Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Nov 13;64(Pt 12):o2337. doi: 10.1107/S1600536808027141

4-(2-Chloro­ethoxy)phthalonitrile

Xin Huang a, Mingfu Li a, Xiangmei Lin a, Hongjun Chen a, Shuifang Zhu a,*
PMCID: PMC2960126  PMID: 21581312

Abstract

In the title compound, C10H7ClN2O, the O and both C atoms of the chloroethoxy group are disordered over two positions, the occupancy factor of the major disorder component refining to 0.54 (2).

Related literature

For background to the use of phthalonitriles and phthalocyanines, see: McKeown (1998); Leznoff & Lever (1989–1996); Moser & Thomas (1983). For related structures, see: Nesi et al. (1998); Dinçer et al. (2004); Ocak et al. (2004).graphic file with name e-64-o2337-scheme1.jpg

Experimental

Crystal data

  • C10H7ClN2O

  • M r = 206.63

  • Monoclinic, Inline graphic

  • a = 4.9021 (8) Å

  • b = 19.014 (3) Å

  • c = 10.640 (3) Å

  • β = 97.123 (18)°

  • V = 984.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 295 (2) K

  • 0.6 × 0.2 × 0.1 mm

Data collection

  • Bruker P4 diffractometer

  • Absorption correction: none

  • 2496 measured reflections

  • 1741 independent reflections

  • 890 reflections with I > 2σ(I)

  • R int = 0.062

  • 3 standard reflections every 97 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.065

  • wR(F 2) = 0.240

  • S = 1.08

  • 1741 reflections

  • 155 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: XSCANS (Bruker, 1997); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, huangx-4. DOI: 10.1107/S1600536808027141/sj2530sup1.cif

e-64-o2337-sup1.cif (15.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808027141/sj2530Isup2.hkl

e-64-o2337-Isup2.hkl (85.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful for the support of the National Key Project of Scientific and Technical Supporting Programs funded by the Ministry of Science and Technology of China during the 11th Five-Year Plan (No. 2006BAK10B06).

supplementary crystallographic information

Comment

Substituted phthalonitriles are generally used for preparing peripherally substituted symmetrical and unsymmetrical phthalocyanine complexes and subphthalocyanines (McKeown, 1998; Leznoff & Lever, 1989–1996). Phthalocyanines were first developed as dyes and pigments (Moser & Thomas, 1983). Over last few years, a great deal of interest has been focused on the synthesis of phthalocyanine derivatives due to their applications in fields, such as chemical sensors, electrochromism, batteries, semiconducting materials, liquid crystals, non-linear optics and photodynamic therapy (PDT) (Leznoff & Lever, 1989–1996). We report here the structure of the title phthalonitrile derivative, (I), (Fig 1).

The title compound, C10H7ClN2O, contains a pathalonitrile ring and 2-chloroethoxy substituent in the 4-position. The oxygen and both carbon atoms of this substituent are disordered over two positions. The occupancy factor of the major disorder component refined to 0.54 (2). The C1≡N1 and C2≡N2 bond distances are both 1.138 (4) °, consistent with N≡C triple-bond character, They are also in good agreement with literature values (Nesi et al., 1998; Dinçer et al., 2004; Ocak et al., 2004).

Experimental

2-chloroethanol (1.6 g, 20 mmol) and 3-nitrophthalonitrile (1.73 g, 10 mmol) were dissolved in dry dimethylformamide (50 ml). After stirring for 1 h at room temperature, dry fine-powdered potassium carbonate (2.76 g, 20 mmol) was added portionwise over a period of 2 h with stirring. The reaction mixture was stirred for 36 h at room temperature and poured into ice-water (300 g). The product was filtered off and washed with water until the filtrate was neutral. Recrystallization from toluene gave a white product (yield 1.6 g, 77.4%). Single crystals were obtained from ethanol at room temperature by slow evaporation. Spectroscopic analysis: IR (KBr, ν cm-1): 2963, 2868, 2237, 2229; MS(ESI, CH3OH): m/z =207.2 [M+H]+; Anal. Found: C,58.45; H, 3.72; N, 13.23%. Calcd for C18H16N2O: C, 58.13; H, 3.41; N, 13.56%

Refinement

The oxygen and both carbon atoms of the chloroethoxy group were disordered over two positions. The occupancy factor of the major disorder component refined to 0.52 (2). All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C) for aromatic and 0.96 Å, Uiso =1.2eq (C) for CH2 atoms.

Figures

Fig. 1.

Fig. 1.

The structure of the title compound, (I), showing 35% probability ellipsoids and the atom numbering scheme. For clarity only atoms of the major disorder component are shown.

Fig. 2.

Fig. 2.

The molecular packing of (I) viewed along the a axis. H atoms and atoms of the minor disorder component have been omitted.

Crystal data

C10H7ClN2O F000 = 424
Mr = 206.63 Dx = 1.395 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 43 reflections
a = 4.9021 (8) Å θ = 4.9–12.4º
b = 19.014 (3) Å µ = 0.35 mm1
c = 10.640 (3) Å T = 295 (2) K
β = 97.123 (18)º Prism, colorless
V = 984.1 (3) Å3 0.6 × 0.2 × 0.1 mm
Z = 4

Data collection

Bruker P4 diffractometer Rint = 0.062
Radiation source: fine-focus sealed tube θmax = 25.1º
Monochromator: graphite θmin = 2.1º
T = 295(2) K h = −5→1
ω scans k = −1→22
Absorption correction: none l = −12→12
2496 measured reflections 3 standard reflections
1741 independent reflections every 97 reflections
890 reflections with I > 2σ(I) intensity decay: none

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065 H-atom parameters constrained
wR(F2) = 0.240   w = 1/[σ2(Fo2) + (0.1087P)2 + 0.4256P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max < 0.001
1741 reflections Δρmax = 0.27 e Å3
155 parameters Δρmin = −0.34 e Å3
3 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cl1 0.5427 (3) 0.44767 (7) 0.83121 (16) 0.1010 (7)
N1 0.8645 (10) 0.8557 (2) 0.4503 (5) 0.1033 (15)
N2 1.0442 (9) 0.6789 (2) 0.3064 (4) 0.0871 (13)
C1 0.7656 (10) 0.8069 (2) 0.4867 (5) 0.0759 (13)
C2 0.8952 (9) 0.6778 (2) 0.3795 (5) 0.0689 (12)
C3 0.6468 (8) 0.7433 (2) 0.5291 (4) 0.0662 (11)
C4 0.7097 (8) 0.6785 (2) 0.4738 (4) 0.0621 (11)
C5 0.5977 (8) 0.6167 (2) 0.5135 (4) 0.0707 (12)
H5A 0.6393 0.5738 0.4785 0.085*
C6 0.4228 (9) 0.6196 (2) 0.6063 (5) 0.0761 (13)
C7 0.3573 (9) 0.6827 (3) 0.6596 (4) 0.0755 (13)
H7A 0.2388 0.6837 0.7214 0.091*
C8 0.4698 (9) 0.7442 (2) 0.6201 (5) 0.0717 (12)
H8A 0.4254 0.7869 0.6553 0.086*
O1 0.297 (3) 0.5510 (8) 0.6161 (17) 0.084 (4) 0.54 (2)
C9 0.134 (4) 0.5396 (9) 0.719 (2) 0.098 (6) 0.54 (2)
H9A 0.0513 0.5837 0.7401 0.118* 0.54 (2)
H9B −0.0127 0.5068 0.6922 0.118* 0.54 (2)
C10 0.294 (4) 0.5130 (10) 0.8277 (15) 0.101 (6) 0.54 (2)
H10A 0.1641 0.4968 0.8830 0.121* 0.54 (2)
H10B 0.3863 0.5534 0.8694 0.121* 0.54 (2)
O1' 0.352 (4) 0.5616 (10) 0.6669 (13) 0.080 (4) 0.46 (2)
C9' 0.255 (3) 0.5600 (6) 0.7816 (13) 0.059 (4) 0.46 (2)
H9C 0.0815 0.5851 0.7771 0.071* 0.46 (2)
H9D 0.3849 0.5819 0.8458 0.071* 0.46 (2)
C10' 0.2133 (14) 0.4813 (7) 0.8148 (17) 0.070 (4) 0.46 (2)
H10C 0.0970 0.4576 0.7474 0.085* 0.46 (2)
H10D 0.1318 0.4767 0.8930 0.085* 0.46 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0865 (10) 0.0857 (9) 0.1351 (14) 0.0058 (7) 0.0306 (8) 0.0097 (8)
N1 0.114 (4) 0.077 (3) 0.121 (4) −0.011 (3) 0.024 (3) 0.005 (3)
N2 0.091 (3) 0.088 (3) 0.090 (3) 0.007 (2) 0.041 (2) 0.009 (2)
C1 0.074 (3) 0.070 (3) 0.084 (3) −0.001 (2) 0.012 (2) −0.008 (3)
C2 0.075 (3) 0.058 (2) 0.076 (3) 0.001 (2) 0.021 (2) 0.001 (2)
C3 0.064 (2) 0.061 (2) 0.074 (3) 0.0028 (19) 0.008 (2) 0.003 (2)
C4 0.060 (2) 0.062 (2) 0.066 (3) 0.0064 (19) 0.0145 (19) 0.003 (2)
C5 0.073 (3) 0.059 (2) 0.083 (3) 0.008 (2) 0.023 (2) 0.006 (2)
C6 0.079 (3) 0.068 (3) 0.086 (3) 0.008 (2) 0.027 (2) 0.017 (2)
C7 0.072 (3) 0.091 (3) 0.066 (3) 0.019 (2) 0.019 (2) 0.002 (2)
C8 0.070 (3) 0.070 (3) 0.076 (3) 0.009 (2) 0.010 (2) −0.002 (2)
O1 0.115 (8) 0.067 (6) 0.083 (9) 0.010 (5) 0.062 (7) 0.012 (6)
C9 0.088 (9) 0.096 (9) 0.120 (13) 0.007 (7) 0.053 (9) 0.033 (8)
C10 0.073 (8) 0.141 (15) 0.089 (8) 0.017 (10) 0.015 (7) 0.041 (10)
O1' 0.125 (8) 0.056 (5) 0.066 (8) −0.004 (5) 0.041 (8) −0.004 (6)
C9' 0.046 (6) 0.063 (7) 0.071 (8) −0.009 (5) 0.017 (6) −0.018 (5)
C10' 0.051 (6) 0.056 (7) 0.109 (10) −0.020 (5) 0.029 (6) 0.009 (6)

Geometric parameters (Å, °)

Cl1—C10' 1.726 (5) C7—H7A 0.9300
Cl1—C10 1.738 (5) C8—H8A 0.9300
N1—C1 1.137 (6) O1—C9 1.450 (16)
N2—C2 1.132 (5) C9—C10 1.41 (3)
C1—C3 1.439 (6) C9—H9A 0.9700
C2—C4 1.435 (6) C9—H9B 0.9700
C3—C8 1.378 (6) C10—H10A 0.9700
C3—C4 1.416 (5) C10—H10B 0.9700
C4—C5 1.386 (6) O1'—C9' 1.366 (5)
C5—C6 1.386 (6) C9'—C10' 1.556 (19)
C5—H5A 0.9300 C9'—H9C 0.9700
C6—O1' 1.344 (17) C9'—H9D 0.9700
C6—C7 1.382 (6) C10'—H10C 0.9700
C6—O1 1.452 (15) C10'—H10D 0.9700
C7—C8 1.381 (6)
N1—C1—C3 177.5 (5) C10—C9—H9A 109.3
N2—C2—C4 178.3 (5) O1—C9—H9A 109.3
C8—C3—C4 119.5 (4) C10—C9—H9B 109.3
C8—C3—C1 121.6 (4) O1—C9—H9B 109.3
C4—C3—C1 118.9 (4) H9A—C9—H9B 107.9
C5—C4—C3 119.8 (4) C9—C10—Cl1 126.4 (13)
C5—C4—C2 121.0 (4) C9—C10—H10A 105.7
C3—C4—C2 119.2 (4) Cl1—C10—H10A 105.7
C4—C5—C6 119.1 (4) C9—C10—H10B 105.7
C4—C5—H5A 120.4 Cl1—C10—H10B 105.7
C6—C5—H5A 120.4 H10A—C10—H10B 106.2
O1'—C6—C7 115.4 (7) C6—O1'—C9' 125.9 (13)
O1'—C6—C5 121.8 (8) O1'—C9'—C10' 107.1 (12)
C7—C6—C5 121.5 (4) O1'—C9'—H9C 110.3
C7—C6—O1 128.9 (7) C10'—C9'—H9C 110.3
C5—C6—O1 108.7 (7) O1'—C9'—H9D 110.3
C8—C7—C6 119.2 (4) C10'—C9'—H9D 110.3
C8—C7—H7A 120.4 H9C—C9'—H9D 108.5
C6—C7—H7A 120.4 C9'—C10'—Cl1 103.4 (9)
C3—C8—C7 120.9 (4) C9'—C10'—H10C 111.1
C3—C8—H8A 119.6 Cl1—C10'—H10C 111.1
C7—C8—H8A 119.6 C9'—C10'—H10D 111.1
C6—O1—C9 117.8 (11) Cl1—C10'—H10D 111.1
C10—C9—O1 111.8 (13) H10C—C10'—H10D 109.0

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2530).

References

  1. Bruker (1997). XSCANS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Dinçer, M., Ağar, A., Akdemir, N., Ağar, E. & Özdemir, N. (2004). Acta Cryst. E60, o79–o80.
  3. Leznoff, C. C. & Lever, A. B. P. (1989–1996). Phthalocyanines: Properties and Applications, Vols. 1, 2, 3 and 4. Weinheim/New York: VCH Publishers Inc.
  4. McKeown, N. B. (1998). Phthalocyanine Materials: Synthesis, Structure and Function Cambridge University Press.
  5. Moser, F. H. & Thomas, A. L. (1983). The Phthalocyanines, Vols. 1 and 2. Boca Raton, Florida: CRC Press.
  6. Nesi, R., Turchi, S., Giomi, D. & Corsi, C. (1998). Tetrahedron, 54, 10851–10856.
  7. Ocak, N., Işık, Ş., Akdemir, N., Kantar, C. & Ağar, E. (2004). Acta Cryst. E60, o361–o362.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, huangx-4. DOI: 10.1107/S1600536808027141/sj2530sup1.cif

e-64-o2337-sup1.cif (15.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808027141/sj2530Isup2.hkl

e-64-o2337-Isup2.hkl (85.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES