Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Nov 8;64(Pt 12):m1487. doi: 10.1107/S1600536808035022

A new β-octa­molybdate(VI) salt based on 1,4-bis­(2-methyl-1H-imidazol-1-yl)butane

Shun-Li Li a,*, Ke Tan b
PMCID: PMC2960135  PMID: 21581111

Abstract

The title compound, bis­[2,2′-dimethyl-3,3′-(butane-1,4-di­yl)diimidazol-1-ium] β-octa­molybdate(VI), (C12H20N4)2[Mo8O26], was produced by hydro­thermal reaction of an acidified aqueous solution of Na2MoO4 and 1,4-bis­(2-methyl-1H-imidazol-1-yl)butane (hereafter L). The structure of the title compound consists of the β-octa­molybdate anions having a center of symmetry, and protonated [H2 L]2+ cations, which link the β-octa­molybdate anions, generating a supra­molecular chain via hydrogen bonds.

Related literature

For the applications of polyoxometalates (POMs) chemistry, see: Kozhevnikov (1998); Rhule et al. (1998); Li et al. (2007). For the coordination ability of polyoxometalates with different transition-metal organic units, see: Hagrman et al. (1997); Li et al. (2008). For the introduction of POMs into coordination polymers for the construction of polymers with desired properties, see: Bu et al. (2001); Wu et al. (2002).graphic file with name e-64-m1487-scheme1.jpg

Experimental

Crystal data

  • (C12H20N4)2[Mo8O26]

  • M r = 1624.16

  • Triclinic, Inline graphic

  • a = 10.5680 (3) Å

  • b = 11.4890 (5) Å

  • c = 11.5600 (8) Å

  • α = 60.7770 (10)°

  • β = 68.1550 (10)°

  • γ = 70.4000 (10)°

  • V = 1116.29 (10) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.27 mm−1

  • T = 293 (2) K

  • 0.27 × 0.26 × 0.20 mm

Data collection

  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.49, T max = 0.63

  • 6962 measured reflections

  • 5123 independent reflections

  • 3776 reflections with I > 2σ(I)

  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.079

  • S = 1.04

  • 5123 reflections

  • 306 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.71 e Å−3

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808035022/bg2208sup1.cif

e-64-m1487-sup1.cif (30.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808035022/bg2208Isup2.hkl

e-64-m1487-Isup2.hkl (245.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O9i 0.87 (3) 2.37 (4) 3.031 (5) 134 (4)
N2—H2N⋯O10i 0.87 (3) 2.20 (2) 3.001 (5) 153 (5)
N4—H4N⋯O12ii 0.86 (3) 2.39 (4) 3.052 (5) 134 (4)
N4—H4N⋯O4iii 0.86 (3) 2.12 (3) 2.873 (4) 146 (5)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

supplementary crystallographic information

Comment

Polyoxometalates (POMs), a unique class of metal-oxide clusters, have many properties that make them attractive for applications in catalysis, biology, magnetism, optics, medicine, etc (Kozhevnikov, 1998; Rhule et al., 1998; Li et al., 2007). In recent times a remarkable approach to the construction of multifunctional materials is being realized exploting the ability of polyoxometalates to coordinate to different transition-metal organic units (Hagrman et al., 1997; Li et al., 2008). The POMs, acting as unusual inorganic ligands are introduced into a variety of POM-based coordination polymers with desired properties (Bu et al., 2001; Wu et al., 2002). During our ongoing studies of related materials, we obtained the title compound, (I), and present its crystal structure here.

The asymmetric unit of compound (I) contains a complete (C12H20N42+) cation (hereafter [H2L]2+) and half a [Mo8O26]4- anion. The complete [Mo8O26]4- moiety is generated from the asymmetric unit atoms by a crystallographic inversion center (Fig. 1). It consists of eight edge-sharing MoO6 octahedra and displays the characteristic β-octamolybdate arrangement. Each protonated [H2L]2+ cation donates two N—H···O hydrogen bonds to two terminal oxygen atoms from one [Mo8O26]4- anion and two ones to two bridging oxygen atoms from the other [Mo8O26]4- anion. So each [Mo8O26]4- anion joins four protonated [H2L]2+ cations (see the hydrogen bonding table for numerical values) to generate a one-dimensional supramolecular double-chain structure (Fig. 2).

Experimental

A mixture of Na2MoO4.2H2O (0.242 g, 1.0 mmol) and L (0.218 g, 1.0 mmol) in water (10 ml) was adjusted with HCl (2M) to pH = 3. Then the mixture was placed in a 23 ml Teflon-lined autoclave and kept under autogenous pressure at 150 °C for 2 days. After the mixture was cooled to room temperature at 10°C.h-1, colorless crystals of the title compound were obtained.

Refinement

All H atoms on C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 - 0.97 Å, and Uiso=1.2Ueq (C). The H atoms of N2 and N4 were located in a difference Fourier map and then refined isotropically, with restrained N-H (0.87 (3)Å) and Uiso=1.5Ueq (N).

Figures

Fig. 1.

Fig. 1.

A view of the molecule of (I). Displacement ellipsoids are drawn at the 30% probability level. All crystallographic related oxygen atoms are unlabled for clarity. Symmetry code: (i) 1 - x, 1 - y, -z.

Fig. 2.

Fig. 2.

Ball-stick representation of the one-dimensional supramolecular structure of (I).

Crystal data

(C12H20N4)2[Mo8O26] Z = 1
Mr = 1624.16 F000 = 784
Triclinic, P1 Dx = 2.416 Mg m3
Hall symbol: -p1 Mo Kα radiation λ = 0.71069 Å
a = 10.5680 (3) Å Cell parameters from 879 reflections
b = 11.4890 (5) Å θ = 2.1–28.3º
c = 11.5600 (8) Å µ = 2.27 mm1
α = 60.7770 (10)º T = 293 (2) K
β = 68.1550 (10)º Block, colorless
γ = 70.4000 (10)º 0.27 × 0.26 × 0.20 mm
V = 1116.29 (10) Å3

Data collection

Bruker APEX CCD area-detector diffractometer 5123 independent reflections
Radiation source: fine-focus sealed tube 3776 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.016
T = 293(2) K θmax = 28.3º
ω scans θmin = 2.1º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −13→13
Tmin = 0.49, Tmax = 0.63 k = −8→15
6962 measured reflections l = −12→15

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.079   w = 1/[σ2(Fo2) + (0.0329P)2] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
5123 reflections Δρmax = 0.53 e Å3
306 parameters Δρmin = −0.71 e Å3
2 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.4508 (5) 0.2008 (5) 0.1689 (5) 0.0480 (13)
H1 0.5040 0.1222 0.2199 0.058*
C2 0.4674 (5) 0.2537 (5) 0.0338 (5) 0.0516 (14)
H2 0.5345 0.2198 −0.0273 0.062*
C3 0.2898 (5) 0.3852 (5) 0.1169 (5) 0.0398 (12)
C4 0.1745 (7) 0.4991 (6) 0.1210 (6) 0.078 (2)
H4A 0.0929 0.4647 0.1863 0.117*
H4B 0.1566 0.5524 0.0320 0.117*
H4C 0.1983 0.5547 0.1475 0.117*
C5 0.2836 (5) 0.2607 (5) 0.3649 (4) 0.0455 (13)
H5A 0.2434 0.3477 0.3706 0.055*
H5B 0.3589 0.2175 0.4099 0.055*
C6 0.1756 (5) 0.1742 (5) 0.4387 (4) 0.0357 (11)
H6A 0.2156 0.0864 0.4349 0.043*
H6B 0.1002 0.2167 0.3940 0.043*
C7 0.1188 (5) 0.1543 (5) 0.5889 (5) 0.0454 (13)
H7A 0.1859 0.0893 0.6405 0.055*
H7B 0.1035 0.2398 0.5943 0.055*
C8 −0.0135 (5) 0.1044 (5) 0.6487 (4) 0.0380 (11)
H8A −0.0808 0.1724 0.5989 0.046*
H8B 0.0018 0.0228 0.6362 0.046*
C9 −0.0909 (5) 0.1582 (4) 0.8570 (5) 0.0333 (10)
H9 −0.0603 0.2401 0.8147 0.040*
C10 −0.1608 (5) 0.1011 (5) 0.9878 (5) 0.0375 (11)
H10 −0.1887 0.1351 1.0536 0.045*
C11 −0.1292 (4) −0.0326 (4) 0.8885 (4) 0.0305 (10)
C12 −0.1334 (6) −0.1486 (5) 0.8684 (5) 0.0504 (14)
H12A −0.2059 −0.1234 0.8248 0.076*
H12B −0.1511 −0.2244 0.9557 0.076*
H12C −0.0458 −0.1735 0.8117 0.076*
O1 0.8514 (3) 0.1866 (3) 0.4043 (3) 0.0368 (8)
O2 0.7405 (3) 0.2236 (3) 0.2112 (3) 0.0440 (8)
O3 0.6495 (3) 0.1219 (3) 0.7129 (3) 0.0382 (8)
O4 0.3883 (3) 0.1137 (3) 0.7404 (3) 0.0358 (7)
O5 0.5723 (3) 0.1829 (3) 0.4809 (3) 0.0296 (7)
O6 0.3415 (3) 0.3836 (3) 0.5375 (3) 0.0242 (6)
O7 0.6125 (3) 0.3992 (3) 0.4802 (3) 0.0224 (6)
O8 0.2891 (3) 0.6211 (3) 0.3047 (3) 0.0350 (7)
O9 0.5161 (3) 0.4268 (3) 0.2790 (3) 0.0280 (6)
O10 0.7738 (3) 0.4496 (3) 0.2258 (3) 0.0289 (7)
O11 0.9029 (3) 0.4409 (3) 0.4018 (3) 0.0368 (8)
O12 0.8404 (3) 0.6795 (3) 0.1956 (3) 0.0368 (7)
O13 0.5532 (3) 0.6534 (3) 0.2769 (3) 0.0228 (6)
Mo1 0.71426 (4) 0.27605 (4) 0.33399 (4) 0.02625 (10)
Mo2 0.42574 (3) 0.52592 (3) 0.37192 (3) 0.02135 (9)
Mo3 0.51296 (4) 0.21069 (3) 0.64292 (4) 0.02435 (10)
Mo4 0.77331 (3) 0.54199 (3) 0.32507 (3) 0.02360 (10)
N1 0.3404 (4) 0.2840 (4) 0.2189 (4) 0.0347 (9)
N2 0.3664 (4) 0.3676 (4) 0.0030 (4) 0.0434 (10)
H2N 0.355 (5) 0.420 (4) −0.079 (2) 0.064*
N3 −0.0723 (3) 0.0740 (3) 0.7959 (3) 0.0266 (8)
N4 −0.1830 (4) −0.0186 (4) 1.0052 (4) 0.0362 (9)
H4N −0.220 (5) −0.079 (4) 1.082 (3) 0.054*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.042 (3) 0.046 (3) 0.040 (3) −0.004 (2) −0.010 (2) −0.009 (2)
C2 0.042 (3) 0.059 (4) 0.039 (3) −0.003 (3) 0.007 (2) −0.025 (3)
C3 0.044 (3) 0.037 (3) 0.028 (2) −0.013 (2) 0.003 (2) −0.012 (2)
C4 0.091 (5) 0.053 (4) 0.048 (4) 0.012 (3) −0.003 (3) −0.018 (3)
C5 0.056 (3) 0.065 (4) 0.022 (2) −0.035 (3) −0.003 (2) −0.013 (2)
C6 0.039 (3) 0.045 (3) 0.024 (2) −0.016 (2) 0.002 (2) −0.016 (2)
C7 0.047 (3) 0.063 (4) 0.028 (3) −0.028 (3) 0.004 (2) −0.018 (2)
C8 0.043 (3) 0.050 (3) 0.023 (2) −0.020 (2) 0.000 (2) −0.017 (2)
C9 0.036 (3) 0.028 (2) 0.034 (3) −0.0015 (19) −0.010 (2) −0.013 (2)
C10 0.038 (3) 0.048 (3) 0.030 (3) −0.001 (2) −0.008 (2) −0.024 (2)
C11 0.029 (2) 0.035 (3) 0.027 (2) −0.0091 (19) −0.0080 (19) −0.011 (2)
C12 0.064 (4) 0.051 (3) 0.043 (3) −0.025 (3) −0.012 (3) −0.017 (3)
O1 0.0320 (17) 0.0321 (18) 0.0421 (19) 0.0006 (14) −0.0092 (15) −0.0167 (15)
O2 0.054 (2) 0.050 (2) 0.0372 (19) −0.0100 (17) −0.0053 (16) −0.0287 (17)
O3 0.0367 (18) 0.0301 (17) 0.0383 (18) 0.0010 (14) −0.0130 (15) −0.0093 (14)
O4 0.0330 (17) 0.0286 (17) 0.0356 (18) −0.0082 (13) −0.0006 (14) −0.0100 (14)
O5 0.0331 (16) 0.0244 (15) 0.0319 (16) −0.0076 (13) −0.0042 (13) −0.0139 (13)
O6 0.0260 (15) 0.0217 (14) 0.0251 (15) −0.0066 (12) −0.0046 (12) −0.0100 (12)
O7 0.0222 (14) 0.0224 (14) 0.0195 (14) −0.0035 (11) −0.0025 (11) −0.0087 (12)
O8 0.0335 (17) 0.0356 (18) 0.0318 (17) −0.0043 (14) −0.0144 (14) −0.0081 (14)
O9 0.0282 (16) 0.0340 (17) 0.0226 (15) −0.0049 (13) −0.0037 (12) −0.0149 (13)
O10 0.0288 (16) 0.0342 (17) 0.0223 (15) −0.0055 (13) 0.0011 (12) −0.0164 (13)
O11 0.0273 (16) 0.0384 (19) 0.0373 (18) −0.0035 (14) −0.0056 (14) −0.0139 (15)
O12 0.0338 (17) 0.0374 (18) 0.0343 (18) −0.0156 (14) −0.0015 (14) −0.0109 (14)
O13 0.0231 (14) 0.0254 (15) 0.0178 (14) −0.0056 (12) −0.0043 (11) −0.0074 (12)
Mo1 0.0270 (2) 0.0275 (2) 0.02393 (19) −0.00334 (15) −0.00188 (15) −0.01489 (16)
Mo2 0.02117 (18) 0.02459 (19) 0.01723 (18) −0.00511 (14) −0.00434 (13) −0.00779 (14)
Mo3 0.02464 (19) 0.02039 (19) 0.02227 (19) −0.00412 (14) −0.00317 (15) −0.00671 (15)
Mo4 0.01997 (18) 0.0257 (2) 0.02189 (19) −0.00583 (14) −0.00081 (14) −0.00971 (15)
N1 0.041 (2) 0.040 (2) 0.025 (2) −0.0187 (18) −0.0054 (17) −0.0099 (17)
N2 0.047 (2) 0.041 (3) 0.022 (2) −0.008 (2) 0.0007 (19) −0.0061 (18)
N3 0.0265 (18) 0.033 (2) 0.0194 (17) −0.0074 (15) −0.0018 (14) −0.0118 (15)
N4 0.035 (2) 0.046 (3) 0.0212 (19) −0.0169 (19) 0.0011 (17) −0.0095 (18)

Geometric parameters (Å, °)

C1—C2 1.334 (7) C11—C12 1.477 (6)
C1—N1 1.378 (6) C12—H12A 0.9600
C1—H1 0.9300 C12—H12B 0.9600
C2—N2 1.367 (6) C12—H12C 0.9600
C2—H2 0.9300 O1—Mo1 1.697 (3)
C3—N1 1.319 (6) O2—Mo1 1.699 (3)
C3—N2 1.337 (6) O3—Mo3 1.688 (3)
C3—C4 1.465 (7) O4—Mo3 1.703 (3)
C4—H4A 0.9600 O5—Mo3 1.892 (3)
C4—H4B 0.9600 O5—Mo1 1.920 (3)
C4—H4C 0.9600 O6—Mo2 1.945 (3)
C5—N1 1.481 (5) O6—Mo3 2.362 (3)
C5—C6 1.492 (6) O7—Mo3 2.327 (2)
C5—H5A 0.9700 O7—Mo4 2.350 (3)
C5—H5B 0.9700 O7—Mo2 2.390 (3)
C6—C7 1.535 (6) O7—Mo1 2.444 (3)
C6—H6A 0.9700 O8—Mo2 1.682 (3)
C6—H6B 0.9700 O9—Mo2 1.750 (3)
C7—C8 1.480 (6) O9—Mo1 2.296 (3)
C7—H7A 0.9700 O10—Mo4 1.904 (3)
C7—H7B 0.9700 O10—Mo1 1.938 (3)
C8—N3 1.478 (5) O11—Mo4 1.686 (3)
C8—H8A 0.9700 O12—Mo4 1.700 (3)
C8—H8B 0.9700 O13—Mo2 1.954 (3)
C9—C10 1.337 (6) O13—Mo4 2.373 (3)
C9—N3 1.382 (5) Mo2—Mo4i 3.2019 (5)
C9—H9 0.9300 Mo2—Mo3i 3.2144 (5)
C10—N4 1.377 (6) Mo4—O6i 1.981 (3)
C10—H10 0.9300 N2—H2N 0.87 (3)
C11—N3 1.320 (5) N4—H4N 0.86 (3)
C11—N4 1.322 (5)
C2—C1—N1 107.4 (4) O5—Mo1—O7 73.80 (10)
C2—C1—H1 126.3 O10—Mo1—O7 74.23 (10)
N1—C1—H1 126.3 O9—Mo1—O7 69.81 (9)
C1—C2—N2 106.5 (4) O8—Mo2—O9 104.33 (14)
C1—C2—H2 126.8 O8—Mo2—O6 101.53 (13)
N2—C2—H2 126.8 O9—Mo2—O6 96.72 (12)
N1—C3—N2 106.9 (4) O8—Mo2—O13 101.33 (13)
N1—C3—C4 128.6 (5) O9—Mo2—O13 95.61 (12)
N2—C3—C4 124.6 (5) O6—Mo2—O13 150.39 (11)
C3—C4—H4A 109.5 O8—Mo2—O7i 99.39 (13)
C3—C4—H4B 109.5 O9—Mo2—O7i 156.26 (12)
H4A—C4—H4B 109.5 O6—Mo2—O7i 79.18 (10)
C3—C4—H4C 109.5 O13—Mo2—O7i 78.73 (10)
H4A—C4—H4C 109.5 O8—Mo2—O7 175.33 (12)
H4B—C4—H4C 109.5 O9—Mo2—O7 80.34 (11)
N1—C5—C6 112.8 (4) O6—Mo2—O7 77.54 (10)
N1—C5—H5A 109.0 O13—Mo2—O7 78.15 (10)
C6—C5—H5A 109.0 O7i—Mo2—O7 75.94 (10)
N1—C5—H5B 109.0 O8—Mo2—Mo4i 90.41 (10)
C6—C5—H5B 109.0 O9—Mo2—Mo4i 132.43 (9)
H5A—C5—H5B 107.8 O6—Mo2—Mo4i 35.72 (8)
C5—C6—C7 110.9 (4) O13—Mo2—Mo4i 125.92 (8)
C5—C6—H6A 109.5 O7i—Mo2—Mo4i 47.21 (7)
C7—C6—H6A 109.5 O7—Mo2—Mo4i 86.22 (6)
C5—C6—H6B 109.5 O8—Mo2—Mo3i 90.58 (10)
C7—C6—H6B 109.5 O9—Mo2—Mo3i 131.56 (9)
H6A—C6—H6B 108.1 O6—Mo2—Mo3i 125.49 (8)
C8—C7—C6 109.9 (4) O13—Mo2—Mo3i 35.96 (8)
C8—C7—H7A 109.7 O7i—Mo2—Mo3i 46.33 (7)
C6—C7—H7A 109.7 O7—Mo2—Mo3i 86.33 (6)
C8—C7—H7B 109.7 Mo4i—Mo2—Mo3i 92.286 (13)
C6—C7—H7B 109.7 O3—Mo3—O4 104.79 (15)
H7A—C7—H7B 108.2 O3—Mo3—O5 101.97 (14)
N3—C8—C7 114.0 (4) O4—Mo3—O5 101.64 (14)
N3—C8—H8A 108.8 O3—Mo3—O13i 97.07 (13)
C7—C8—H8A 108.8 O4—Mo3—O13i 100.09 (13)
N3—C8—H8B 108.8 O5—Mo3—O13i 146.22 (11)
C7—C8—H8B 108.8 O3—Mo3—O7 96.22 (12)
H8A—C8—H8B 107.6 O4—Mo3—O7 158.65 (12)
C10—C9—N3 107.8 (4) O5—Mo3—O7 77.19 (10)
C10—C9—H9 126.1 O13i—Mo3—O7 73.19 (10)
N3—C9—H9 126.1 O3—Mo3—O6 165.01 (12)
C9—C10—N4 106.0 (4) O4—Mo3—O6 87.24 (12)
C9—C10—H10 127.0 O5—Mo3—O6 83.90 (11)
N4—C10—H10 127.0 O13i—Mo3—O6 71.63 (10)
N3—C11—N4 108.0 (4) O7—Mo3—O6 71.41 (9)
N3—C11—C12 127.0 (4) O3—Mo3—Mo2i 86.46 (11)
N4—C11—C12 125.0 (4) O4—Mo3—Mo2i 135.19 (10)
C11—C12—H12A 109.5 O5—Mo3—Mo2i 118.52 (8)
C11—C12—H12B 109.5 O13i—Mo3—Mo2i 35.10 (7)
H12A—C12—H12B 109.5 O7—Mo3—Mo2i 41.34 (6)
C11—C12—H12C 109.5 O6—Mo3—Mo2i 78.65 (6)
H12A—C12—H12C 109.5 O11—Mo4—O12 104.90 (15)
H12B—C12—H12C 109.5 O11—Mo4—O10 101.89 (14)
Mo3—O5—Mo1 117.70 (14) O12—Mo4—O10 101.07 (14)
Mo2—O6—Mo4i 109.31 (12) O11—Mo4—O6i 98.62 (13)
Mo2—O6—Mo3 110.72 (12) O12—Mo4—O6i 100.79 (13)
Mo4i—O6—Mo3 104.16 (11) O10—Mo4—O6i 144.88 (11)
Mo2i—O7—Mo3 92.33 (9) O11—Mo4—O7 94.31 (12)
Mo2i—O7—Mo4 91.22 (10) O12—Mo4—O7 160.60 (12)
Mo3—O7—Mo4 163.12 (12) O10—Mo4—O7 77.14 (10)
Mo2i—O7—Mo2 104.06 (10) O6i—Mo4—O7 73.14 (10)
Mo3—O7—Mo2 97.67 (9) O11—Mo4—O13 164.42 (12)
Mo4—O7—Mo2 97.46 (9) O12—Mo4—O13 89.13 (12)
Mo2i—O7—Mo1 163.93 (13) O10—Mo4—O13 81.58 (11)
Mo3—O7—Mo1 86.24 (8) O6i—Mo4—O13 71.62 (10)
Mo4—O7—Mo1 85.80 (8) O7—Mo4—O13 71.48 (9)
Mo2—O7—Mo1 91.98 (9) O11—Mo4—Mo2i 86.16 (10)
Mo2—O9—Mo1 117.87 (14) O12—Mo4—Mo2i 135.73 (11)
Mo4—O10—Mo1 116.36 (13) O10—Mo4—Mo2i 118.71 (8)
Mo2—O13—Mo3i 108.94 (12) O6i—Mo4—Mo2i 34.97 (7)
Mo2—O13—Mo4 110.49 (11) O7—Mo4—Mo2i 41.57 (6)
Mo3i—O13—Mo4 103.28 (11) O13—Mo4—Mo2i 78.96 (6)
O1—Mo1—O2 104.71 (15) C3—N1—C1 109.3 (4)
O1—Mo1—O5 99.04 (13) C3—N1—C5 125.2 (4)
O2—Mo1—O5 103.61 (14) C1—N1—C5 125.4 (4)
O1—Mo1—O10 98.14 (13) C3—N2—C2 109.9 (4)
O2—Mo1—O10 101.72 (14) C3—N2—H2N 126 (3)
O5—Mo1—O10 144.48 (11) C2—N2—H2N 125 (3)
O1—Mo1—O9 163.59 (12) C11—N3—C9 108.5 (4)
O2—Mo1—O9 91.61 (13) C11—N3—C8 125.1 (4)
O5—Mo1—O9 78.38 (11) C9—N3—C8 126.1 (4)
O10—Mo1—O9 76.43 (11) C11—N4—C10 109.8 (4)
O1—Mo1—O7 93.85 (12) C11—N4—H4N 125 (4)
O2—Mo1—O7 161.41 (13) C10—N4—H4N 125 (4)
N1—C1—C2—N2 −0.6 (6) Mo1—O5—Mo3—O6 93.10 (15)
N1—C5—C6—C7 −179.3 (4) Mo1—O5—Mo3—Mo2i 19.56 (18)
C5—C6—C7—C8 163.4 (4) Mo2i—O7—Mo3—O3 −77.41 (13)
C6—C7—C8—N3 176.4 (4) Mo4—O7—Mo3—O3 24.5 (5)
N3—C9—C10—N4 0.5 (5) Mo2—O7—Mo3—O3 178.06 (13)
Mo3—O5—Mo1—O1 71.31 (18) Mo1—O7—Mo3—O3 86.56 (12)
Mo3—O5—Mo1—O2 178.95 (16) Mo2i—O7—Mo3—O4 92.4 (3)
Mo3—O5—Mo1—O10 −46.7 (3) Mo4—O7—Mo3—O4 −165.6 (4)
Mo3—O5—Mo1—O9 −92.21 (16) Mo2—O7—Mo3—O4 −12.1 (4)
Mo3—O5—Mo1—O7 −20.10 (14) Mo1—O7—Mo3—O4 −103.6 (3)
Mo4—O10—Mo1—O1 −69.16 (17) Mo2i—O7—Mo3—O5 −178.32 (12)
Mo4—O10—Mo1—O2 −176.11 (16) Mo4—O7—Mo3—O5 −76.4 (4)
Mo4—O10—Mo1—O5 49.1 (3) Mo2—O7—Mo3—O5 77.15 (11)
Mo4—O10—Mo1—O9 95.07 (15) Mo1—O7—Mo3—O5 −14.35 (10)
Mo4—O10—Mo1—O7 22.57 (13) Mo2i—O7—Mo3—O13i 18.11 (10)
Mo2—O9—Mo1—O1 −5.8 (5) Mo4—O7—Mo3—O13i 120.1 (4)
Mo2—O9—Mo1—O2 −179.75 (17) Mo2—O7—Mo3—O13i −86.41 (10)
Mo2—O9—Mo1—O5 76.68 (16) Mo1—O7—Mo3—O13i −177.91 (10)
Mo2—O9—Mo1—O10 −78.08 (16) Mo2i—O7—Mo3—O6 93.89 (10)
Mo2—O9—Mo1—O7 −0.15 (13) Mo4—O7—Mo3—O6 −164.2 (5)
Mo2i—O7—Mo1—O1 1.4 (5) Mo2—O7—Mo3—O6 −10.64 (8)
Mo3—O7—Mo1—O1 −83.95 (12) Mo1—O7—Mo3—O6 −102.14 (10)
Mo4—O7—Mo1—O1 81.15 (12) Mo4—O7—Mo3—Mo2i 102.0 (5)
Mo2—O7—Mo1—O1 178.50 (11) Mo2—O7—Mo3—Mo2i −104.53 (11)
Mo2i—O7—Mo1—O2 −175.8 (4) Mo1—O7—Mo3—Mo2i 163.97 (13)
Mo3—O7—Mo1—O2 98.9 (4) Mo2—O6—Mo3—O3 49.4 (5)
Mo4—O7—Mo1—O2 −96.0 (4) Mo4i—O6—Mo3—O3 −68.0 (5)
Mo2—O7—Mo1—O2 1.3 (4) Mo2—O6—Mo3—O4 −166.62 (16)
Mo2i—O7—Mo1—O5 99.7 (5) Mo4i—O6—Mo3—O4 75.99 (14)
Mo3—O7—Mo1—O5 14.36 (10) Mo2—O6—Mo3—O5 −64.60 (14)
Mo4—O7—Mo1—O5 179.46 (11) Mo4i—O6—Mo3—O5 178.01 (13)
Mo2—O7—Mo1—O5 −83.20 (11) Mo2—O6—Mo3—O13i 91.79 (13)
Mo2i—O7—Mo1—O10 −96.0 (5) Mo4i—O6—Mo3—O13i −25.60 (11)
Mo3—O7—Mo1—O10 178.68 (11) Mo2—O6—Mo3—O7 13.91 (11)
Mo4—O7—Mo1—O10 −16.22 (10) Mo4i—O6—Mo3—O7 −103.48 (12)
Mo2—O7—Mo1—O10 81.12 (11) Mo2—O6—Mo3—Mo2i 56.15 (10)
Mo2i—O7—Mo1—O9 −177.0 (5) Mo4i—O6—Mo3—Mo2i −61.24 (9)
Mo3—O7—Mo1—O9 97.65 (10) Mo1—O10—Mo4—O11 68.55 (18)
Mo4—O7—Mo1—O9 −97.25 (10) Mo1—O10—Mo4—O12 176.55 (15)
Mo2—O7—Mo1—O9 0.09 (8) Mo1—O10—Mo4—O6i −55.9 (3)
Mo1—O9—Mo2—O8 −179.70 (14) Mo1—O10—Mo4—O7 −23.21 (14)
Mo1—O9—Mo2—O6 −75.94 (15) Mo1—O10—Mo4—O13 −96.01 (15)
Mo1—O9—Mo2—O13 77.08 (15) Mo1—O10—Mo4—Mo2i −23.58 (18)
Mo1—O9—Mo2—O7i 2.4 (4) Mo2i—O7—Mo4—O11 79.27 (13)
Mo1—O9—Mo2—O7 0.14 (12) Mo3—O7—Mo4—O11 −22.9 (4)
Mo1—O9—Mo2—Mo4i −75.60 (17) Mo2—O7—Mo4—O11 −176.38 (13)
Mo1—O9—Mo2—Mo3i 76.39 (16) Mo1—O7—Mo4—O11 −84.92 (12)
Mo4i—O6—Mo2—O8 −74.26 (16) Mo2i—O7—Mo4—O12 −92.7 (4)
Mo3—O6—Mo2—O8 171.55 (14) Mo3—O7—Mo4—O12 165.2 (4)
Mo4i—O6—Mo2—O9 179.57 (13) Mo2—O7—Mo4—O12 11.7 (4)
Mo3—O6—Mo2—O9 65.39 (14) Mo1—O7—Mo4—O12 103.1 (4)
Mo4i—O6—Mo2—O13 65.6 (3) Mo2i—O7—Mo4—O10 −179.50 (12)
Mo3—O6—Mo2—O13 −48.6 (3) Mo3—O7—Mo4—O10 78.4 (4)
Mo4i—O6—Mo2—O7i 23.24 (12) Mo2—O7—Mo4—O10 −75.15 (11)
Mo3—O6—Mo2—O7i −90.94 (12) Mo1—O7—Mo4—O10 16.30 (10)
Mo4i—O6—Mo2—O7 101.06 (13) Mo2i—O7—Mo4—O6i −18.44 (10)
Mo3—O6—Mo2—O7 −13.13 (10) Mo3—O7—Mo4—O6i −120.6 (4)
Mo3—O6—Mo2—Mo4i −114.19 (18) Mo2—O7—Mo4—O6i 85.91 (11)
Mo4i—O6—Mo2—Mo3i 24.83 (16) Mo1—O7—Mo4—O6i 177.37 (11)
Mo3—O6—Mo2—Mo3i −89.36 (11) Mo2i—O7—Mo4—O13 −94.20 (10)
Mo3i—O13—Mo2—O8 75.02 (15) Mo3—O7—Mo4—O13 163.7 (5)
Mo4—O13—Mo2—O8 −172.19 (13) Mo2—O7—Mo4—O13 10.15 (8)
Mo3i—O13—Mo2—O9 −179.12 (13) Mo1—O7—Mo4—O13 101.60 (9)
Mo4—O13—Mo2—O9 −66.32 (14) Mo3—O7—Mo4—Mo2i −102.1 (5)
Mo3i—O13—Mo2—O6 −64.9 (3) Mo2—O7—Mo4—Mo2i 104.35 (11)
Mo4—O13—Mo2—O6 47.9 (3) Mo1—O7—Mo4—Mo2i −164.19 (12)
Mo3i—O13—Mo2—O7i −22.44 (12) Mo2—O13—Mo4—O11 −38.2 (5)
Mo4—O13—Mo2—O7i 90.36 (12) Mo3i—O13—Mo4—O11 78.2 (5)
Mo3i—O13—Mo2—O7 −100.24 (12) Mo2—O13—Mo4—O12 167.31 (15)
Mo4—O13—Mo2—O7 12.55 (10) Mo3i—O13—Mo4—O12 −76.32 (14)
Mo3i—O13—Mo2—Mo4i −23.85 (15) Mo2—O13—Mo4—O10 65.99 (13)
Mo4—O13—Mo2—Mo4i 88.95 (11) Mo3i—O13—Mo4—O10 −177.64 (12)
Mo4—O13—Mo2—Mo3i 112.80 (16) Mo2—O13—Mo4—O6i −91.00 (13)
Mo2i—O7—Mo2—O9 179.05 (13) Mo3i—O13—Mo4—O6i 25.37 (11)
Mo3—O7—Mo2—O9 −86.59 (12) Mo2—O13—Mo4—O7 −13.19 (11)
Mo4—O7—Mo2—O9 85.91 (12) Mo3i—O13—Mo4—O7 103.18 (11)
Mo1—O7—Mo2—O9 −0.12 (10) Mo2—O13—Mo4—Mo2i −55.58 (10)
Mo2i—O7—Mo2—O6 −81.79 (12) Mo3i—O13—Mo4—Mo2i 60.79 (8)
Mo3—O7—Mo2—O6 12.57 (10) N2—C3—N1—C1 0.0 (6)
Mo4—O7—Mo2—O6 −174.94 (12) C4—C3—N1—C1 −178.8 (6)
Mo1—O7—Mo2—O6 99.04 (10) N2—C3—N1—C5 −177.8 (4)
Mo2i—O7—Mo2—O13 81.18 (12) C4—C3—N1—C5 3.4 (8)
Mo3—O7—Mo2—O13 175.54 (12) C2—C1—N1—C3 0.4 (6)
Mo4—O7—Mo2—O13 −11.97 (10) C2—C1—N1—C5 178.2 (4)
Mo1—O7—Mo2—O13 −97.99 (10) C6—C5—N1—C3 89.7 (6)
Mo2i—O7—Mo2—O7i 0.0 C6—C5—N1—C1 −87.7 (6)
Mo3—O7—Mo2—O7i 94.36 (11) N1—C3—N2—C2 −0.4 (6)
Mo4—O7—Mo2—O7i −93.14 (11) C4—C3—N2—C2 178.5 (6)
Mo1—O7—Mo2—O7i −179.17 (14) C1—C2—N2—C3 0.6 (6)
Mo2i—O7—Mo2—Mo4i −46.75 (8) N4—C11—N3—C9 0.1 (5)
Mo3—O7—Mo2—Mo4i 47.61 (7) C12—C11—N3—C9 −179.8 (5)
Mo4—O7—Mo2—Mo4i −139.89 (7) N4—C11—N3—C8 −173.5 (4)
Mo1—O7—Mo2—Mo4i 134.08 (6) C12—C11—N3—C8 6.6 (7)
Mo2i—O7—Mo2—Mo3i 45.79 (8) C10—C9—N3—C11 −0.4 (5)
Mo3—O7—Mo2—Mo3i 140.15 (7) C10—C9—N3—C8 173.1 (4)
Mo4—O7—Mo2—Mo3i −47.35 (7) C7—C8—N3—C11 −138.3 (5)
Mo1—O7—Mo2—Mo3i −133.38 (6) C7—C8—N3—C9 49.2 (6)
Mo1—O5—Mo3—O3 −72.93 (18) N3—C11—N4—C10 0.2 (5)
Mo1—O5—Mo3—O4 179.01 (15) C12—C11—N4—C10 −179.9 (4)
Mo1—O5—Mo3—O13i 50.0 (3) C9—C10—N4—C11 −0.4 (5)
Mo1—O5—Mo3—O7 20.83 (14)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2N···O9ii 0.87 (3) 2.37 (4) 3.031 (5) 134 (4)
N2—H2N···O10ii 0.87 (3) 2.20 (2) 3.001 (5) 153 (5)
N4—H4N···O12iii 0.86 (3) 2.39 (4) 3.052 (5) 134 (4)
N4—H4N···O4iv 0.86 (3) 2.12 (3) 2.873 (4) 146 (5)

Symmetry codes: (ii) −x+1, −y+1, −z; (iii) x−1, y−1, z+1; (iv) −x, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2208).

References

  1. Bruker (1999). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bu, W.-M., Ye, L., Yang, G.-Y., Gao, J.-S., Fan, Y.-G., Shao, M.-C. & Xu, J.-Q. (2001). Inorg Chem Commun 4, 1–4.
  3. Hagrman, D., Zubieta, C., Rose, D. J., Zubieta, J. & Haushalter, R. C. (1997). Angew. Chem. Int. Ed.36, 873–876.
  4. Kozhevnikov, I. V. (1998). Chem Rev 98, 171–198. [DOI] [PubMed]
  5. Li, S.-L., Lan, Y.-Q., Ma, J.-F., Yang, J., Liu, J., Fu, Y.-M. & Su, Z.-M. (2008). Dalton Trans. pp. 2015–2025. [DOI] [PubMed]
  6. Li, S.-L., Lan, Y.-Q., Ma, J.-F., Yang, J., Wang, X.-H. & Su, Z.-M. (2007). Inorg Chem 46, 8283–8290. [DOI] [PubMed]
  7. Rhule, J. T., Hill, C. L., Judd, D. A. & Schinazi, R. F. (1998). Chem Rev 98, 327–358. [DOI] [PubMed]
  8. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Wu, C.-D., Lu, C.-Z., Lin, X., Zhuang, H.-H. & Huang, J.-S. (2002). Inorg Chem Commun 5, 664–666.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808035022/bg2208sup1.cif

e-64-m1487-sup1.cif (30.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808035022/bg2208Isup2.hkl

e-64-m1487-Isup2.hkl (245.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES