Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Nov 20;64(Pt 12):o2387. doi: 10.1107/S1600536808037446

(E)-1-(1,3-Benzodioxol-5-yl)-3-(3-bromo­phen­yl)prop-2-en-1-one

Hongqi Li a,*, T V Sreevidya b, B Narayana b, B K Sarojini c, H S Yathirajan d
PMCID: PMC2960124  PMID: 21581358

Abstract

In the title compound, C16H11BrO3, the mol­ecules adopt an E configuration with respect to the C=C double bond of the propenone unit. The 13 non-H atoms of the benzodioxole and propenone units are approximately coplanar (r.m.s. deviation = 0.027 Å) and the bromo­benzene ring plane forms a dihedral angle of 10.8 (1)° to this plane. The structure is layered, with the mol­ecules forming a herring-bone arrangement within each layer.

Related literature

For the use of chalcones as starting materials in the preparation of various mol­ecules including fused heterocyclic compounds, see: Insuasty et al. (1997). For related structures, see: Butcher et al. (2007a ,b ,c ); Low et al. (2002).graphic file with name e-64-o2387-scheme1.jpg

Experimental

Crystal data

  • C16H11BrO3

  • M r = 331.16

  • Monoclinic, Inline graphic

  • a = 14.237 (3) Å

  • b = 8.1811 (17) Å

  • c = 11.717 (2) Å

  • β = 100.658 (3)°

  • V = 1341.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.07 mm−1

  • T = 273 (2) K

  • 0.12 × 0.10 × 0.06 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.710, T max = 0.837

  • 6752 measured reflections

  • 2362 independent reflections

  • 1869 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026

  • wR(F 2) = 0.073

  • S = 1.04

  • 2362 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808037446/bi2315sup1.cif

e-64-o2387-sup1.cif (17.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808037446/bi2315Isup2.hkl

e-64-o2387-Isup2.hkl (116.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

TVS thanks Mangalore University for research facilities.

supplementary crystallographic information

Comment

Chalcones have been widely used as starting materials in preparation of various molecules including fused heterocyclic compounds (Insuasty et al., 1997). Chalcones are also finding application as organic nonlinear optical (NLO) materials because of their SHG conversion efficiency. The crystal structures of some benzodioxol- and bromo-substituted chalcones have been studied (Butcher et al., 2007a,b,c). In continuation of this theme, and also owing to the general importance of these flavanoid analogues, we report herein the synthesis and crystal structure of a new chalcone, namely (2E)-1-(1,3-benzodioxol-5-yl)- 3-(3-bromophenyl)prop-2-en-1-one.

Experimental

To a mixture of 1-(1,3-benzodioxol-5-yl)ethanone (1.64 g, 0.01 mol) and 3-bromobenzaldehyde (1.86 g, 0.01 mol) in 25 ml of ethanol, 50% KOH(aq) was added. The mixture was stirred for one hour at room temperature then the precipitate was collected by filtration and purified by recrystallization from ethanol. Single crystals were grown from toluene by slow evaporation. Yield: 82 %, m.p. 393–395 K. Elemental analysis calculated: C 58.03, H 3.35%; found: C 58.12, H 3.21%.

Refinement

H atoms were placed at calculated positions and refined using a riding model, with C—H = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level for non-H atoms.

Crystal data

C16H11BrO3 F000 = 664
Mr = 331.16 Dx = 1.640 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3007 reflections
a = 14.237 (3) Å θ = 2.9–28.0º
b = 8.1811 (17) Å µ = 3.07 mm1
c = 11.717 (2) Å T = 273 (2) K
β = 100.658 (3)º Block, colorless
V = 1341.1 (5) Å3 0.12 × 0.10 × 0.06 mm
Z = 4

Data collection

Bruker SMART APEXII CCD diffractometer 2362 independent reflections
Radiation source: fine-focus sealed tube 1869 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.021
T = 273(2) K θmax = 25.0º
φ and ω scans θmin = 2.9º
Absorption correction: multi-scan(SADABS; Bruker, 2001) h = −16→16
Tmin = 0.710, Tmax = 0.837 k = −9→9
6752 measured reflections l = −13→9

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.026   w = 1/[σ2(Fo2) + (0.0383P)2 + 0.3973P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.073 (Δ/σ)max = 0.001
S = 1.04 Δρmax = 0.35 e Å3
2362 reflections Δρmin = −0.29 e Å3
182 parameters Extinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0063 (7)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.489230 (17) 1.25202 (3) 0.29468 (2) 0.05206 (13)
O1 0.93644 (14) 0.7277 (2) 0.27018 (16) 0.0622 (6)
O2 1.29937 (12) 0.4896 (2) 0.61302 (13) 0.0541 (5)
O3 1.26700 (12) 0.4663 (3) 0.41361 (14) 0.0599 (5)
C1 0.58905 (15) 1.1426 (3) 0.39752 (18) 0.0360 (5)
C2 0.65910 (15) 1.0623 (3) 0.35360 (18) 0.0368 (5)
H2 0.6575 1.0608 0.2739 0.044*
C3 0.73304 (16) 0.9827 (3) 0.42861 (18) 0.0370 (5)
C4 0.73303 (17) 0.9887 (3) 0.54787 (19) 0.0433 (6)
H4 0.7819 0.9381 0.5994 0.052*
C5 0.66100 (17) 1.0691 (3) 0.58983 (19) 0.0455 (6)
H5 0.6615 1.0709 0.6693 0.055*
C6 0.58831 (16) 1.1468 (3) 0.51479 (19) 0.0427 (6)
H6 0.5399 1.2009 0.5430 0.051*
C7 0.80648 (16) 0.8953 (3) 0.3795 (2) 0.0424 (6)
H7 0.7946 0.8819 0.2993 0.051*
C8 0.88707 (17) 0.8340 (3) 0.4361 (2) 0.0464 (6)
H8 0.9018 0.8455 0.5164 0.056*
C9 0.95504 (19) 0.7472 (3) 0.3760 (2) 0.0431 (6)
C10 1.04589 (16) 0.6841 (3) 0.44539 (18) 0.0355 (5)
C11 1.11052 (16) 0.6051 (3) 0.38609 (19) 0.0427 (6)
H11 1.0972 0.5928 0.3058 0.051*
C12 1.19286 (16) 0.5475 (3) 0.45046 (18) 0.0386 (5)
C13 1.21294 (16) 0.5615 (3) 0.56996 (19) 0.0394 (5)
C14 1.15146 (17) 0.6343 (3) 0.6304 (2) 0.0493 (6)
H14 1.1650 0.6418 0.7109 0.059*
C15 1.06741 (18) 0.6969 (3) 0.5658 (2) 0.0418 (6)
H15 1.0242 0.7489 0.6042 0.050*
C16 1.33689 (17) 0.4360 (3) 0.5143 (2) 0.0473 (6)
H16A 1.3952 0.4951 0.5098 0.057*
H16B 1.3516 0.3203 0.5208 0.057*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.03784 (17) 0.0701 (2) 0.04670 (18) 0.00990 (12) 0.00367 (11) 0.00788 (12)
O1 0.0524 (12) 0.0986 (16) 0.0368 (11) 0.0217 (10) 0.0111 (8) 0.0093 (9)
O2 0.0400 (10) 0.0774 (12) 0.0419 (9) 0.0128 (9) −0.0005 (7) −0.0046 (9)
O3 0.0465 (10) 0.0928 (14) 0.0404 (9) 0.0245 (10) 0.0086 (8) −0.0085 (9)
C1 0.0279 (11) 0.0424 (13) 0.0372 (12) −0.0039 (9) 0.0045 (9) 0.0031 (9)
C2 0.0360 (12) 0.0434 (13) 0.0317 (11) −0.0044 (10) 0.0080 (9) 0.0011 (9)
C3 0.0351 (12) 0.0400 (12) 0.0361 (12) −0.0047 (10) 0.0069 (9) 0.0021 (10)
C4 0.0381 (13) 0.0520 (14) 0.0383 (12) 0.0012 (11) 0.0034 (10) 0.0063 (11)
C5 0.0462 (14) 0.0609 (16) 0.0301 (12) −0.0019 (12) 0.0090 (10) −0.0019 (11)
C6 0.0352 (13) 0.0548 (15) 0.0403 (13) 0.0008 (11) 0.0128 (10) −0.0035 (11)
C7 0.0419 (14) 0.0489 (14) 0.0382 (13) 0.0028 (11) 0.0127 (10) 0.0068 (10)
C8 0.0439 (14) 0.0554 (15) 0.0406 (13) 0.0076 (12) 0.0101 (11) −0.0007 (11)
C9 0.0440 (14) 0.0498 (14) 0.0375 (14) 0.0025 (11) 0.0129 (10) 0.0058 (10)
C10 0.0352 (12) 0.0384 (11) 0.0347 (12) −0.0018 (10) 0.0113 (9) 0.0034 (10)
C11 0.0437 (14) 0.0549 (15) 0.0300 (12) 0.0041 (11) 0.0081 (10) 0.0013 (10)
C12 0.0352 (12) 0.0470 (13) 0.0356 (12) 0.0019 (10) 0.0115 (10) −0.0016 (10)
C13 0.0329 (12) 0.0474 (13) 0.0367 (12) −0.0029 (10) 0.0031 (9) −0.0013 (10)
C14 0.0473 (15) 0.0695 (17) 0.0300 (12) 0.0052 (13) 0.0042 (11) −0.0067 (11)
C15 0.0412 (14) 0.0499 (13) 0.0369 (13) 0.0013 (11) 0.0142 (10) −0.0034 (10)
C16 0.0366 (13) 0.0539 (15) 0.0504 (14) 0.0058 (11) 0.0056 (11) −0.0028 (11)

Geometric parameters (Å, °)

Br1—C1 1.908 (2) C7—C8 1.314 (3)
O1—C9 1.230 (3) C7—H7 0.930
O2—C13 1.373 (3) C8—C9 1.479 (3)
O2—C16 1.429 (3) C8—H8 0.930
O3—C12 1.382 (3) C9—C10 1.487 (3)
O3—C16 1.418 (3) C10—C15 1.391 (3)
C1—C2 1.371 (3) C10—C11 1.408 (3)
C1—C6 1.376 (3) C11—C12 1.356 (3)
C2—C3 1.401 (3) C11—H11 0.930
C2—H2 0.930 C12—C13 1.381 (3)
C3—C4 1.398 (3) C13—C14 1.360 (3)
C3—C7 1.469 (3) C14—C15 1.390 (3)
C4—C5 1.383 (3) C14—H14 0.930
C4—H4 0.930 C15—H15 0.930
C5—C6 1.383 (3) C16—H16A 0.970
C5—H5 0.930 C16—H16B 0.970
C6—H6 0.930
C13—O2—C16 106.13 (17) O1—C9—C10 120.6 (2)
C12—O3—C16 106.43 (17) C8—C9—C10 119.1 (2)
C2—C1—C6 121.8 (2) C15—C10—C11 119.6 (2)
C2—C1—Br1 119.75 (16) C15—C10—C9 122.3 (2)
C6—C1—Br1 118.45 (17) C11—C10—C9 118.13 (19)
C1—C2—C3 120.1 (2) C12—C11—C10 117.5 (2)
C1—C2—H2 119.9 C12—C11—H11 121.3
C3—C2—H2 119.9 C10—C11—H11 121.3
C4—C3—C2 118.1 (2) C11—C12—C13 122.1 (2)
C4—C3—C7 122.7 (2) C11—C12—O3 128.7 (2)
C2—C3—C7 119.15 (19) C13—C12—O3 109.26 (19)
C5—C4—C3 120.6 (2) C14—C13—O2 128.0 (2)
C5—C4—H4 119.7 C14—C13—C12 122.1 (2)
C3—C4—H4 119.7 O2—C13—C12 109.89 (19)
C6—C5—C4 120.7 (2) C13—C14—C15 116.7 (2)
C6—C5—H5 119.7 C13—C14—H14 121.6
C4—C5—H5 119.7 C15—C14—H14 121.6
C1—C6—C5 118.7 (2) C14—C15—C10 122.0 (2)
C1—C6—H6 120.7 C14—C15—H15 119.0
C5—C6—H6 120.7 C10—C15—H15 119.0
C8—C7—C3 127.3 (2) O3—C16—O2 108.07 (18)
C8—C7—H7 116.3 O3—C16—H16A 110.1
C3—C7—H7 116.3 O2—C16—H16A 110.1
C7—C8—C9 122.0 (2) O3—C16—H16B 110.1
C7—C8—H8 119.0 O2—C16—H16B 110.1
C9—C8—H8 119.0 H16A—C16—H16B 108.4
O1—C9—C8 120.3 (2)
C6—C1—C2—C3 −0.5 (3) C15—C10—C11—C12 −1.4 (3)
Br1—C1—C2—C3 179.54 (16) C9—C10—C11—C12 −179.7 (2)
C1—C2—C3—C4 −0.3 (3) C10—C11—C12—C13 1.4 (4)
C1—C2—C3—C7 179.0 (2) C10—C11—C12—O3 179.9 (2)
C2—C3—C4—C5 1.0 (4) C16—O3—C12—C11 178.7 (2)
C7—C3—C4—C5 −178.4 (2) C16—O3—C12—C13 −2.6 (3)
C3—C4—C5—C6 −0.8 (4) C16—O2—C13—C14 −178.3 (3)
C2—C1—C6—C5 0.7 (3) C16—O2—C13—C12 3.2 (3)
Br1—C1—C6—C5 −179.37 (17) C11—C12—C13—C14 −0.2 (4)
C4—C5—C6—C1 0.0 (4) O3—C12—C13—C14 −179.0 (2)
C4—C3—C7—C8 −10.9 (4) C11—C12—C13—O2 178.4 (2)
C2—C3—C7—C8 169.8 (2) O3—C12—C13—O2 −0.4 (3)
C3—C7—C8—C9 179.6 (2) O2—C13—C14—C15 −179.3 (2)
C7—C8—C9—O1 −1.4 (4) C12—C13—C14—C15 −1.0 (4)
C7—C8—C9—C10 178.7 (2) C13—C14—C15—C10 1.0 (4)
O1—C9—C10—C15 −176.9 (2) C11—C10—C15—C14 0.2 (4)
C8—C9—C10—C15 3.1 (3) C9—C10—C15—C14 178.5 (2)
O1—C9—C10—C11 1.4 (4) C12—O3—C16—O2 4.5 (3)
C8—C9—C10—C11 −178.6 (2) C13—O2—C16—O3 −4.7 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2315).

References

  1. Bruker (2005). SADABS, SAINT and APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Butcher, R. J., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2007a). Acta Cryst. E63, o1005–o1007.
  3. Butcher, R. J., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2007b). Acta Cryst. E63, o1201–o1203.
  4. Butcher, R. J., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2007c). Acta Cryst. E63, o1430–o1431.
  5. Insuasty, B., Quiroga, J. & Meier, H. (1997). Trends Heterocycl. Chem.5, 83–89.
  6. Low, J. N., Cobo, J., Nogueras, M., Sánchez, A., Albornoz, A. & Abonia, R. (2002). Acta Cryst. C58, o42–o45. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808037446/bi2315sup1.cif

e-64-o2387-sup1.cif (17.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808037446/bi2315Isup2.hkl

e-64-o2387-Isup2.hkl (116.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES