Abstract
In the title benzamide derivative, C11H14ClNO, the chlorobenzene and butylamine groups are each planar, with mean deviations from the planes of 0.013 and 0.030 Å, respectively, and a dihedral angle of 2.54 (9)° between the two planes. In the crystal structure, N—H⋯O hydrogen bonds link molecules in rows along a. Short intermolecular Cl⋯Cl interactions [3.4225 (5) Å] link these rows into sheets in the ac plane. Additional weak C—H⋯O and C—H⋯π interactions generate a three-dimensional network.
Related literature
For details of the biological activity of benzanilides, see: Olsson et al., (2002 ▶); Lindgren et al. (2001 ▶); Calderone et al. (2006 ▶). For the use of benzamides in organic synthesis, see: Reinaud et al. (1991 ▶); Zhichkin et al. (2007 ▶); Beccalli et al. (2005 ▶); For the fluorescence properties of benzanilides, see: Lewis & Long (1998 ▶). For related structures see: Saeed et al. (2008 ▶); Hempel et al. (2005 ▶). For reference structural data, see: Allen et al. (1987 ▶). For related literature, see: Vega-Noverola et al. (1989 ▶); Yoo et al. (2005 ▶).
Experimental
Crystal data
C11H14ClNO
M r = 211.68
Triclinic,
a = 5.1702 (4) Å
b = 7.8979 (5) Å
c = 13.2978 (9) Å
α = 89.275 (3)°
β = 84.863 (4)°
γ = 77.165 (4)°
V = 527.29 (6) Å3
Z = 2
Mo Kα radiation
μ = 0.33 mm−1
T = 81 (2) K
0.42 × 0.30 × 0.08 mm
Data collection
Bruker APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2006 ▶) T min = 0.820, T max = 0.974
6632 measured reflections
3445 independent reflections
3050 reflections with I > 2σ(I)
R int = 0.017
Refinement
R[F 2 > 2σ(F 2)] = 0.033
wR(F 2) = 0.090
S = 1.04
3445 reflections
132 parameters
H atoms treated by a mixture of independent and constrained refinement
Δρmax = 0.43 e Å−3
Δρmin = −0.22 e Å−3
Data collection: APEX2 (Bruker, 2006 ▶); cell refinement: APEX2 and SAINT (Bruker, 2006 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶) and TITAN2000 (Hunter & Simpson, 1999 ▶); molecular graphics: ORTEP-3 (Farrugia, 1997 ▶) and Mercury (Macrae et al., 2006 ▶); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004 ▶), PLATON (Spek, 2003 ▶) and publCIF (Westrip, 2008 ▶).
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808036313/sg2272sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808036313/sg2272Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N1—HN1⋯O1i | 0.831 (15) | 2.203 (15) | 3.0164 (10) | 166.3 (13) |
| C3—H3⋯O1ii | 0.95 | 2.66 | 3.3146 (11) | 127 |
| C8—H8A⋯Cg1iii | 0.99 | 2.84 | 3.697 (16) | 145 |
Symmetry codes: (i)
; (ii)
; (iii)
. Cg1 is the centroid of the C2–C7 benzene ring.
Acknowledgments
NA gratefully acknowledges financial support for a PhD programme by the Higher Education Commission of Pakistan. We also thank the University of Otago for purchase of the diffractometer.
supplementary crystallographic information
Comment
The benzanilide core is present in compounds with such a wide range of biological activities that it has been called a privileged structure. N-substituted benzamides are well known anticancer compounds and the mechanism of action for N-substituted benzamide-induced apoptosis has been studied, using declopramide as a lead compound (Olsson et al., 2002). N-substituted benzamides inhibit the activity of nuclear factor- B and nuclear factor of activated T cells activity while inducing activator protein 1 activity in T lymphocytes (Lindgren et al., 2001). Various N-substituted benzamides exhibit potent antiemetic activity (Vega-noverola et al., 1989), while heterocyclic analogs of benzanilide derivatives are potassium channel activators (Calderone et al., 2006). o-Aryloxylation of N-substituted benzamides induced by the copper(II)/trimethylamine N-oxide system has been studied (Reinaud et al., 1991). N-Alkylated 2-nitrobenzamides are intermediates in the synthesis of dibenzo[b,e][1,4]diazepines (Zhichkin et al., 2007) and N-Acyl-2-nitrobenzamides are precursors of 2,3-disubstitued 3H-quinazoline-4-ones (Beccalli et al., 2005). A one-pot conversion of 2-nitro-n-arylbenzamides to 2,3-dihydro-1H-quinazoline-4-ones has also been reported (Yoo et al., 2005). The anomalous dual fluorescence of benzanilides has been assigned to the two lowest benzanilide singlet states (Lewis & Long, 1998)
As part of our work on the structure of benzanildes and related compounds, we report here the structure of the title benzamide derivative, I, Fig. 1. The C1···C7/Cl system is planar with a maximum deviation of 0.0161 (7) Å from the least squares plane. The carbonyl oxygen atom O1 is displaced by 0.6102 (10) Å from this plane. The butylamine N1/C8···C11 fragment is also planar, maximum deviation 0.0365 (7) Å for C9. The dihedral angle between these two planes is 2.54 (9) °. Bond distances within the molecule are normal (Allen et al., 1987) and similar to those found in the structures of related 4-chlorobenzamide derivatives (Saeed et al., 2008, Hempel et al., 2005).
In the crystal structure N1—HN1···O1 hydrogen bonds, Table 1, link molecules into rows along a. Cl1···Cl1 interactions at 3.4225 (5) Å bridge these rows to form sheets in the ac plane, Fig. 2. The sheets are interconnected by weak C3—H3···O1 hydrogen bonds and C8—H8···π interactions involving the C2···C7 benzene ring to generate a three dimensional network, Fig. 3.
Experimental
2-Fluorobenzoyl chloride (1 mmol) in CHCl3 was treated with cyclohexyl amine (3.5 mmol) under a nitrogen atmosphere at reflux for 5 h. Upon cooling, the reaction mixture was diluted with CHCl3 and washed consecutively with 1 M aq HCl and saturated aq NaHCO3. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. Crystallization of the residue in ethanol afforded the title compound (79 %) as white needles: Anal. calcd. for C11H14ClNO: C 62.41, H 6.67, N 6.62%; found: C 62.34, H 7.16, N 6.57%.
Refinement
The H atom bound to N1 was located in a difference electron density map and refined freely with an isotropic displacement parameter. All other H-atoms were refined using a riding model with d(C—H) = 0.95 Å, Uiso= 1.2Ueq (C) for aromatic, 0.99Å, Uiso = 1.2Ueq (C) for CH2, and 0.98 Å, Uiso = 1.5Ueq (C) for CH3 H atoms.
Figures
Fig. 1.
The structure of I showing the atom numbering with displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
Sheets of molecules of I formed in the ac plane by N—H···O hydrogen bonds and Cl···Cl interactions.
Fig. 3.
Crystal packing of I viewed down the b axis.
Crystal data
| C11H14ClNO | Z = 2 |
| Mr = 211.68 | F000 = 224 |
| Triclinic, P1 | Dx = 1.333 Mg m−3 |
| Hall symbol: -P 1 | Mo Kα radiation λ = 0.71073 Å |
| a = 5.1702 (4) Å | Cell parameters from 3494 reflections |
| b = 7.8979 (5) Å | θ = 5.3–66.2º |
| c = 13.2978 (9) Å | µ = 0.33 mm−1 |
| α = 89.275 (3)º | T = 81 (2) K |
| β = 84.863 (4)º | Irregular fragment, colourless |
| γ = 77.165 (4)º | 0.42 × 0.30 × 0.08 mm |
| V = 527.29 (6) Å3 |
Data collection
| Bruker APEXII CCD area-detector diffractometer | 3445 independent reflections |
| Radiation source: fine-focus sealed tube | 3050 reflections with I > 2σ(I) |
| Monochromator: graphite | Rint = 0.017 |
| T = 81(2) K | θmax = 33.1º |
| ω scans | θmin = 3.1º |
| Absorption correction: multi-scan(SADABS; Bruker, 2006) | h = −7→6 |
| Tmin = 0.820, Tmax = 0.974 | k = −11→11 |
| 6632 measured reflections | l = −20→20 |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.033 | H atoms treated by a mixture of independent and constrained refinement |
| wR(F2) = 0.090 | w = 1/[σ2(Fo2) + (0.0471P)2 + 0.125P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.04 | (Δ/σ)max = 0.002 |
| 3445 reflections | Δρmax = 0.43 e Å−3 |
| 132 parameters | Δρmin = −0.22 e Å−3 |
| Primary atom site location: structure-invariant direct methods | Extinction correction: none |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| N1 | 0.51637 (16) | 0.82511 (10) | −0.10915 (6) | 0.01587 (15) | |
| HN1 | 0.662 (3) | 0.8260 (18) | −0.0876 (11) | 0.026 (3)* | |
| C1 | 0.31476 (17) | 0.79695 (10) | −0.04475 (6) | 0.01281 (15) | |
| O1 | 0.08420 (13) | 0.81551 (8) | −0.06861 (5) | 0.01616 (14) | |
| C2 | 0.38267 (17) | 0.73835 (10) | 0.05917 (6) | 0.01257 (15) | |
| C3 | 0.18549 (19) | 0.78474 (11) | 0.13885 (7) | 0.01611 (17) | |
| H3 | 0.0169 | 0.8545 | 0.1262 | 0.019* | |
| C4 | 0.2331 (2) | 0.73001 (12) | 0.23650 (7) | 0.01847 (18) | |
| H4 | 0.0995 | 0.7631 | 0.2908 | 0.022* | |
| C5 | 0.4800 (2) | 0.62579 (11) | 0.25329 (7) | 0.01667 (17) | |
| Cl1 | 0.54360 (5) | 0.55693 (3) | 0.375283 (17) | 0.02530 (8) | |
| C6 | 0.67765 (19) | 0.57568 (12) | 0.17528 (7) | 0.01740 (17) | |
| H6 | 0.8439 | 0.5027 | 0.1879 | 0.021* | |
| C7 | 0.62886 (18) | 0.63406 (11) | 0.07801 (7) | 0.01532 (16) | |
| H7 | 0.7642 | 0.6026 | 0.0241 | 0.018* | |
| C8 | 0.47533 (19) | 0.87979 (13) | −0.21289 (7) | 0.01730 (17) | |
| H8A | 0.4281 | 1.0082 | −0.2152 | 0.021* | |
| H8B | 0.3242 | 0.8363 | −0.2352 | 0.021* | |
| C9 | 0.72100 (18) | 0.81319 (12) | −0.28494 (7) | 0.01526 (16) | |
| H9A | 0.7664 | 0.6847 | −0.2840 | 0.018* | |
| H9B | 0.8733 | 0.8549 | −0.2623 | 0.018* | |
| C10 | 0.67469 (19) | 0.87506 (12) | −0.39261 (7) | 0.01705 (17) | |
| H10A | 0.5112 | 0.8435 | −0.4123 | 0.020* | |
| H10B | 0.6458 | 1.0032 | −0.3943 | 0.020* | |
| C11 | 0.9070 (2) | 0.79692 (14) | −0.46899 (8) | 0.02213 (19) | |
| H11A | 1.0696 | 0.8277 | −0.4500 | 0.033* | |
| H11B | 0.8691 | 0.8425 | −0.5363 | 0.033* | |
| H11C | 0.9317 | 0.6703 | −0.4698 | 0.033* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| N1 | 0.0106 (3) | 0.0251 (4) | 0.0134 (3) | −0.0064 (3) | −0.0033 (3) | 0.0048 (3) |
| C1 | 0.0120 (4) | 0.0133 (3) | 0.0131 (4) | −0.0024 (3) | −0.0018 (3) | 0.0006 (3) |
| O1 | 0.0097 (3) | 0.0217 (3) | 0.0170 (3) | −0.0028 (2) | −0.0029 (2) | 0.0024 (2) |
| C2 | 0.0115 (4) | 0.0138 (3) | 0.0131 (4) | −0.0038 (3) | −0.0025 (3) | 0.0013 (3) |
| C3 | 0.0132 (4) | 0.0188 (4) | 0.0154 (4) | −0.0017 (3) | −0.0005 (3) | 0.0009 (3) |
| C4 | 0.0185 (4) | 0.0224 (4) | 0.0140 (4) | −0.0043 (3) | 0.0006 (3) | 0.0006 (3) |
| C5 | 0.0213 (4) | 0.0170 (4) | 0.0138 (4) | −0.0074 (3) | −0.0055 (3) | 0.0036 (3) |
| Cl1 | 0.03326 (15) | 0.02986 (13) | 0.01517 (12) | −0.00986 (10) | −0.00874 (9) | 0.00705 (8) |
| C6 | 0.0160 (4) | 0.0180 (4) | 0.0184 (4) | −0.0030 (3) | −0.0058 (3) | 0.0038 (3) |
| C7 | 0.0117 (4) | 0.0177 (4) | 0.0159 (4) | −0.0019 (3) | −0.0015 (3) | 0.0016 (3) |
| C8 | 0.0121 (4) | 0.0261 (4) | 0.0137 (4) | −0.0040 (3) | −0.0022 (3) | 0.0059 (3) |
| C9 | 0.0115 (4) | 0.0202 (4) | 0.0143 (4) | −0.0034 (3) | −0.0028 (3) | 0.0018 (3) |
| C10 | 0.0138 (4) | 0.0230 (4) | 0.0139 (4) | −0.0032 (3) | −0.0020 (3) | 0.0029 (3) |
| C11 | 0.0185 (5) | 0.0300 (5) | 0.0170 (4) | −0.0043 (4) | 0.0006 (3) | −0.0014 (3) |
Geometric parameters (Å, °)
| N1—C1 | 1.3446 (12) | C6—H6 | 0.9500 |
| N1—C8 | 1.4598 (11) | C7—H7 | 0.9500 |
| N1—HN1 | 0.831 (15) | C8—C9 | 1.5185 (13) |
| C1—O1 | 1.2378 (11) | C8—H8A | 0.9900 |
| C1—C2 | 1.4984 (12) | C8—H8B | 0.9900 |
| C2—C3 | 1.3952 (12) | C9—C10 | 1.5290 (12) |
| C2—C7 | 1.3955 (12) | C9—H9A | 0.9900 |
| C3—C4 | 1.3891 (13) | C9—H9B | 0.9900 |
| C3—H3 | 0.9500 | C10—C11 | 1.5242 (13) |
| C4—C5 | 1.3918 (13) | C10—H10A | 0.9900 |
| C4—H4 | 0.9500 | C10—H10B | 0.9900 |
| C5—C6 | 1.3848 (14) | C11—H11A | 0.9800 |
| C5—Cl1 | 1.7405 (9) | C11—H11B | 0.9800 |
| C6—C7 | 1.3931 (12) | C11—H11C | 0.9800 |
| C1—N1—C8 | 121.48 (8) | N1—C8—C9 | 112.18 (7) |
| C1—N1—HN1 | 119.5 (10) | N1—C8—H8A | 109.2 |
| C8—N1—HN1 | 118.4 (10) | C9—C8—H8A | 109.2 |
| O1—C1—N1 | 122.89 (8) | N1—C8—H8B | 109.2 |
| O1—C1—C2 | 120.60 (8) | C9—C8—H8B | 109.2 |
| N1—C1—C2 | 116.51 (8) | H8A—C8—H8B | 107.9 |
| C3—C2—C7 | 119.40 (8) | C8—C9—C10 | 111.15 (7) |
| C3—C2—C1 | 117.87 (8) | C8—C9—H9A | 109.4 |
| C7—C2—C1 | 122.67 (8) | C10—C9—H9A | 109.4 |
| C4—C3—C2 | 120.71 (8) | C8—C9—H9B | 109.4 |
| C4—C3—H3 | 119.6 | C10—C9—H9B | 109.4 |
| C2—C3—H3 | 119.6 | H9A—C9—H9B | 108.0 |
| C3—C4—C5 | 118.78 (9) | C11—C10—C9 | 112.75 (8) |
| C3—C4—H4 | 120.6 | C11—C10—H10A | 109.0 |
| C5—C4—H4 | 120.6 | C9—C10—H10A | 109.0 |
| C6—C5—C4 | 121.65 (8) | C11—C10—H10B | 109.0 |
| C6—C5—Cl1 | 118.96 (7) | C9—C10—H10B | 109.0 |
| C4—C5—Cl1 | 119.39 (7) | H10A—C10—H10B | 107.8 |
| C5—C6—C7 | 118.95 (8) | C10—C11—H11A | 109.5 |
| C5—C6—H6 | 120.5 | C10—C11—H11B | 109.5 |
| C7—C6—H6 | 120.5 | H11A—C11—H11B | 109.5 |
| C6—C7—C2 | 120.49 (9) | C10—C11—H11C | 109.5 |
| C6—C7—H7 | 119.8 | H11A—C11—H11C | 109.5 |
| C2—C7—H7 | 119.8 | H11B—C11—H11C | 109.5 |
| C8—N1—C1—O1 | −0.14 (13) | C3—C4—C5—Cl1 | 179.68 (7) |
| C8—N1—C1—C2 | 179.00 (8) | C4—C5—C6—C7 | 1.22 (14) |
| O1—C1—C2—C3 | −30.72 (12) | Cl1—C5—C6—C7 | −178.56 (7) |
| N1—C1—C2—C3 | 150.11 (8) | C5—C6—C7—C2 | −1.35 (13) |
| O1—C1—C2—C7 | 146.41 (9) | C3—C2—C7—C6 | 0.37 (13) |
| N1—C1—C2—C7 | −32.76 (12) | C1—C2—C7—C6 | −176.72 (8) |
| C7—C2—C3—C4 | 0.79 (13) | C1—N1—C8—C9 | −149.00 (8) |
| C1—C2—C3—C4 | 178.01 (8) | N1—C8—C9—C10 | −178.91 (7) |
| C2—C3—C4—C5 | −0.92 (14) | C8—C9—C10—C11 | −174.52 (8) |
| C3—C4—C5—C6 | −0.10 (14) |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N1—HN1···O1i | 0.831 (15) | 2.203 (15) | 3.0164 (10) | 166.3 (13) |
| C3—H3···O1ii | 0.95 | 2.66 | 3.3146 (11) | 127 |
| C8—H8A···Cg1iii | 0.99 | 2.84 | 3.697 (16) | 145 |
Symmetry codes: (i) x+1, y, z; (ii) −x, −y+2, −z; (iii) −x+1, −y, −z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SG2272).
References
- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Beccalli, E. M., Broggini, G., Paladinoa, G. & Zonia, C. (2005). Tetrahedron, 61, 61–68.
- Bruker (2006). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
- Calderone, V., Fiamingo, F. L., Giorgi, I., Leonardi, M., Livi, O., Martelli, A. & Martinotti, E. (2006). Eur. J. Med. Chem 41, 761–767. [DOI] [PubMed]
- Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
- Hempel, A., Camerman, N., Mastropaolo, D. & Camerman, A. (2005). Acta Cryst. E61, o2283–o2285.
- Hunter, K. A. & Simpson, J. (1999). TITAN2000 University of Otago, New Zealand.
- Lewis, F. D. & Long, T. M. (1998). J. Phys. Chem. A, 102, 5327–5332.
- Lindgren, H., Pero, R. W., Ivars, F. & Leanderson, T. (2001). Mol. Immunol 38, 267–277. [DOI] [PubMed]
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
- Olsson, A. R., Lindgren, H., Pero, R. W. & Leanderson, T. (2002). Br. J. Cancer, 86, 971–978. [DOI] [PMC free article] [PubMed]
- Reinaud, O., Capdevielle, P. & Maumy, M. (1991). J. Chem. Soc. Perkin Trans. 1, pp. 2129–2134,.
- Saeed, A., Khera, R. A., Abbas, N., Simpson, J. & Stanley, R. G. (2008). Acta Cryst. E64, o1976. [DOI] [PMC free article] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
- Vega-Noverola, A. P., Soto, J. M., Noguera, F. P., Mauri, J. M. & Spickett, G. W. R. (1989). US Patent No. 4 877 780.
- Westrip, S. P. (2008). publCIF In preparation.
- Yoo, C. L., Fettinger, J. C. & Kurth, M. J. (2005). J. Org. Chem 70, 6941–6943. [DOI] [PubMed]
- Zhichkin, P., Kesicki, E., Treiberg, J., Bourdon, L., Ronsheim, M., Ooi, H. C., White, S., Judkins, A. & Fairfax, D. (2007). Org. Lett 9, 1415–1418. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808036313/sg2272sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808036313/sg2272Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report



