Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Nov 8;64(Pt 12):o2278. doi: 10.1107/S1600536808034752

2-(4-Phenyl-3H-1,5-benzodiazepin-2-yl)phenol

Feng-Ke Yang a,*, Wei Cheng a, Yi-Ning Ding b
PMCID: PMC2960137  PMID: 21581258

Abstract

In the title compound, C21H16N2O, the dihedral angle between the pendant aromatic rings is 74.2–(1)°.. The conformation is stabilized by an intramolecular O—H⋯N hydrogen bond.

Related literature

For the biological properties of Schiff bases, see: Abu-Hussen (2006); Mladenova et al. (2002); Singh et al. (2006). For the applications of nitro­gen heterocyclic compounds, see: Adsule et al. (2006). For bond-length data, see: Allen et al. (1987).graphic file with name e-64-o2278-scheme1.jpg

Experimental

Crystal data

  • C21H16N2O

  • M r = 312.36

  • Monoclinic, Inline graphic

  • a = 6.3787 (13) Å

  • b = 16.695 (3) Å

  • c = 16.166 (4) Å

  • β = 110.72 (3)°

  • V = 1610.2 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 (2) K

  • 0.20 × 0.20 × 0.10 mm

Data collection

  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: none

  • 6422 measured reflections

  • 2806 independent reflections

  • 1726 reflections with I > 2σ(I)

  • R int = 0.061

Refinement

  • R[F 2 > 2σ(F 2)] = 0.099

  • wR(F 2) = 0.198

  • S = 1.18

  • 2806 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808034752/at2658sup1.cif

e-64-o2278-sup1.cif (19.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808034752/at2658Isup2.hkl

e-64-o2278-Isup2.hkl (137.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N2 0.83 1.82 2.563 (5) 147

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank the Natural Science Foundation of Shandong Province (No.Q2006B02).

supplementary crystallographic information

Comment

Monocondensed Schiff bases use as intermediates, in the synthesis of unsymmetrical multidentate Schiff base lingands. So they are attractive. Schiff bases often exhibit important biological activities such as antifungal (Singh et al., 2006), antibacterial (Abu-Hussen et al., 2006) and antitumor (Mladenova et al., 2002). Nitrogen heterocyclic compounds have been used widely in the pharmaceutical industry, medicine and agriculture for their biological activity because of their antimicrobial, antipyretic, anti-inflammatory, and anticancer properties (Adsule et al., 2006). In this paper, we have synthesized a new Schiff base compound by the condensation of 2-(4-phenyl-3H-benzo[b][1,4]diazepin-2-yl)-phenol with diaminobenzene and characterized it by X-ray crystallography.

All the bond lengths in the compound are within normal range (Allen et al., 1987). The C9—N1 bond length is 1.289 (5) Å while C7—N2 bond length is 1.302 (5) Å that confirm they are both double bonds. Five atoms N2, C5, C7, C8 and C21 are in a plane(p1). Four atoms N1, C8, C9, C10 are in a plane(p2). The benzene ring C1—C6(p3), is approximately planar with its immediate substituent atoms C7 and O1 with a maximum deviation of 0.035 Å for O1.The benzene ring C10—C15(p4), is approximately planar with its immediate substituent atoms C9 with a maximum deviation of 0.038 Å for C9. The benzene ring C16—C21(p5). The dihedral angles formed by p1 with the p3, p4, p5 are 11.06, 80.49, 40.56°, respectively. The dihedral angles formed by p2 with the p3, p5 are 84.81, 42.56 °, respectively. The dihedral angles between p1 and p2 is 75.12 °. The molecular structure is stabilized by intramolecular O—H···N hydrogen-bonding interactions and the crystal structure is stabilized by C—H···π interactions {C13···Cg1 = 3.871, H13A···Cg1 = 3.161 Å, C13—H13A···Cg1 = 134.58° [Symmetry code: -1+x, 1/2-y, -1/2+z]; C18···Cg2 = 3.897, H18A···Cg2 = 3.126 Å, C18—H18A···Cg2 = 141.54° [Symmetry code: 1-x, -y, 1-z]; C19···Cg1 = 3.682, H19A···Cg1 = 3.169 Å, C19—H19A···Cg1 = 116.71° [Symmetry code: x, 1/2-y, 1/2+z]; C20···Cg2 = 3.685, H20A···Cg2 = 3.052 Å, C20—H20A···Cg2 = 126.85° [Symmetry code: x, 1/2-y, 1/2+z]. Cg1 and, Cg2 are the centroids of rings C1—C6, C10—C15, respectively}.

Experimental

1-(2-Hydroxy-phenyl)-ethanone (13.6 g, 0.10 mol), chlorosyl-benzene (14.1 g, 0.10 mol), potassa (0.42 g) refluxed in absolute piperidine (15 ml) result in the yellow product of 1-(2-hydroxy-phenyl)-3-phenyl-propane-1,3-dione. The title compound was obtained by the reaction of 1-(2-hydroxy-phenyl)-3-phenyl-propane-1,3-dione (2.04 g, 0.01 mol) and benzene-1,2-diamine (1.08 g, 0.01 mol) without solvent. Single crystals suitable for X-ray measurements were obtained by slow evaporation of an absolute ethanol at room temperature.

Refinement

H atoms were fixed geometrically to ride on their attached atoms, with C—H = 0.93–0.97 Å and O—H = 0.84 Å, and with Uiso =1.2Ueq (C) or 1.5 Ueq (O).

Figures

Fig. 1.

Fig. 1.

The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

C21H16N2O F000 = 656
Mr = 312.36 Dx = 1.288 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2787 reflections
a = 6.3787 (13) Å θ = 2.5–26.0º
b = 16.695 (3) Å µ = 0.08 mm1
c = 16.166 (4) Å T = 298 (2) K
β = 110.72 (3)º Block, yellow
V = 1610.2 (7) Å3 0.20 × 0.20 × 0.10 mm
Z = 4

Data collection

Bruker SMART 1K CCD area-detector diffractometer 1726 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.061
Monochromator: graphite θmax = 25.0º
T = 298(2) K θmin = 1.8º
Thin–slice ω scans h = −7→7
Absorption correction: none k = −9→19
6422 measured reflections l = −19→19
2806 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.099 H-atom parameters constrained
wR(F2) = 0.198   w = 1/[σ2(Fo2) + (0.0623P)2 + 0.3681P] where P = (Fo2 + 2Fc2)/3
S = 1.18 (Δ/σ)max < 0.001
2806 reflections Δρmax = 0.22 e Å3
217 parameters Δρmin = −0.17 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.0166 (5) −0.38550 (18) −0.5523 (2) 0.0622 (10)
H1A 0.0571 −0.3466 −0.5754 0.075*
N1 0.3086 (5) −0.10096 (19) −0.5027 (2) 0.0366 (9)
N2 0.0328 (6) −0.2397 (2) −0.5993 (2) 0.0407 (9)
C1 −0.2099 (8) −0.4154 (3) −0.4699 (3) 0.0593 (14)
H1C −0.1742 −0.4692 −0.4718 0.071*
C2 −0.3515 (9) −0.3930 (3) −0.4277 (3) 0.0676 (16)
H2B −0.4122 −0.4317 −0.4013 0.081*
C3 −0.4051 (9) −0.3140 (4) −0.4237 (3) 0.0678 (16)
H3A −0.5027 −0.2988 −0.3953 0.081*
C4 −0.3130 (7) −0.2574 (3) −0.4623 (3) 0.0511 (13)
H4A −0.3491 −0.2039 −0.4588 0.061*
C5 −0.1671 (7) −0.2770 (3) −0.5064 (3) 0.0373 (11)
C6 −0.1186 (7) −0.3587 (3) −0.5099 (3) 0.0456 (12)
C7 −0.0739 (7) −0.2161 (3) −0.5483 (3) 0.0367 (11)
C8 −0.0850 (7) −0.1287 (2) −0.5304 (3) 0.0377 (11)
H8A −0.1908 −0.1183 −0.5008 0.045*
H8B −0.1287 −0.0980 −0.5848 0.045*
C9 0.1498 (7) −0.1083 (2) −0.4713 (3) 0.0351 (10)
C10 0.2076 (7) −0.1005 (2) −0.3739 (3) 0.0390 (11)
C11 0.0546 (8) −0.0730 (3) −0.3376 (3) 0.0517 (13)
H11A −0.0883 −0.0578 −0.3744 0.062*
C12 0.1128 (10) −0.0680 (3) −0.2474 (4) 0.0631 (15)
H12A 0.0095 −0.0481 −0.2240 0.076*
C13 0.3185 (10) −0.0916 (3) −0.1916 (3) 0.0651 (15)
H13A 0.3551 −0.0891 −0.1307 0.078*
C14 0.4708 (8) −0.1193 (3) −0.2274 (3) 0.0614 (15)
H14A 0.6126 −0.1350 −0.1901 0.074*
C15 0.4170 (8) −0.1242 (3) −0.3174 (3) 0.0515 (13)
H15A 0.5218 −0.1435 −0.3404 0.062*
C16 0.2675 (6) −0.1189 (3) −0.5918 (3) 0.0350 (10)
C17 0.3790 (7) −0.0723 (3) −0.6349 (3) 0.0421 (11)
H17A 0.4668 −0.0294 −0.6054 0.050*
C18 0.3612 (8) −0.0887 (3) −0.7201 (3) 0.0550 (13)
H18A 0.4321 −0.0558 −0.7486 0.066*
C19 0.2394 (8) −0.1533 (3) −0.7638 (3) 0.0573 (14)
H19A 0.2287 −0.1643 −0.8215 0.069*
C20 0.1333 (8) −0.2020 (3) −0.7224 (3) 0.0543 (13)
H20A 0.0558 −0.2469 −0.7515 0.065*
C21 0.1407 (7) −0.1845 (3) −0.6372 (3) 0.0391 (11)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.077 (2) 0.041 (2) 0.084 (3) 0.0033 (18) 0.047 (2) −0.0025 (18)
N1 0.037 (2) 0.030 (2) 0.042 (2) 0.0003 (16) 0.0141 (17) 0.0018 (17)
N2 0.047 (2) 0.039 (2) 0.040 (2) −0.0006 (18) 0.0201 (18) −0.0035 (17)
C1 0.066 (3) 0.042 (3) 0.072 (4) 0.000 (3) 0.028 (3) 0.003 (3)
C2 0.077 (4) 0.060 (4) 0.078 (4) 0.001 (3) 0.043 (3) 0.021 (3)
C3 0.071 (4) 0.069 (4) 0.081 (4) 0.003 (3) 0.049 (3) 0.011 (3)
C4 0.055 (3) 0.046 (3) 0.060 (3) 0.007 (2) 0.030 (3) 0.010 (2)
C5 0.037 (3) 0.039 (3) 0.037 (3) −0.005 (2) 0.014 (2) −0.002 (2)
C6 0.044 (3) 0.040 (3) 0.055 (3) −0.005 (2) 0.021 (2) 0.001 (2)
C7 0.030 (2) 0.038 (3) 0.037 (3) −0.001 (2) 0.007 (2) 0.001 (2)
C8 0.038 (3) 0.036 (3) 0.043 (3) 0.003 (2) 0.020 (2) 0.002 (2)
C9 0.038 (2) 0.019 (2) 0.048 (3) 0.0065 (19) 0.015 (2) 0.002 (2)
C10 0.055 (3) 0.022 (2) 0.047 (3) 0.002 (2) 0.026 (2) −0.004 (2)
C11 0.060 (3) 0.045 (3) 0.053 (3) 0.007 (2) 0.025 (3) −0.005 (2)
C12 0.084 (4) 0.061 (4) 0.058 (4) 0.000 (3) 0.041 (3) −0.011 (3)
C13 0.094 (4) 0.066 (4) 0.041 (3) −0.020 (3) 0.030 (3) −0.010 (3)
C14 0.062 (3) 0.087 (4) 0.033 (3) −0.006 (3) 0.014 (3) 0.003 (3)
C15 0.050 (3) 0.057 (3) 0.050 (3) 0.002 (3) 0.020 (2) 0.001 (2)
C16 0.030 (2) 0.037 (3) 0.037 (3) 0.009 (2) 0.010 (2) 0.005 (2)
C17 0.042 (3) 0.043 (3) 0.044 (3) 0.003 (2) 0.019 (2) 0.008 (2)
C18 0.065 (3) 0.060 (4) 0.044 (3) 0.002 (3) 0.024 (3) 0.012 (3)
C19 0.064 (3) 0.074 (4) 0.041 (3) 0.009 (3) 0.027 (3) 0.000 (3)
C20 0.061 (3) 0.058 (4) 0.047 (3) −0.007 (3) 0.023 (2) −0.010 (3)
C21 0.039 (3) 0.045 (3) 0.035 (3) 0.006 (2) 0.015 (2) 0.002 (2)

Geometric parameters (Å, °)

O1—C6 1.353 (5) C10—C11 1.382 (6)
O1—H1A 0.8347 C10—C15 1.383 (6)
N1—C9 1.289 (5) C11—C12 1.375 (6)
N1—C16 1.402 (5) C11—H11A 0.9300
N2—C7 1.302 (5) C12—C13 1.361 (7)
N2—C21 1.414 (5) C12—H12A 0.9300
C1—C2 1.363 (6) C13—C14 1.375 (6)
C1—C6 1.385 (6) C13—H13A 0.9300
C1—H1C 0.9300 C14—C15 1.374 (6)
C2—C3 1.371 (6) C14—H14A 0.9300
C2—H2B 0.9300 C15—H15A 0.9300
C3—C4 1.372 (6) C16—C17 1.396 (5)
C3—H3A 0.9300 C16—C21 1.404 (6)
C4—C5 1.397 (6) C17—C18 1.369 (6)
C4—H4A 0.9300 C17—H17A 0.9300
C5—C6 1.405 (6) C18—C19 1.370 (6)
C5—C7 1.459 (6) C18—H18A 0.9300
C7—C8 1.495 (5) C19—C20 1.373 (6)
C8—C9 1.503 (5) C19—H19A 0.9300
C8—H8A 0.9700 C20—C21 1.392 (5)
C8—H8B 0.9700 C20—H20A 0.9300
C9—C10 1.491 (5)
C6—O1—H1A 108.9 C15—C10—C9 119.5 (4)
C9—N1—C16 119.8 (4) C12—C11—C10 120.3 (5)
C7—N2—C21 121.4 (4) C12—C11—H11A 119.9
C2—C1—C6 120.6 (5) C10—C11—H11A 119.9
C2—C1—H1C 119.7 C13—C12—C11 121.4 (5)
C6—C1—H1C 119.7 C13—C12—H12A 119.3
C1—C2—C3 120.5 (5) C11—C12—H12A 119.3
C1—C2—H2B 119.7 C12—C13—C14 118.5 (5)
C3—C2—H2B 119.7 C12—C13—H13A 120.7
C2—C3—C4 119.1 (5) C14—C13—H13A 120.7
C2—C3—H3A 120.4 C15—C14—C13 121.1 (5)
C4—C3—H3A 120.4 C15—C14—H14A 119.5
C3—C4—C5 122.8 (5) C13—C14—H14A 119.5
C3—C4—H4A 118.6 C14—C15—C10 120.2 (4)
C5—C4—H4A 118.6 C14—C15—H15A 119.9
C4—C5—C6 116.3 (4) C10—C15—H15A 119.9
C4—C5—C7 121.9 (4) C17—C16—N1 116.8 (4)
C6—C5—C7 121.7 (4) C17—C16—C21 118.3 (4)
O1—C6—C1 117.4 (4) N1—C16—C21 124.6 (4)
O1—C6—C5 122.0 (4) C18—C17—C16 121.0 (4)
C1—C6—C5 120.6 (4) C18—C17—H17A 119.5
N2—C7—C5 118.3 (4) C16—C17—H17A 119.5
N2—C7—C8 119.3 (4) C17—C18—C19 120.4 (5)
C5—C7—C8 122.3 (4) C17—C18—H18A 119.8
C7—C8—C9 103.8 (3) C19—C18—H18A 119.8
C7—C8—H8A 111.0 C18—C19—C20 120.2 (5)
C9—C8—H8A 111.0 C18—C19—H19A 119.9
C7—C8—H8B 111.0 C20—C19—H19A 119.9
C9—C8—H8B 111.0 C19—C20—C21 120.5 (5)
H8A—C8—H8B 109.0 C19—C20—H20A 119.8
N1—C9—C10 118.2 (4) C21—C20—H20A 119.8
N1—C9—C8 121.2 (4) C20—C21—C16 119.5 (4)
C10—C9—C8 120.6 (4) C20—C21—N2 116.2 (4)
C11—C10—C15 118.5 (4) C16—C21—N2 124.1 (4)
C11—C10—C9 122.0 (4)
C6—C1—C2—C3 −0.3 (8) N1—C9—C10—C15 −31.4 (6)
C1—C2—C3—C4 −0.5 (8) C8—C9—C10—C15 145.4 (4)
C2—C3—C4—C5 0.6 (8) C15—C10—C11—C12 1.4 (7)
C3—C4—C5—C6 0.2 (7) C9—C10—C11—C12 178.7 (4)
C3—C4—C5—C7 178.9 (4) C10—C11—C12—C13 −1.7 (8)
C2—C1—C6—O1 −178.5 (5) C11—C12—C13—C14 1.3 (8)
C2—C1—C6—C5 1.1 (7) C12—C13—C14—C15 −0.8 (8)
C4—C5—C6—O1 178.6 (4) C13—C14—C15—C10 0.6 (7)
C7—C5—C6—O1 −0.1 (6) C11—C10—C15—C14 −0.8 (7)
C4—C5—C6—C1 −1.0 (6) C9—C10—C15—C14 −178.3 (4)
C7—C5—C6—C1 −179.7 (4) C9—N1—C16—C17 145.2 (4)
C21—N2—C7—C5 −175.6 (3) C9—N1—C16—C21 −41.1 (6)
C21—N2—C7—C8 0.7 (6) N1—C16—C17—C18 175.7 (4)
C4—C5—C7—N2 −169.8 (4) C21—C16—C17—C18 1.6 (6)
C6—C5—C7—N2 8.8 (6) C16—C17—C18—C19 −2.4 (7)
C4—C5—C7—C8 14.0 (6) C17—C18—C19—C20 0.3 (7)
C6—C5—C7—C8 −167.4 (4) C18—C19—C20—C21 2.5 (7)
N2—C7—C8—C9 −71.1 (5) C19—C20—C21—C16 −3.3 (7)
C5—C7—C8—C9 105.0 (4) C19—C20—C21—N2 −177.9 (4)
C16—N1—C9—C10 171.1 (4) C17—C16—C21—C20 1.3 (6)
C16—N1—C9—C8 −5.7 (6) N1—C16—C21—C20 −172.3 (4)
C7—C8—C9—N1 75.8 (4) C17—C16—C21—N2 175.4 (4)
C7—C8—C9—C10 −100.9 (4) N1—C16—C21—N2 1.8 (6)
N1—C9—C10—C11 151.3 (4) C7—N2—C21—C20 −143.7 (4)
C8—C9—C10—C11 −31.9 (6) C7—N2—C21—C16 42.0 (6)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1A···N2 0.83 1.82 2.563 (5) 147
C13—H13A···Cg1i 0.93 3.16 3.871 135
C18—H18A···Cg2ii 0.93 3.13 3.897 142
C19—H19A···Cg1iii 0.93 3.17 3.682 117
C20—H20A···Cg2iii 0.93 3.05 3.685 127

Symmetry codes: (i) x−1, −y+1/2, z−1/2; (ii) −x+1, −y, −z+1; (iii) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2658).

References

  1. Abu-Hussen, A. A. A. (2006). J. Coord. Chem.59, 157–176.
  2. Adsule, S., Barve, V., Chen, D., Ahmed, F., Dou, Q. P., Padhye, S. & Sarkar, F. H. (2006). J. Med. Chem.49, 7242–7246. [DOI] [PubMed]
  3. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  4. Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Mladenova, R., Ignatova, M., Manolova, N., Petrova, T. & Rashkov, I. (2002). Eur. Polym. J.38, 989–1000.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Singh, K., Barwa, M. S. & Tyagi, P. (2006). Eur. J. Med. Chem.41, 147–153. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808034752/at2658sup1.cif

e-64-o2278-sup1.cif (19.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808034752/at2658Isup2.hkl

e-64-o2278-Isup2.hkl (137.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES