Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Nov 13;64(Pt 12):o2331. doi: 10.1107/S1600536808035800

(1R,3S,5R,6S)-6-Acet­oxy-3-(4-methyl­phenyl­sulfon­yloxy)tropane

Li-Min Yang a,*, Liang Zhu a, Yin-Yao Niu a, Hong-Zhuan Chen a, Yang Lu a
PMCID: PMC2960129  PMID: 21581306

Abstract

In the title compound [systematic name: (1R,3S,5R,6S)-8-methyl-3-(4-methyl­phenyl­sulfon­yloxy)-8-aza­bicyclo­[3.2.1]octan-6-yl acetate], C17H23NO5S, the fused piperidine ring exists in a chair conformation with the N atom and one C atom displaced by 0.876 (2) and −0.460 (3) Å, respectively, on opposite sides of the mean plane defined by the other four atoms. The fused pyrrolidine ring adopts an envelope conformation with the N atom deviating by 0.644 (3) Å from the mean plane of the other four atoms.

Related literature

For the synthesis, see: Yang & Wang (1998); Xie et al. (2005). For the pharmacological activity, see: Zhu et al. (2008).graphic file with name e-64-o2331-scheme1.jpg

Experimental

Crystal data

  • C17H23NO5S

  • M r = 353.42

  • Orthorhombic, Inline graphic

  • a = 6.9241 (6) Å

  • b = 15.5069 (14) Å

  • c = 16.1020 (15) Å

  • V = 1728.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 293 (2) K

  • 0.47 × 0.41 × 0.31 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000) T min = 0.751, T max = 1.000 (expected range = 0.702–0.935)

  • 10216 measured reflections

  • 3770 independent reflections

  • 3238 reflections with I > 2σ(I)

  • R int = 0.066

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.093

  • S = 0.97

  • 3770 reflections

  • 221 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983), 1671 Friedel pairs

  • Flack parameter: −0.01 (7)

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808035800/ng2508sup1.cif

e-64-o2331-sup1.cif (21.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808035800/ng2508Isup2.hkl

e-64-o2331-Isup2.hkl (184.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Fund of the Science and Technology Commission of Shanghai Municipality (grant No. 06DZ19001) and the Shanghai Municipal Education Commission Foundation (grant No. 06BZ009). We thank the Shanghai Institute of Organic Chemistry for the X-ray data collection and analysis.

supplementary crystallographic information

Comment

6β-Acetoxy-3α-paramethylbenzene sulfonyloxytropane, a racemic analog of Baogongteng A, prepared in our laboratory (Yang et al., 1998), is a potent muscarinic receptor agonist and has been shown to be a promising candidate as a new antiglaucoma agent in our previous preclinical studies. Recently, we resolved the racemates and investigated the pharmacological characteristics of both enantiomers. The enantiomer (1R,3S,5R,6S) elicited agonistic activity on muscarinic receptors (Zhu et al., 2008). We report here the crystal structure of the bioactive enantiomer. The three-dimensional structure of the title compound is shown in Fig.1. The absolute stereochemistry has been confirmed by the structure determination, with absolute structure parameter -0.01 (7) (Flack, 1983). The tropane ring system adopts a conformation typical of 3α-substituted derivatives, with the piperidine ring in a chair-like shape and the pyrrolidine ring in an envelope form with nitrogen atom as the flap. Atoms N and C3 are displaced by 0.8762(0.0024) and 0.4602(0.0031) Å on opposite sides of the plane containing four atoms C1,C2, C4 and C5 (plane I), and N is deviated by 0.6435 (0.0029)Å from the mean plane through the other four atoms C1,C5,C6,C7 (plane II). The phenyl group C12 to C17 is planar to within 0.0078 (plane III). The dihedral angles between planes I—II and planes I-III are 67.58 (0.09)° and 28.67 (0.08)° respectively.

Experimental

Preparation of the title compound has been described previously (Yang et al.,1998). 6β-Acetoxy-3 α-tropanol (11 g, 0.06 mol) was dissolved in 20 ml CHCl3, and 4-toluene sulfonyl chloride (13 g, 0.07 mol) in 8 ml pyridine were added. The mixture was stirred at room temperature for 72 h. The solvent was evaporated in vacou. The residue was dissolved in anhydrous ethanol and recrystallized to give the hydrochloride of racemates of the title compound. Then it was dissolved in 20% ammonium hydroxide, extracted with dichloromethane and the organic phase was dried over anhydrous sodium sulfate and evaporated in vacou to give racemates of the title compound. The racemates (9.8 g, 0.03 mol) and (-)-2,3-dibenzoyl-L-tartaric acid (11 g, 0.03 mol) were dissolved in methanol for 2 h. After disposing at room temperature for 3 h, the (-)-2,3-dibenzoyl-L-tartarate as precipitate was collected by filtration and recrystallized from anhydrous ethanol. The salt was converted into the title compound as colorless crystals, 30% yield, m.p. 403–405 K, [α]D20 -11.42 (c = 0.1313, CHCl3), by treatment with 20% ammonium hydroxide as described above. The enantiomeric excess of the title compound was 98.05% (Xie et al., 2005). Crystals suitable for X-ray analysis were obtained by slow crystallization from acetone.

Refinement

The absolute configuration was assigned after refining the Flack parameter (Flack, 1983), using 1671 measured Friedel pairs. H atoms were placed in idealized positions, and refined as riding to their carrier atoms. with Uĩso(H) = 1.5Ueq(methyl C) and Uiso(H) = 1.2Ueq(methylene and methine C).

Figures

Fig. 1.

Fig. 1.

Ellipsoid plot.

Crystal data

C17H23NO5S Dx = 1.358 Mg m3
Mr = 353.42 Melting point: 405 K
Orthorhombic, P212121 Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 3847 reflections
a = 6.9241 (6) Å θ = 2.5–26.2º
b = 15.5069 (14) Å µ = 0.21 mm1
c = 16.1020 (15) Å T = 293 (2) K
V = 1728.9 (3) Å3 P{rism, colorless
Z = 4 0.48 × 0.41 × 0.31 mm
F000 = 752

Data collection

Bruker SMART area-detector diffractometer 3770 independent reflections
Radiation source: fine-focus sealed tube 3238 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.066
T = 293(2) K θmax = 27.0º
φ and ω scans θmin = 1.8º
Absorption correction: Multi-scan(SADABS; Sheldrick, 2000) h = −6→8
Tmin = 0.751, Tmax = 1.000 k = −19→18
10216 measured reflections l = −20→14

Refinement

Refinement on F2 H-atom parameters constrained
Least-squares matrix: full   w = 1/[σ2(Fo2) + (0.0451P)2] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.040 (Δ/σ)max = 0.001
wR(F2) = 0.093 Δρmax = 0.20 e Å3
S = 0.97 Δρmin = −0.23 e Å3
3770 reflections Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
221 parameters Extinction coefficient: 0.0065 (11)
Primary atom site location: structure-invariant direct methods Absolute structure: Flack (1983), 1671 Friedel pairs
Secondary atom site location: difference Fourier map Flack parameter: −0.01 (7)
Hydrogen site location: inferred from neighbouring sites

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.96500 (8) 0.56721 (3) 0.57026 (3) 0.04821 (16)
O1 0.83603 (18) 0.75864 (9) 0.86913 (8) 0.0433 (3)
O2 1.1550 (2) 0.76965 (12) 0.85445 (11) 0.0663 (5)
O3 0.8477 (2) 0.62594 (8) 0.63122 (8) 0.0476 (4)
O4 1.1038 (2) 0.61718 (11) 0.52631 (10) 0.0613 (4)
O5 1.0274 (3) 0.49732 (10) 0.62094 (11) 0.0692 (5)
N8 0.6078 (2) 0.83046 (10) 0.71495 (11) 0.0423 (4)
C1 0.5182 (3) 0.74438 (13) 0.70783 (12) 0.0444 (5)
H1 0.3790 0.7481 0.7183 0.053*
C2 0.5559 (3) 0.71277 (14) 0.61955 (13) 0.0482 (5)
H2A 0.5003 0.6558 0.6130 0.058*
H2B 0.4918 0.7511 0.5807 0.058*
C3 0.7683 (3) 0.70892 (12) 0.59874 (13) 0.0447 (5)
H3 0.7838 0.7103 0.5383 0.054*
C4 0.8843 (3) 0.78262 (13) 0.63697 (12) 0.0429 (5)
H4A 1.0190 0.7657 0.6405 0.051*
H4B 0.8762 0.8326 0.6010 0.051*
C5 0.8130 (3) 0.80705 (12) 0.72301 (12) 0.0380 (4)
H5 0.8878 0.8554 0.7453 0.046*
C6 0.8169 (3) 0.72949 (12) 0.78367 (12) 0.0387 (4)
H6 0.9185 0.6882 0.7689 0.046*
C7 0.6163 (3) 0.68959 (13) 0.77502 (14) 0.0446 (5)
H7A 0.5459 0.6928 0.8270 0.053*
H7B 0.6250 0.6297 0.7579 0.053*
C9 0.5348 (3) 0.87927 (14) 0.78624 (13) 0.0528 (5)
H9A 0.5454 0.8448 0.8355 0.079*
H9B 0.4019 0.8940 0.7771 0.079*
H9C 0.6094 0.9310 0.7929 0.079*
C10 1.0149 (3) 0.77628 (12) 0.89615 (13) 0.0434 (5)
C11 1.0125 (3) 0.80429 (14) 0.98486 (14) 0.0530 (6)
H11A 0.9534 0.7603 1.0182 0.079*
H11B 0.9402 0.8568 0.9899 0.079*
H11C 1.1425 0.8137 1.0035 0.079*
C12 0.7863 (3) 0.53147 (12) 0.50065 (13) 0.0436 (5)
C13 0.6276 (3) 0.48904 (15) 0.53244 (15) 0.0596 (6)
H13 0.6197 0.4778 0.5891 0.072*
C14 0.4820 (3) 0.46356 (14) 0.48051 (16) 0.0593 (6)
H14 0.3746 0.4357 0.5025 0.071*
C15 0.4917 (3) 0.47852 (12) 0.39596 (14) 0.0463 (5)
C16 0.6542 (3) 0.51942 (13) 0.36492 (14) 0.0490 (5)
H16 0.6642 0.5288 0.3080 0.059*
C17 0.8019 (3) 0.54657 (12) 0.41651 (12) 0.0446 (5)
H17 0.9096 0.5745 0.3949 0.054*
C18 0.3260 (4) 0.45457 (15) 0.33942 (17) 0.0645 (7)
H18A 0.2196 0.4930 0.3490 0.097*
H18B 0.2863 0.3964 0.3508 0.097*
H18C 0.3667 0.4590 0.2826 0.097*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0516 (3) 0.0486 (3) 0.0444 (3) 0.0070 (2) −0.0010 (3) −0.0041 (2)
O1 0.0368 (7) 0.0631 (8) 0.0300 (7) −0.0006 (6) −0.0012 (6) 0.0014 (6)
O2 0.0381 (8) 0.0992 (13) 0.0617 (10) −0.0063 (9) 0.0096 (8) −0.0149 (10)
O3 0.0639 (9) 0.0453 (7) 0.0337 (7) 0.0072 (7) 0.0015 (7) 0.0006 (6)
O4 0.0454 (9) 0.0769 (10) 0.0615 (10) −0.0050 (8) 0.0070 (8) −0.0094 (9)
O5 0.0832 (12) 0.0597 (9) 0.0645 (11) 0.0239 (9) −0.0145 (10) −0.0013 (8)
N8 0.0422 (9) 0.0490 (9) 0.0358 (9) 0.0084 (7) 0.0006 (8) −0.0016 (8)
C1 0.0341 (10) 0.0591 (12) 0.0400 (11) 0.0006 (9) −0.0015 (9) −0.0016 (9)
C2 0.0490 (12) 0.0551 (12) 0.0406 (11) 0.0020 (10) −0.0097 (10) −0.0017 (10)
C3 0.0588 (13) 0.0453 (11) 0.0301 (9) 0.0059 (9) 0.0002 (9) 0.0026 (9)
C4 0.0467 (11) 0.0474 (11) 0.0346 (10) 0.0008 (9) 0.0078 (9) 0.0048 (9)
C5 0.0385 (11) 0.0415 (10) 0.0341 (10) −0.0026 (8) 0.0017 (9) −0.0003 (8)
C6 0.0398 (11) 0.0459 (10) 0.0304 (9) 0.0017 (9) 0.0017 (8) 0.0026 (9)
C7 0.0438 (11) 0.0538 (12) 0.0361 (10) −0.0082 (9) 0.0008 (9) 0.0032 (9)
C9 0.0546 (13) 0.0579 (12) 0.0458 (12) 0.0143 (10) 0.0057 (11) −0.0063 (10)
C10 0.0411 (12) 0.0453 (11) 0.0439 (11) −0.0006 (9) −0.0037 (9) 0.0036 (9)
C11 0.0530 (14) 0.0634 (13) 0.0426 (12) −0.0007 (11) −0.0101 (11) 0.0016 (10)
C12 0.0497 (12) 0.0388 (10) 0.0424 (11) 0.0039 (9) 0.0068 (10) −0.0026 (9)
C13 0.0732 (16) 0.0603 (14) 0.0453 (13) −0.0174 (12) 0.0081 (12) 0.0037 (11)
C14 0.0588 (15) 0.0557 (12) 0.0636 (15) −0.0159 (11) 0.0146 (13) 0.0027 (11)
C15 0.0481 (13) 0.0327 (9) 0.0581 (12) 0.0053 (9) 0.0031 (10) −0.0041 (9)
C16 0.0544 (13) 0.0507 (11) 0.0420 (11) 0.0044 (10) 0.0067 (10) −0.0022 (10)
C17 0.0444 (11) 0.0463 (11) 0.0433 (12) 0.0013 (9) 0.0126 (9) −0.0023 (9)
C18 0.0541 (14) 0.0594 (14) 0.0800 (18) −0.0012 (11) −0.0065 (13) 0.0006 (13)

Geometric parameters (Å, °)

S1—O4 1.4231 (16) C6—H6 0.9800
S1—O5 1.4239 (16) C7—H7A 0.9700
S1—O3 1.5663 (14) C7—H7B 0.9700
S1—C12 1.759 (2) C9—H9A 0.9600
O1—C10 1.341 (2) C9—H9B 0.9600
O1—C6 1.454 (2) C9—H9C 0.9600
O2—C10 1.184 (2) C10—C11 1.493 (3)
O3—C3 1.494 (2) C11—H11A 0.9600
N8—C9 1.465 (2) C11—H11B 0.9600
N8—C5 1.472 (2) C11—H11C 0.9600
N8—C1 1.476 (3) C12—C13 1.379 (3)
C1—C2 1.526 (3) C12—C17 1.379 (3)
C1—C7 1.534 (3) C13—C14 1.368 (3)
C1—H1 0.9800 C13—H13 0.9300
C2—C3 1.510 (3) C14—C15 1.383 (3)
C2—H2A 0.9700 C14—H14 0.9300
C2—H2B 0.9700 C15—C16 1.385 (3)
C3—C4 1.527 (3) C15—C18 1.511 (3)
C3—H3 0.9800 C16—C17 1.383 (3)
C4—C5 1.519 (3) C16—H16 0.9300
C4—H4A 0.9700 C17—H17 0.9300
C4—H4B 0.9700 C18—H18A 0.9600
C5—C6 1.550 (3) C18—H18B 0.9600
C5—H5 0.9800 C18—H18C 0.9600
C6—C7 1.526 (3)
O4—S1—O5 119.62 (11) C5—C6—H6 111.5
O4—S1—O3 110.21 (9) C6—C7—C1 104.05 (16)
O5—S1—O3 103.94 (9) C6—C7—H7A 110.9
O4—S1—C12 109.26 (10) C1—C7—H7A 110.9
O5—S1—C12 109.81 (10) C6—C7—H7B 110.9
O3—S1—C12 102.57 (9) C1—C7—H7B 110.9
C10—O1—C6 117.04 (15) H7A—C7—H7B 109.0
C3—O3—S1 118.18 (12) N8—C9—H9A 109.5
C9—N8—C5 113.03 (17) N8—C9—H9B 109.5
C9—N8—C1 112.53 (16) H9A—C9—H9B 109.5
C5—N8—C1 100.92 (14) N8—C9—H9C 109.5
N8—C1—C2 106.91 (17) H9A—C9—H9C 109.5
N8—C1—C7 105.06 (16) H9B—C9—H9C 109.5
C2—C1—C7 113.78 (17) O2—C10—O1 123.71 (19)
N8—C1—H1 110.3 O2—C10—C11 125.2 (2)
C2—C1—H1 110.3 O1—C10—C11 111.09 (18)
C7—C1—H1 110.3 C10—C11—H11A 109.5
C3—C2—C1 112.71 (17) C10—C11—H11B 109.5
C3—C2—H2A 109.1 H11A—C11—H11B 109.5
C1—C2—H2A 109.1 C10—C11—H11C 109.5
C3—C2—H2B 109.1 H11A—C11—H11C 109.5
C1—C2—H2B 109.1 H11B—C11—H11C 109.5
H2A—C2—H2B 107.8 C13—C12—C17 120.5 (2)
O3—C3—C2 108.34 (16) C13—C12—S1 118.30 (17)
O3—C3—C4 108.07 (16) C17—C12—S1 121.17 (16)
C2—C3—C4 113.17 (17) C14—C13—C12 119.9 (2)
O3—C3—H3 109.1 C14—C13—H13 120.1
C2—C3—H3 109.1 C12—C13—H13 120.1
C4—C3—H3 109.1 C13—C14—C15 121.2 (2)
C5—C4—C3 112.55 (16) C13—C14—H14 119.4
C5—C4—H4A 109.1 C15—C14—H14 119.4
C3—C4—H4A 109.1 C14—C15—C16 118.1 (2)
C5—C4—H4B 109.1 C14—C15—C18 121.0 (2)
C3—C4—H4B 109.1 C16—C15—C18 120.8 (2)
H4A—C4—H4B 107.8 C17—C16—C15 121.6 (2)
N8—C5—C4 107.15 (17) C17—C16—H16 119.2
N8—C5—C6 105.28 (15) C15—C16—H16 119.2
C4—C5—C6 112.08 (16) C12—C17—C16 118.72 (19)
N8—C5—H5 110.7 C12—C17—H17 120.6
C4—C5—H5 110.7 C16—C17—H17 120.6
C6—C5—H5 110.7 C15—C18—H18A 109.5
O1—C6—C7 107.18 (16) C15—C18—H18B 109.5
O1—C6—C5 110.90 (16) H18A—C18—H18B 109.5
C7—C6—C5 103.96 (15) C15—C18—H18C 109.5
O1—C6—H6 111.5 H18A—C18—H18C 109.5
C7—C6—H6 111.5 H18B—C18—H18C 109.5
O4—S1—O3—C3 47.59 (16) N8—C5—C6—C7 24.8 (2)
O5—S1—O3—C3 176.95 (14) C4—C5—C6—C7 −91.32 (19)
C12—S1—O3—C3 −68.65 (15) O1—C6—C7—C1 120.02 (17)
C9—N8—C1—C2 162.61 (17) C5—C6—C7—C1 2.53 (19)
C5—N8—C1—C2 −76.63 (18) N8—C1—C7—C6 −29.1 (2)
C9—N8—C1—C7 −76.2 (2) C2—C1—C7—C6 87.5 (2)
C5—N8—C1—C7 44.6 (2) C6—O1—C10—O2 0.3 (3)
N8—C1—C2—C3 57.9 (2) C6—O1—C10—C11 −179.30 (16)
C7—C1—C2—C3 −57.6 (2) O4—S1—C12—C13 −173.64 (16)
S1—O3—C3—C2 128.33 (15) O5—S1—C12—C13 53.3 (2)
S1—O3—C3—C4 −108.70 (15) O3—S1—C12—C13 −56.72 (18)
C1—C2—C3—O3 82.9 (2) O4—S1—C12—C17 5.3 (2)
C1—C2—C3—C4 −36.9 (2) O5—S1—C12—C17 −127.77 (18)
O3—C3—C4—C5 −83.20 (19) O3—S1—C12—C17 122.19 (17)
C2—C3—C4—C5 36.8 (2) C17—C12—C13—C14 −1.7 (3)
C9—N8—C5—C4 −162.88 (16) S1—C12—C13—C14 177.25 (17)
C1—N8—C5—C4 76.72 (17) C12—C13—C14—C15 0.9 (4)
C9—N8—C5—C6 77.6 (2) C13—C14—C15—C16 0.6 (3)
C1—N8—C5—C6 −42.76 (19) C13—C14—C15—C18 −176.7 (2)
C3—C4—C5—N8 −57.7 (2) C14—C15—C16—C17 −1.4 (3)
C3—C4—C5—C6 57.3 (2) C18—C15—C16—C17 175.95 (18)
C10—O1—C6—C7 164.05 (16) C13—C12—C17—C16 0.9 (3)
C10—O1—C6—C5 −83.1 (2) S1—C12—C17—C16 −177.98 (15)
N8—C5—C6—O1 −90.05 (18) C15—C16—C17—C12 0.6 (3)
C4—C5—C6—O1 153.80 (16)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2508).

References

  1. Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  3. Sheldrick, G. M. (2000). SADABS University of Göttingen, Germany.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Xie, Y., Yang, L. & Lu, Y. (2005). Acta Univ. Med. Sec. Shanghai, 25, 229–231.
  6. Yang, L. & Wang, H. (1998). Acta Pharm. Sin.33, 832–835.
  7. Zhu, L., Yang, L., Cui, Y., Zheng, P., Niu, Y., Wang, H., Lu, Y., Ren, Q., Wei, P. & Chen, H. (2008). Acta Pharmacol. Sin.29, 177–184. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808035800/ng2508sup1.cif

e-64-o2331-sup1.cif (21.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808035800/ng2508Isup2.hkl

e-64-o2331-Isup2.hkl (184.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES