Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jan 9;64(Pt 2):o409. doi: 10.1107/S1600536807068766

2,2′-[2,3,5,6-Tetra­methyl-p-phenyl­ene­bis(methyl­enethio)]bis­(pyridine N-oxide)

B Ravindran Durai Nayagam a,*, Samuel Robinson Jebas b, Selvarathi Grace a, Dieter Schollmeyer c
PMCID: PMC2960153  PMID: 21201437

Abstract

Mol­ecules of the title compound, C22H24N2O2S2, lie across centres of inversion. The two thio­pyridine N-oxide groups adopt a stepped trans configuration with respect to the benzene ring, by virtue of the symmetry. The oxopyridinium ring forms a dihedral angle of 79.9 (2)° with the benzene ring. The crystal structure is stabilized by a strong π–π inter­action between the pyridinium rings of adjacent mol­ecules [ring centroid–centroid distance = 3.464 (3) Å].

Related literature

For bond-length data, see: Allen et al. (1987). For biological activities of N-oxide derivatives, see: Bovin et al. (1992); Katsuyuki et al. (1991); Leonard et al. (1955); Lobana & Bhatia (1989); Symons & West (1985). For a related structure, see: Hartung et al. (1996).graphic file with name e-64-0o409-scheme1.jpg

Experimental

Crystal data

  • C22H24N2O2S2

  • M r = 412.55

  • Monoclinic, Inline graphic

  • a = 11.8431 (13) Å

  • b = 9.0108 (9) Å

  • c = 9.7551 (10) Å

  • β = 112.611 (9)°

  • V = 961.01 (17) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 2.68 mm−1

  • T = 193 (2) K

  • 0.10 × 0.10 × 0.05 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.80, T max = 0.87

  • 1929 measured reflections

  • 1813 independent reflections

  • 1200 reflections with I > 2σ(I)

  • R int = 0.077

  • 3 standard reflections frequency: 60 min intensity decay: 3%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057

  • wR(F 2) = 0.170

  • S = 0.99

  • 1813 reflections

  • 129 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807068766/ci2548sup1.cif

e-64-0o409-sup1.cif (14KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807068766/ci2548Isup2.hkl

e-64-0o409-Isup2.hkl (92.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

N-Oxides and their derivatives show a broad spectrum of biological activity, such as antifungal, antibacterial, antimicrobial and antibiotic activities (Lobana & Bhatia, 1989; Symons et al., 1985). These compounds are also found to be involved in DNA strand scission under physiological conditions (Katsuyuki et al., 1991; Bovin et al., 1992). Pyridine N-oxides bearing a sulfur group in position 2 display significant antimicrobial activity (Leonard et al., 1955).

The asymmetric unit of the title compound consists of one half of a centrosymmetric molecule. The two thiopyridine-N-oxide groups adopt a stepped trans conformation with respect to the benzene ring, by virtue of the symmetry. The oxopyridinium ring forms a dihedral angle of 79.9 (2)° with the benzene ring. The N—O bond length is in good agreement with the mean value of 1.304 (15)Å reported in the literature for pyridine N-oxides (Allen et al., 1987). As observed in a similar structure (Hartung et al., 1996), the S atom is bent significantly towards the N-oxide O atom [N9—C8—S7 = 111.4 (3)°].

The crystal packing is stabilized by a strong π-π interaction between the pyridinium rings of adjacent molecules at (x, y, z) and (-x, 2 - y, -z), with a ring centroid to centroid distance of 3.464 (3) Å.

Experimental

A mixture of 1,4-bis(bromomethyl)durene (0.320, 1 mmol) and 1-hydroxypyridine-2-thione sodium salt (0.298,2 mmol) in water (30 ml) and methanol (30 ml) was heated at 333 K with stirring for 30 min. The compound formed was filtered off, and dried (0.34 g, 82%). The compound was recrystallized from chloroform-methanol (1:2 v/v).

Refinement

C-bound H atoms were placed in calculated positions [C—H = 0.95 Å (aromatic), 0.98 Å (methylene), and 0.99 Å (methyl)] and refined in the riding-model approximation, with Uiso(H)=1.2–1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids. Atoms labelled with the suffix a are generated by the symmetry operations (1 - x, 1 - y, 1 - z).

Crystal data

C22H24N2O2S2 F000 = 436
Mr = 412.55 Dx = 1.426 Mg m3
Monoclinic, P21/c Cu Kα radiation λ = 1.54178 Å
Hall symbol: -P 2ybc Cell parameters from 25 reflections
a = 11.8431 (13) Å θ = 15–29.3º
b = 9.0108 (9) Å µ = 2.68 mm1
c = 9.7551 (10) Å T = 193 (2) K
β = 112.611 (9)º Block, colourless
V = 961.01 (17) Å3 0.10 × 0.10 × 0.05 mm
Z = 2

Data collection

Enraf–Nonius CAD-4 diffractometer θmax = 70º
ω/2θ scans θmin = 4.0º
Absorption correction: ψ scan(North et al., 1968) h = −14→13
Tmin = 0.80, Tmax = 0.87 k = 0→10
1929 measured reflections l = 0→11
1813 independent reflections 3 standard reflections
1200 reflections with I > 2σ(I) every 60 min
Rint = 0.077 intensity decay: 3%

Refinement

Refinement on F2 H-atom parameters constrained
Least-squares matrix: full   w = 1/[σ2(Fo2) + (0.1008P)2] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.057 (Δ/σ)max < 0.001
wR(F2) = 0.170 Δρmax = 0.42 e Å3
S = 0.99 Δρmin = −0.41 e Å3
1813 reflections Extinction correction: none
129 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.4444 (3) 0.6186 (4) 0.4063 (4) 0.0220 (8)
C2 0.5351 (3) 0.6459 (4) 0.5463 (4) 0.0234 (8)
C3 0.4077 (3) 0.4715 (4) 0.3606 (4) 0.0243 (8)
C4 0.5706 (4) 0.8042 (4) 0.5965 (4) 0.0305 (9)
H4A 0.5049 0.8714 0.5374 0.046*
H4B 0.646 0.8299 0.583 0.046*
H4C 0.5838 0.8136 0.7017 0.046*
C5 0.3044 (4) 0.4452 (4) 0.2124 (4) 0.0347 (10)
H5A 0.2428 0.5233 0.1942 0.052*
H5B 0.267 0.3484 0.2132 0.052*
H5C 0.3365 0.447 0.1336 0.052*
C6 0.3835 (3) 0.7458 (4) 0.3017 (4) 0.0258 (8)
H6A 0.3528 0.7114 0.1973 0.031*
H6B 0.4429 0.827 0.3138 0.031*
S7 0.25697 (9) 0.81142 (11) 0.34802 (10) 0.0290 (3)
C8 0.1962 (3) 0.9526 (4) 0.2167 (4) 0.0254 (8)
N9 0.1042 (3) 1.0262 (4) 0.2392 (4) 0.0293 (7)
C10 0.0488 (4) 1.1435 (4) 0.1524 (5) 0.0340 (10)
H10 −0.0123 1.1969 0.1725 0.041*
C11 0.0792 (4) 1.1863 (4) 0.0363 (5) 0.0347 (9)
H11 0.0394 1.2683 −0.0242 0.042*
C12 0.1688 (4) 1.1083 (5) 0.0083 (5) 0.0358 (10)
H12 0.1889 1.1346 −0.0739 0.043*
C13 0.2287 (4) 0.9925 (4) 0.0998 (4) 0.0287 (9)
H13 0.2918 0.9405 0.0826 0.034*
O14 0.0730 (3) 0.9825 (4) 0.3471 (3) 0.0443 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.032 (2) 0.0160 (17) 0.0218 (18) 0.0012 (15) 0.0144 (16) 0.0009 (14)
C2 0.0280 (19) 0.0172 (17) 0.0262 (19) −0.0026 (14) 0.0117 (15) −0.0053 (15)
C3 0.0294 (19) 0.0227 (19) 0.0217 (17) −0.0043 (15) 0.0106 (15) −0.0028 (15)
C4 0.038 (2) 0.0189 (19) 0.033 (2) −0.0065 (17) 0.0124 (18) −0.0023 (17)
C5 0.044 (2) 0.025 (2) 0.031 (2) −0.0021 (19) 0.0101 (19) −0.0028 (18)
C6 0.0303 (19) 0.0221 (17) 0.026 (2) 0.0011 (16) 0.0116 (16) −0.0001 (16)
S7 0.0373 (5) 0.0247 (5) 0.0282 (5) 0.0039 (4) 0.0160 (4) 0.0041 (4)
C8 0.028 (2) 0.0183 (18) 0.0265 (19) −0.0018 (15) 0.0065 (16) −0.0063 (15)
N9 0.0308 (17) 0.0260 (17) 0.0300 (17) 0.0000 (14) 0.0102 (14) −0.0034 (14)
C10 0.030 (2) 0.025 (2) 0.038 (2) 0.0035 (16) 0.0031 (18) −0.0069 (18)
C11 0.035 (2) 0.0224 (19) 0.037 (2) −0.0048 (18) 0.0027 (17) −0.0011 (19)
C12 0.039 (2) 0.031 (2) 0.034 (2) −0.0059 (18) 0.0102 (18) 0.0004 (18)
C13 0.035 (2) 0.0233 (19) 0.0249 (19) −0.0011 (16) 0.0086 (17) 0.0008 (16)
O14 0.055 (2) 0.0477 (19) 0.0421 (18) 0.0125 (16) 0.0316 (16) 0.0064 (15)

Geometric parameters (Å, °)

C1—C2 1.398 (5) C11—C12 1.384 (6)
C1—C3 1.412 (5) C12—C13 1.379 (6)
C1—C6 1.520 (5) C4—H4A 0.98
C2—C3i 1.389 (5) C4—H4B 0.98
C2—C4 1.514 (5) C4—H4C 0.98
C3—C2i 1.389 (5) C5—H5A 0.98
C3—C5 1.511 (5) C5—H5B 0.98
C6—S7 1.822 (4) C5—H5C 0.98
S7—C8 1.752 (4) C6—H6A 0.99
C8—N9 1.364 (5) C6—H6B 0.99
C8—C13 1.384 (5) C10—H10 0.95
N9—O14 1.303 (4) C11—H11 0.95
N9—C10 1.355 (5) C12—H12 0.95
C10—C11 1.369 (6) C13—H13 0.95
C2—C1—C3 120.1 (3) C2—C4—H4C 109
C2—C1—C6 120.8 (3) H4A—C4—H4B 109
C3—C1—C6 119.2 (3) H4A—C4—H4C 109
C3i—C2—C1 120.2 (3) H4B—C4—H4C 109
C3i—C2—C4 120.1 (3) C3—C5—H5A 109
C1—C2—C4 119.7 (3) C3—C5—H5B 110
C2i—C3—C1 119.7 (3) C3—C5—H5C 109
C2i—C3—C5 121.2 (3) H5A—C5—H5B 109
C1—C3—C5 119.1 (3) H5A—C5—H5C 109
C1—C6—S7 107.5 (2) H5B—C5—H5C 110
C8—S7—C6 101.51 (18) S7—C6—H6A 110
N9—C8—C13 119.9 (4) S7—C6—H6B 110
N9—C8—S7 111.4 (3) C1—C6—H6A 110
C13—C8—S7 128.7 (3) C1—C6—H6B 110
O14—N9—C10 121.4 (4) H6A—C6—H6B 108
O14—N9—C8 118.4 (3) N9—C10—H10 119
C10—N9—C8 120.2 (4) C11—C10—H10 119
N9—C10—C11 121.2 (4) C10—C11—H11 120
C10—C11—C12 119.1 (4) C12—C11—H11 120
C13—C12—C11 119.9 (4) C11—C12—H12 120
C12—C13—C8 119.6 (4) C13—C12—H12 120
C2—C4—H4A 109 C8—C13—H13 120
C2—C4—H4B 109 C12—C13—H13 120
C3—C1—C2—C3i 2.0 (6) C6—S7—C8—C13 5.8 (4)
C6—C1—C2—C3i −178.3 (3) C13—C8—N9—O14 177.6 (3)
C3—C1—C2—C4 −177.7 (3) S7—C8—N9—O14 −1.6 (4)
C6—C1—C2—C4 1.9 (5) C13—C8—N9—C10 −3.5 (5)
C2—C1—C3—C2i −2.0 (6) S7—C8—N9—C10 177.3 (3)
C6—C1—C3—C2i 178.3 (3) O14—N9—C10—C11 −177.9 (4)
C2—C1—C3—C5 176.5 (3) C8—N9—C10—C11 3.2 (6)
C6—C1—C3—C5 −3.1 (5) N9—C10—C11—C12 −0.4 (6)
C2—C1—C6—S7 −86.0 (4) C10—C11—C12—C13 −2.1 (6)
C3—C1—C6—S7 93.6 (4) C11—C12—C13—C8 1.8 (6)
C1—C6—S7—C8 −178.8 (2) N9—C8—C13—C12 1.0 (6)
C6—S7—C8—N9 −175.2 (3) S7—C8—C13—C12 −180.0 (3)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2548).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bovin, D. H. R., Crepon, E. & Zard, S. Z. (1992). Bull. Soc. Chim. Fr.129, 145–150.
  3. Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  6. Hartung, J., Svoboda, I. & Fuess, H. (1996). Acta Cryst. C52, 2841–2844.
  7. Katsuyuki, N., Carter, B. J., Xu, J. & Hetch, S. M. (1991). J. Am. Chem. Soc.113, 5099–5100.
  8. Leonard, F., Barklay, F. A., Brown, E. V., Anderson, F. E. & Green, D. M. (1955). Antibiot. Chemother. pp. 261–264. [PubMed]
  9. Lobana, T. S. & Bhatia, P. K. (1989). J. Sci. Ind. Res.48, 394–401.
  10. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Symons, M. C. R. & West, D.-X. (1985). J. Chem. Soc. Daltan Trans., pp. 379–381.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807068766/ci2548sup1.cif

e-64-0o409-sup1.cif (14KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807068766/ci2548Isup2.hkl

e-64-0o409-Isup2.hkl (92.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES