, 0.11 mol) followed by slow addition of sodium nitrite (8.00 g, 0.11 mol) in cold water (20 cm3) also at 5 °C. The solution was left to stir at this temperature for 30 min and the resultant solution was filtered. The filtrate was immediately added to a cold thoroughly stirred solution of ferrocene (18.00 g, 0.10 mol) in diethyl ether (500 cm3). Stirring was continued at 5 °C for 8 h. The ether layer was then separated, washed with water (3 x 100 cm3) and dried over anhydrous sodium sulfate. The solution was concentrated and the residue was passed through a column of alumina. Dichloromethane: hexane (1:1) eluted unreacted ferrocene. Further elution of the column with diethyl ether yielded 4-ferrocenylphenol (5.22 g, 32%) as yellow crystals recrystallized from hexane, mp 162 oC.

FTIR: νmax(KBr/cm-1) 3515, 3091, 1901, 1607, 1525, 1454, 1434, 1264, 1210, 1176, 1102, 1027, 998, 885, 839, 816, 665, 620; 1H-NMR: δH(CDCl3) 7.38(2H, d, J 8.5, ArH), 6.79(2H, d, J 8.1, ArH), 4.87(1H, s,OH), 4.58(2H, t, J 1.9, C5H4), 4.28(2H, t, J 1.9, C5H4), 4.05(5H, s, C5H5); 13C-NMR: δC(CDCl3) 154.25, 131.88, 127.76, 115.70, 86.192, 69.87, 68.89, 66.51; EI–MS 70 eV m/z (%): 280(39%), 277(M+, 81%), 276(100%), 220(10%), 213(39%); Found: M+, 278.0388 for C16H14FeO, requires M, 278.0392.

Refinement

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). Hydrogen atom attached to oxygen was freely refined.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title complex with the atom labelling scheme. Ellipsoids are drawn at the 50% probability level.

Crystal data

[Fe(C5H5)(C11H9O)] F000 = 1152
Mr = 278.12 Dx = 1.51 Mg m3
Orthorhombic, Pbca Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 946 reflections
a = 9.950 (2) Å θ = 3.9–27.6º
b = 7.9205 (17) Å µ = 1.22 mm1
c = 31.046 (6) Å T = 173 (2) K
V = 2446.8 (9) Å3 Plate, orange
Z = 8 0.42 × 0.22 × 0.07 mm

Data collection

Bruker APEXII CCD area-detector diffractometer Rint = 0.051
φ and ω scans θmax = 28.3º
Absorption correction: integration(XPREP; Bruker, 2005) θmin = 2.4º
Tmin = 0.750, Tmax = 0.929 h = −13→8
14324 measured reflections k = −9→10
3039 independent reflections l = −41→41
2214 reflections with I > 2σ(I)

Refinement

Refinement on F2 H-atom parameters constrained
Least-squares matrix: full   w = 1/[σ2(Fo2) + (0.0424P)2 + 0.544P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.033 (Δ/σ)max = 0.001
wR(F2) = 0.084 Δρmax = 0.31 e Å3
S = 1.02 Δρmin = −0.42 e Å3
3039 reflections Extinction correction: none
164 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 −0.1342 (2) 0.1001 (3) 0.11907 (7) 0.0408 (6)
H1 −0.1586 0.1489 0.1459 0.049*
C2 −0.1895 (2) 0.1413 (3) 0.07829 (8) 0.0354 (5)
H2 −0.2575 0.2228 0.0729 0.042*
C3 −0.1253 (2) 0.0396 (3) 0.04727 (7) 0.0347 (5)
H3 −0.1426 0.0401 0.0172 0.042*
C4 −0.0312 (2) −0.0627 (3) 0.06860 (9) 0.0380 (6)
H4 0.0263 −0.1431 0.0554 0.046*
C5 −0.0366 (2) −0.0263 (3) 0.11265 (9) 0.0420 (6)
H5 0.0163 −0.0778 0.1345 0.05*
C6 0.10992 (19) 0.3807 (2) 0.10912 (6) 0.0210 (4)
C7 0.0405 (2) 0.4386 (2) 0.07116 (6) 0.0250 (4)
H7 −0.0281 0.522 0.0704 0.03*
C8 0.0926 (2) 0.3492 (2) 0.03499 (6) 0.0263 (4)
H8 0.065 0.3629 0.0059 0.032*
C9 0.1930 (2) 0.2361 (3) 0.04994 (7) 0.0267 (4)
H9 0.2441 0.1608 0.0326 0.032*
C10 0.20381 (19) 0.2549 (2) 0.09535 (7) 0.0237 (4)
H10 0.2634 0.1941 0.1135 0.028*
C11 0.09297 (19) 0.4446 (2) 0.15359 (6) 0.0218 (4)
C12 −0.0132 (2) 0.5527 (3) 0.16436 (7) 0.0281 (4)
H12 −0.0789 0.5791 0.1432 0.034*
C13 −0.0248 (2) 0.6219 (3) 0.20519 (7) 0.0332 (5)
H13 −0.0975 0.6953 0.2117 0.04*
C14 0.0701 (3) 0.5840 (3) 0.23658 (7) 0.0339 (5)
C15 0.1749 (2) 0.4741 (3) 0.22686 (7) 0.0322 (5)
H15 0.239 0.4458 0.2484 0.039*
C16 0.1861 (2) 0.4061 (3) 0.18597 (6) 0.0266 (4)
H16 0.2584 0.3317 0.1797 0.032*
O1 0.0663 (2) 0.6509 (3) 0.27745 (5) 0.0519 (5)
H1A −0.0033 0.7099 0.2803 0.078*
Fe1 0.01267 (3) 0.18508 (3) 0.078786 (8) 0.02002 (10)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0393 (14) 0.0524 (15) 0.0306 (12) −0.0248 (12) 0.0100 (10) −0.0062 (11)
C2 0.0181 (10) 0.0312 (11) 0.0567 (16) −0.0031 (8) −0.0022 (10) 0.0064 (10)
C3 0.0340 (12) 0.0417 (13) 0.0286 (11) −0.0154 (10) −0.0044 (9) −0.0013 (10)
C4 0.0294 (12) 0.0196 (10) 0.0650 (17) −0.0067 (9) 0.0036 (11) −0.0031 (10)
C5 0.0360 (13) 0.0390 (14) 0.0511 (15) −0.0137 (10) −0.0123 (11) 0.0252 (12)
C6 0.0207 (10) 0.0187 (9) 0.0236 (10) −0.0036 (7) 0.0012 (8) 0.0020 (7)
C7 0.0273 (11) 0.0198 (9) 0.0278 (11) −0.0011 (8) 0.0005 (8) 0.0027 (8)
C8 0.0334 (12) 0.0248 (10) 0.0207 (10) −0.0065 (8) 0.0018 (8) 0.0026 (8)
C9 0.0237 (10) 0.0268 (10) 0.0295 (11) −0.0047 (8) 0.0069 (9) −0.0064 (8)
C10 0.0192 (10) 0.0218 (10) 0.0303 (10) −0.0020 (8) −0.0016 (8) −0.0009 (8)
C11 0.0234 (10) 0.0190 (9) 0.0230 (10) −0.0025 (8) 0.0012 (8) 0.0009 (7)
C12 0.0285 (11) 0.0295 (11) 0.0262 (10) 0.0035 (9) −0.0027 (8) 0.0009 (8)
C13 0.0378 (13) 0.0323 (11) 0.0294 (11) 0.0078 (10) 0.0053 (10) −0.0026 (9)
C14 0.0487 (14) 0.0327 (12) 0.0202 (10) −0.0010 (10) 0.0032 (10) −0.0029 (8)
C15 0.0369 (12) 0.0348 (12) 0.0249 (11) −0.0015 (10) −0.0052 (9) 0.0032 (9)
C16 0.0265 (11) 0.0255 (11) 0.0278 (11) 0.0015 (8) −0.0005 (9) 0.0025 (8)
O1 0.0721 (14) 0.0599 (12) 0.0237 (8) 0.0148 (10) −0.0012 (9) −0.0124 (8)
Fe1 0.01885 (16) 0.01960 (15) 0.02160 (15) −0.00114 (11) −0.00087 (11) 0.00129 (11)

Geometric parameters (Å, °)

C1—C5 1.409 (4) C7—H7 0.95
C1—C2 1.419 (3) C8—C9 1.420 (3)
C1—Fe1 2.038 (2) C8—Fe1 2.0425 (19)
C1—H1 0.95 C8—H8 0.95
C2—C3 1.409 (3) C9—C10 1.422 (3)
C2—Fe1 2.041 (2) C9—Fe1 2.046 (2)
C2—H2 0.95 C9—H9 0.95
C3—C4 1.404 (3) C10—Fe1 2.046 (2)
C3—Fe1 2.042 (2) C10—H10 0.95
C3—H3 0.95 C11—C12 1.400 (3)
C4—C5 1.399 (4) C11—C16 1.401 (3)
C4—Fe1 2.036 (2) C12—C13 1.386 (3)
C4—H4 0.95 C12—H12 0.95
C5—Fe1 2.037 (2) C13—C14 1.390 (3)
C5—H5 0.95 C13—H13 0.95
C6—C10 1.431 (3) C14—O1 1.376 (2)
C6—C7 1.441 (3) C14—C15 1.392 (3)
C6—C11 1.480 (3) C15—C16 1.384 (3)
C6—Fe1 2.0550 (19) C15—H15 0.95
C7—C8 1.425 (3) C16—H16 0.95
C7—Fe1 2.041 (2) O1—H1A 0.84
C5—C1—C2 107.7 (2) C16—C11—C6 121.30 (18)
C5—C1—Fe1 69.74 (13) C13—C12—C11 121.55 (19)
C2—C1—Fe1 69.79 (12) C13—C12—H12 119.2
C5—C1—H1 126.1 C11—C12—H12 119.2
C2—C1—H1 126.1 C12—C13—C14 119.9 (2)
Fe1—C1—H1 125.9 C12—C13—H13 120
C3—C2—C1 107.6 (2) C14—C13—H13 120
C3—C2—Fe1 69.83 (12) O1—C14—C13 123.0 (2)
C1—C2—Fe1 69.51 (12) O1—C14—C15 117.5 (2)
C3—C2—H2 126.2 C13—C14—C15 119.50 (19)
C1—C2—H2 126.2 C16—C15—C14 120.2 (2)
Fe1—C2—H2 126 C16—C15—H15 119.9
C4—C3—C2 108.1 (2) C14—C15—H15 119.9
C4—C3—Fe1 69.63 (12) C15—C16—C11 121.37 (19)
C2—C3—Fe1 69.80 (12) C15—C16—H16 119.3
C4—C3—H3 126 C11—C16—H16 119.3
C2—C3—H3 126 C14—O1—H1A 109.5
Fe1—C3—H3 126.2 C4—Fe1—C5 40.17 (10)
C5—C4—C3 108.5 (2) C4—Fe1—C1 67.84 (10)
C5—C4—Fe1 69.96 (13) C5—Fe1—C1 40.45 (10)
C3—C4—Fe1 70.11 (13) C4—Fe1—C7 163.72 (9)
C5—C4—H4 125.8 C5—Fe1—C7 154.33 (10)
C3—C4—H4 125.8 C1—Fe1—C7 119.58 (10)
Fe1—C4—H4 125.7 C4—Fe1—C2 67.88 (9)
C4—C5—C1 108.1 (2) C5—Fe1—C2 68.10 (9)
C4—C5—Fe1 69.86 (13) C1—Fe1—C2 40.70 (9)
C1—C5—Fe1 69.81 (13) C7—Fe1—C2 107.46 (9)
C4—C5—H5 125.9 C4—Fe1—C3 40.27 (9)
C1—C5—H5 125.9 C5—Fe1—C3 67.76 (10)
Fe1—C5—H5 126 C1—Fe1—C3 68.01 (9)
C10—C6—C7 106.89 (17) C7—Fe1—C3 126.24 (9)
C10—C6—C11 126.23 (17) C2—Fe1—C3 40.37 (9)
C7—C6—C11 126.81 (18) C4—Fe1—C8 126.43 (10)
C10—C6—Fe1 69.26 (11) C5—Fe1—C8 163.85 (10)
C7—C6—Fe1 68.89 (11) C1—Fe1—C8 153.91 (10)
C11—C6—Fe1 129.17 (13) C7—Fe1—C8 40.86 (8)
C8—C7—C6 108.17 (18) C2—Fe1—C8 119.13 (9)
C8—C7—Fe1 69.62 (11) C3—Fe1—C8 107.58 (9)
C6—C7—Fe1 69.92 (11) C4—Fe1—C9 108.10 (9)
C8—C7—H7 125.9 C5—Fe1—C9 126.82 (10)
C6—C7—H7 125.9 C1—Fe1—C9 164.34 (10)
Fe1—C7—H7 126.1 C7—Fe1—C9 68.65 (8)
C9—C8—C7 108.17 (18) C2—Fe1—C9 153.46 (9)
C9—C8—Fe1 69.80 (11) C3—Fe1—C9 119.42 (9)
C7—C8—Fe1 69.52 (11) C8—Fe1—C9 40.65 (8)
C9—C8—H8 125.9 C4—Fe1—C10 119.95 (9)
C7—C8—H8 125.9 C5—Fe1—C10 108.43 (9)
Fe1—C8—H8 126.3 C1—Fe1—C10 126.98 (9)
C8—C9—C10 108.12 (17) C7—Fe1—C10 68.71 (8)
C8—C9—Fe1 69.55 (12) C2—Fe1—C10 164.51 (9)
C10—C9—Fe1 69.69 (11) C3—Fe1—C10 153.85 (9)
C8—C9—H9 125.9 C8—Fe1—C10 68.49 (8)
C10—C9—H9 125.9 C9—Fe1—C10 40.66 (8)
Fe1—C9—H9 126.4 C4—Fe1—C6 154.05 (9)
C9—C10—C6 108.65 (17) C5—Fe1—C6 119.77 (9)
C9—C10—Fe1 69.65 (11) C1—Fe1—C6 107.79 (9)
C6—C10—Fe1 69.90 (11) C7—Fe1—C6 41.19 (8)
C9—C10—H10 125.7 C2—Fe1—C6 126.55 (9)
C6—C10—H10 125.7 C3—Fe1—C6 164.07 (9)
Fe1—C10—H10 126.4 C8—Fe1—C6 69.01 (8)
C12—C11—C16 117.44 (18) C9—Fe1—C6 68.82 (8)
C12—C11—C6 121.19 (17) C10—Fe1—C6 40.84 (8)
C5—C1—C2—C3 0.0 (2) C6—C7—Fe1—C9 −81.82 (13)
Fe1—C1—C2—C3 59.70 (15) C8—C7—Fe1—C10 81.31 (13)
C5—C1—C2—Fe1 −59.65 (15) C6—C7—Fe1—C10 −38.02 (12)
C1—C2—C3—C4 −0.2 (2) C8—C7—Fe1—C6 119.33 (18)
Fe1—C2—C3—C4 59.31 (15) C3—C2—Fe1—C4 −37.48 (14)
C1—C2—C3—Fe1 −59.50 (15) C1—C2—Fe1—C4 81.26 (16)
C2—C3—C4—C5 0.3 (2) C3—C2—Fe1—C5 −80.96 (15)
Fe1—C3—C4—C5 59.67 (15) C1—C2—Fe1—C5 37.78 (15)
C2—C3—C4—Fe1 −59.42 (15) C3—C2—Fe1—C1 −118.7 (2)
C3—C4—C5—C1 −0.2 (2) C3—C2—Fe1—C7 125.93 (14)
Fe1—C4—C5—C1 59.54 (15) C1—C2—Fe1—C7 −115.34 (14)
C3—C4—C5—Fe1 −59.76 (15) C1—C2—Fe1—C3 118.7 (2)
C2—C1—C5—C4 0.1 (2) C3—C2—Fe1—C8 83.02 (15)
Fe1—C1—C5—C4 −59.58 (15) C1—C2—Fe1—C8 −158.25 (14)
C2—C1—C5—Fe1 59.68 (15) C3—C2—Fe1—C9 48.9 (2)
C10—C6—C7—C8 −0.3 (2) C1—C2—Fe1—C9 167.63 (18)
C11—C6—C7—C8 176.84 (18) C3—C2—Fe1—C10 −160.9 (3)
Fe1—C6—C7—C8 −59.33 (14) C1—C2—Fe1—C10 −42.2 (4)
C10—C6—C7—Fe1 59.07 (13) C3—C2—Fe1—C6 167.43 (13)
C11—C6—C7—Fe1 −123.83 (19) C1—C2—Fe1—C6 −73.83 (16)
C6—C7—C8—C9 0.2 (2) C2—C3—Fe1—C4 119.3 (2)
Fe1—C7—C8—C9 −59.30 (14) C4—C3—Fe1—C5 −37.40 (14)
C6—C7—C8—Fe1 59.52 (14) C2—C3—Fe1—C5 81.89 (15)
C7—C8—C9—C10 −0.1 (2) C4—C3—Fe1—C1 −81.22 (16)
Fe1—C8—C9—C10 −59.22 (14) C2—C3—Fe1—C1 38.08 (14)
C7—C8—C9—Fe1 59.13 (14) C4—C3—Fe1—C7 167.43 (14)
C8—C9—C10—C6 −0.1 (2) C2—C3—Fe1—C7 −73.28 (16)
Fe1—C9—C10—C6 −59.20 (13) C4—C3—Fe1—C2 −119.3 (2)
C8—C9—C10—Fe1 59.13 (14) C4—C3—Fe1—C8 126.14 (14)
C7—C6—C10—C9 0.2 (2) C2—C3—Fe1—C8 −114.56 (14)
C11—C6—C10—C9 −176.92 (17) C4—C3—Fe1—C9 83.45 (16)
Fe1—C6—C10—C9 59.04 (13) C2—C3—Fe1—C9 −157.26 (13)
C7—C6—C10—Fe1 −58.84 (13) C4—C3—Fe1—C10 49.3 (3)
C11—C6—C10—Fe1 124.04 (19) C2—C3—Fe1—C10 168.58 (18)
C10—C6—C11—C12 −172.01 (19) C4—C3—Fe1—C6 −158.9 (3)
C7—C6—C11—C12 11.4 (3) C2—C3—Fe1—C6 −39.6 (4)
Fe1—C6—C11—C12 −80.3 (2) C9—C8—Fe1—C4 −74.51 (15)
C10—C6—C11—C16 11.2 (3) C7—C8—Fe1—C4 166.01 (12)
C7—C6—C11—C16 −165.41 (19) C9—C8—Fe1—C5 −44.4 (4)
Fe1—C6—C11—C16 102.9 (2) C7—C8—Fe1—C5 −163.9 (3)
C16—C11—C12—C13 1.3 (3) C9—C8—Fe1—C1 169.29 (18)
C6—C11—C12—C13 −175.68 (19) C7—C8—Fe1—C1 49.8 (2)
C11—C12—C13—C14 −0.3 (3) C9—C8—Fe1—C7 119.48 (17)
C12—C13—C14—O1 178.6 (2) C9—C8—Fe1—C2 −157.37 (12)
C12—C13—C14—C15 −1.1 (3) C7—C8—Fe1—C2 83.15 (14)
O1—C14—C15—C16 −178.4 (2) C9—C8—Fe1—C3 −114.96 (13)
C13—C14—C15—C16 1.3 (3) C7—C8—Fe1—C3 125.56 (13)
C14—C15—C16—C11 −0.3 (3) C7—C8—Fe1—C9 −119.48 (17)
C12—C11—C16—C15 −1.0 (3) C9—C8—Fe1—C10 37.57 (12)
C6—C11—C16—C15 175.96 (19) C7—C8—Fe1—C10 −81.91 (13)
C3—C4—Fe1—C5 119.37 (19) C9—C8—Fe1—C6 81.54 (12)
C5—C4—Fe1—C1 −37.69 (14) C7—C8—Fe1—C6 −37.94 (12)
C3—C4—Fe1—C1 81.68 (15) C8—C9—Fe1—C4 125.35 (13)
C5—C4—Fe1—C7 −158.1 (3) C10—C9—Fe1—C4 −115.18 (13)
C3—C4—Fe1—C7 −38.8 (4) C8—C9—Fe1—C5 165.92 (13)
C5—C4—Fe1—C2 −81.80 (15) C10—C9—Fe1—C5 −74.61 (15)
C3—C4—Fe1—C2 37.57 (13) C8—C9—Fe1—C1 −162.4 (3)
C5—C4—Fe1—C3 −119.37 (19) C10—C9—Fe1—C1 −42.9 (4)
C5—C4—Fe1—C8 167.52 (13) C8—C9—Fe1—C7 −37.69 (12)
C3—C4—Fe1—C8 −73.11 (16) C10—C9—Fe1—C7 81.77 (12)
C5—C4—Fe1—C9 126.18 (14) C8—C9—Fe1—C2 48.8 (2)
C3—C4—Fe1—C9 −114.44 (14) C10—C9—Fe1—C2 168.24 (17)
C5—C4—Fe1—C10 83.30 (15) C8—C9—Fe1—C3 82.85 (14)
C3—C4—Fe1—C10 −157.33 (13) C10—C9—Fe1—C3 −157.68 (12)
C5—C4—Fe1—C6 47.6 (3) C10—C9—Fe1—C8 119.47 (16)
C3—C4—Fe1—C6 166.92 (17) C8—C9—Fe1—C10 −119.47 (16)
C1—C5—Fe1—C4 −119.21 (19) C8—C9—Fe1—C6 −82.04 (12)
C4—C5—Fe1—C1 119.21 (19) C10—C9—Fe1—C6 37.43 (11)
C4—C5—Fe1—C7 166.05 (18) C9—C10—Fe1—C4 83.08 (15)
C1—C5—Fe1—C7 46.8 (3) C6—C10—Fe1—C4 −156.99 (13)
C4—C5—Fe1—C2 81.20 (14) C9—C10—Fe1—C5 125.56 (14)
C1—C5—Fe1—C2 −38.01 (14) C6—C10—Fe1—C5 −114.51 (14)
C4—C5—Fe1—C3 37.48 (13) C9—C10—Fe1—C1 166.69 (13)
C1—C5—Fe1—C3 −81.73 (15) C6—C10—Fe1—C1 −73.37 (15)
C4—C5—Fe1—C8 −38.7 (4) C9—C10—Fe1—C7 −81.60 (13)
C1—C5—Fe1—C8 −157.9 (3) C6—C10—Fe1—C7 38.34 (11)
C4—C5—Fe1—C9 −73.42 (16) C9—C10—Fe1—C2 −160.1 (3)
C1—C5—Fe1—C9 167.37 (13) C6—C10—Fe1—C2 −40.1 (4)
C4—C5—Fe1—C10 −114.89 (14) C9—C10—Fe1—C3 48.6 (2)
C1—C5—Fe1—C10 125.90 (14) C6—C10—Fe1—C3 168.58 (18)
C4—C5—Fe1—C6 −158.16 (13) C9—C10—Fe1—C8 −37.57 (12)
C1—C5—Fe1—C6 82.62 (15) C6—C10—Fe1—C8 82.37 (12)
C5—C1—Fe1—C4 37.44 (14) C6—C10—Fe1—C9 119.93 (16)
C2—C1—Fe1—C4 −81.38 (15) C9—C10—Fe1—C6 −119.93 (16)
C2—C1—Fe1—C5 −118.8 (2) C10—C6—Fe1—C4 50.7 (2)
C5—C1—Fe1—C7 −158.69 (14) C7—C6—Fe1—C4 169.36 (19)
C2—C1—Fe1—C7 82.48 (15) C11—C6—Fe1—C4 −69.7 (3)
C5—C1—Fe1—C2 118.8 (2) C10—C6—Fe1—C5 83.99 (15)
C5—C1—Fe1—C3 81.05 (15) C7—C6—Fe1—C5 −157.38 (13)
C2—C1—Fe1—C3 −37.77 (14) C11—C6—Fe1—C5 −36.5 (2)
C5—C1—Fe1—C8 166.23 (18) C10—C6—Fe1—C1 126.50 (13)
C2—C1—Fe1—C8 47.4 (3) C7—C6—Fe1—C1 −114.87 (13)
C5—C1—Fe1—C9 −40.4 (4) C11—C6—Fe1—C1 6.1 (2)
C2—C1—Fe1—C9 −159.2 (3) C10—C6—Fe1—C7 −118.63 (16)
C5—C1—Fe1—C10 −74.15 (17) C11—C6—Fe1—C7 120.9 (2)
C2—C1—Fe1—C10 167.03 (12) C10—C6—Fe1—C2 167.63 (13)
C5—C1—Fe1—C6 −115.30 (14) C7—C6—Fe1—C2 −73.74 (15)
C2—C1—Fe1—C6 125.87 (14) C11—C6—Fe1—C2 47.2 (2)
C8—C7—Fe1—C4 −43.9 (4) C10—C6—Fe1—C3 −161.5 (3)
C6—C7—Fe1—C4 −163.3 (3) C7—C6—Fe1—C3 −42.8 (3)
C8—C7—Fe1—C5 169.75 (19) C11—C6—Fe1—C3 78.1 (4)
C6—C7—Fe1—C5 50.4 (3) C10—C6—Fe1—C8 −80.98 (13)
C8—C7—Fe1—C1 −157.28 (13) C7—C6—Fe1—C8 37.65 (12)
C6—C7—Fe1—C1 83.39 (14) C11—C6—Fe1—C8 158.6 (2)
C8—C7—Fe1—C2 −114.61 (13) C10—C6—Fe1—C9 −37.27 (12)
C6—C7—Fe1—C2 126.06 (13) C7—C6—Fe1—C9 81.36 (13)
C8—C7—Fe1—C3 −74.04 (15) C11—C6—Fe1—C9 −157.7 (2)
C6—C7—Fe1—C3 166.62 (12) C7—C6—Fe1—C10 118.63 (16)
C6—C7—Fe1—C8 −119.33 (18) C11—C6—Fe1—C10 −120.4 (2)
C8—C7—Fe1—C9 37.51 (12)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C1—H1···O1i 0.95 2.55 3.308 (3) 137
O1—H1A···Cg3ii 0.84 2.66 3.281 (2) 141
C2—H2···Cg1iii 0.95 2.90 3.766 (2) 155

Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) −x, y+1/2, −z+1/2; (iii) x−1, −y−1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2401).

References

  1. Bruker (2005). APEX2, SAINT-NT and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  3. Foxman, B. M. & Rosenblum, M. (1993). Organometallics, 12, 4805–4809.
  4. Guillaneux, D. & Kagan, H. B. (1995). J. Org. Chem.60, 2502–2505.
  5. Imrie, C., Engelbrecht, P., Loubser, C., McCleland, C. W., Nyamori, V. O., Bogadi, R., Levendis, D. C., Tolom, N., Rooyen, J. & Williams, N. (2002). J. Organomet. Chem.645, 65–81.
  6. Imrie, C., Loubser, C., Engelbrecht, P., McCleland, C. W. & Zheng, Y. (2003). J. Organomet. Chem.665, 48–64.
  7. Knapp, R. & Rehahn, M. (1993). J. Organomet. Chem.452, 235–240.
  8. Lin, J. T., Sun, S.-S., Wu, J. J., Lee, L., Lin, K.-J. & Huang, Y. F. (1995). Inorg. Chem.34, 2323–2333.
  9. Nyamori, V. O. & Bala, M. D. (2008a). Acta Cryst. E64, m1376. [DOI] [PMC free article] [PubMed]
  10. Nyamori, V. O. & Bala, M. D. (2008b). Acta Cryst. E64, m1451. [DOI] [PMC free article] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Togni, A. & Hayashi, T. (1995). Ferrocene, Homogeneous Catalysis, Organic Synthesis, Material Science Weinheim: VCH.
  13. Tsukazaki, M., Tinkl, M., Roglans, A., Chapell, B. J., Taylor, N. J. & Snieckus, V. (1996). J. Am. Chem. Soc.118, 685–686.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808039524/dn2401sup1.cif

e-64-m1630-sup1.cif (24.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808039524/dn2401Isup2.hkl

e-64-m1630-Isup2.hkl (146.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES