Abstract
The conformation of the N—H bond in the title compound (23DCPCA), C8H6Cl3NO, is syn to both the 2- and 3-chloro substituents in the aromatic ring, similar to the 2-chloro substituent in 2-chloro-N-(2-chlorophenyl)acetamide (2CPCA), the 2- and 3-chloro substituents in N-(2,3-dichlorophenyl)acetamide (23DCPA) and in 2,2-dichloro-N-(2,3-dichlorophenyl)acetamide (23DCPDCA). The bond parameters in 23DCPCA are similar to those in 2-chloro-N-(phenyl)acetamide, 2CPCA, 23DCPA, 23DCPDCA and other acetanilides. The molecules in 23DCPCA are linked into chains through N—H⋯O hydrogen bonding.
Related literature
For related literature, see: Gowda et al. (2007a
▶,b
▶,c
▶); Shilpa & Gowda (2007 ▶).
Experimental
Crystal data
C8H6Cl3NO
M r = 238.49
Monoclinic,
a = 11.704 (3) Å
b = 4.712 (1) Å
c = 17.503 (4) Å
β = 99.76 (2)°
V = 951.3 (4) Å3
Z = 4
Cu Kα radiation
μ = 8.38 mm−1
T = 299 (2) K
0.50 × 0.35 × 0.28 mm
Data collection
Enraf–Nonius CAD-4 diffractometer
Absorption correction: ψ scan (North et al., 1968 ▶) T min = 0.014, T max = 0.096
1832 measured reflections
1692 independent reflections
1625 reflections with I > 2σ(I)
R int = 0.036
3 standard reflections frequency: 120 min intensity decay: 2.0%
Refinement
R[F 2 > 2σ(F 2)] = 0.080
wR(F 2) = 0.231
S = 1.07
1692 reflections
122 parameters
H atoms treated by a mixture of independent and constrained refinement
Δρmax = 0.87 e Å−3
Δρmin = −1.04 e Å−3
Data collection: CAD-4-PC (Enraf–Nonius, 1996 ▶); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987 ▶); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: PLATON (Spek, 2003 ▶); software used to prepare material for publication: SHELXL97.
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808000408/om2201sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808000408/om2201Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N1—H1N⋯O1i | 0.85 (5) | 2.05 (5) | 2.862 (4) | 161 (4) |
Symmetry code: (i)
.
Acknowledgments
BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.
supplementary crystallographic information
Comment
In the present work, the structure of 2-chloro-N-(2,3-dichlorophenyl)- acetamide (23DCPCA) has been determined to study the effect of substituents on the structures of N-aromatic amides (Gowda et al., 2007a, b, c). The conformation of the N—H bond in 23DCPCA is syn to both the 2-chloro and 3-chloro substituent (Fig. 1), similar to that of 2-chloro substituent in 2-chloro-N-(2-chlorophenyl)acetamide (2CPCA)(Gowda et al., 2007b), 2- and 3-chloro substituents in N-(2,3-dichlorophenyl)-acetamide (23DCPA) (Gowda et al., 2007a) and in 2,2-dichloro-N-(2,3-dichlorophenyl)acetamide (23DCPDCA)(Gowda et al., 2007c). The bond parameters in 23DCPCA are similar to those in 2-chloro-N-(phenyl)acetamide, 2CPCA, 23DCPA, 23DCPDCA and other acetanilides (Gowda et al., 2007a, b, c). The molecules in the structure of 23DCPCA are stabilized through N—H···O hydrogen bonding (Table 1 and Fig.2).
Experimental
The title compound was prepared according to the literature method (Shilpa & Gowda, 2007). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra (Shilpa & Gowda, 2007). Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.
Refinement
The CH atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.97 Å. The NH atom was located in difference map with N—H = 0.85 (5) Å. Uiso(H) values were set equal to 1.2 Ueq of the parent atom.
The residual electron-density features are located in the region of Cl1. The highest peak and deepest hole are 1.04 and 0.80%A from Cl1, respectively.
Figures
Fig. 1.
Molecular structure of the title compound, showing the atom labeling scheme. The displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
Crystal data
| C8H6Cl3NO | F000 = 480 |
| Mr = 238.49 | Dx = 1.665 Mg m−3 |
| Monoclinic, P21/n | Cu Kα radiation λ = 1.54180 Å |
| Hall symbol: -P 2yn | Cell parameters from 25 reflections |
| a = 11.704 (3) Å | θ = 4.3–23.9º |
| b = 4.712 (1) Å | µ = 8.38 mm−1 |
| c = 17.503 (4) Å | T = 299 (2) K |
| β = 99.76 (2)º | Prism, colourless |
| V = 951.3 (4) Å3 | 0.50 × 0.35 × 0.28 mm |
| Z = 4 |
Data collection
| Enraf–Nonius CAD-4 diffractometer | Rint = 0.036 |
| Radiation source: fine-focus sealed tube | θmax = 66.9º |
| Monochromator: graphite | θmin = 4.2º |
| T = 299(2) K | h = −13→1 |
| ω/2θ scans | k = −5→0 |
| Absorption correction: ψ scan(North et al., 1968) | l = −20→20 |
| Tmin = 0.014, Tmax = 0.096 | 3 standard reflections |
| 1832 measured reflections | every 120 min |
| 1692 independent reflections | intensity decay: 2.0% |
| 1625 reflections with I > 2σ(I) |
Refinement
| Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
| Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
| R[F2 > 2σ(F2)] = 0.080 | w = 1/[σ2(Fo2) + (0.181P)2 + 0.9328P] where P = (Fo2 + 2Fc2)/3 |
| wR(F2) = 0.231 | (Δ/σ)max = 0.025 |
| S = 1.07 | Δρmax = 0.87 e Å−3 |
| 1692 reflections | Δρmin = −1.04 e Å−3 |
| 122 parameters | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
| Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.018 (3) |
| Secondary atom site location: difference Fourier map |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| C1 | 0.4488 (3) | 0.5307 (7) | 0.36495 (19) | 0.0315 (8) | |
| C2 | 0.4556 (3) | 0.4122 (7) | 0.2935 (2) | 0.0316 (8) | |
| C3 | 0.5442 (3) | 0.4955 (9) | 0.2544 (2) | 0.0395 (9) | |
| C4 | 0.6240 (4) | 0.6936 (10) | 0.2854 (3) | 0.0502 (11) | |
| H4 | 0.6825 | 0.7486 | 0.2586 | 0.060* | |
| C5 | 0.6172 (4) | 0.8099 (9) | 0.3558 (3) | 0.0502 (11) | |
| H5 | 0.6714 | 0.9453 | 0.3768 | 0.060* | |
| C6 | 0.5313 (3) | 0.7298 (9) | 0.3964 (2) | 0.0416 (9) | |
| H6 | 0.5284 | 0.8089 | 0.4447 | 0.050* | |
| C7 | 0.2947 (4) | 0.6252 (8) | 0.4390 (2) | 0.0376 (9) | |
| C8 | 0.1935 (4) | 0.4823 (8) | 0.4667 (2) | 0.0430 (10) | |
| H8A | 0.2178 | 0.2983 | 0.4884 | 0.052* | |
| H8B | 0.1320 | 0.4519 | 0.4228 | 0.052* | |
| N1 | 0.3582 (3) | 0.4477 (7) | 0.40382 (17) | 0.0347 (8) | |
| H1N | 0.346 (4) | 0.271 (11) | 0.405 (3) | 0.042* | |
| O1 | 0.3132 (3) | 0.8774 (6) | 0.4466 (2) | 0.0556 (9) | |
| Cl1 | 0.35541 (7) | 0.16288 (19) | 0.25447 (5) | 0.0389 (5) | |
| Cl2 | 0.55325 (12) | 0.3482 (3) | 0.16544 (7) | 0.0653 (6) | |
| Cl3 | 0.14026 (11) | 0.6855 (3) | 0.53663 (7) | 0.0602 (5) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| C1 | 0.0320 (17) | 0.0313 (17) | 0.0342 (16) | −0.0005 (13) | 0.0143 (13) | 0.0009 (13) |
| C2 | 0.0245 (16) | 0.0345 (17) | 0.0383 (18) | −0.0019 (13) | 0.0126 (13) | 0.0041 (14) |
| C3 | 0.0316 (17) | 0.050 (2) | 0.0428 (19) | 0.0012 (16) | 0.0234 (14) | 0.0043 (16) |
| C4 | 0.034 (2) | 0.056 (2) | 0.067 (3) | −0.0074 (17) | 0.0248 (19) | 0.006 (2) |
| C5 | 0.033 (2) | 0.049 (2) | 0.070 (3) | −0.0125 (17) | 0.0109 (19) | −0.0012 (19) |
| C6 | 0.040 (2) | 0.045 (2) | 0.042 (2) | −0.0058 (16) | 0.0097 (16) | −0.0031 (16) |
| C7 | 0.050 (2) | 0.0314 (18) | 0.0354 (18) | −0.0010 (15) | 0.0188 (16) | 0.0010 (14) |
| C8 | 0.048 (2) | 0.040 (2) | 0.049 (2) | −0.0055 (16) | 0.0304 (17) | −0.0054 (16) |
| N1 | 0.0431 (16) | 0.0293 (15) | 0.0376 (16) | −0.0022 (12) | 0.0236 (13) | −0.0005 (12) |
| O1 | 0.074 (2) | 0.0305 (15) | 0.076 (2) | −0.0035 (13) | 0.0499 (18) | −0.0054 (13) |
| Cl1 | 0.0360 (7) | 0.0433 (7) | 0.0411 (7) | −0.0057 (3) | 0.0170 (4) | −0.0078 (3) |
| Cl2 | 0.0670 (9) | 0.0878 (10) | 0.0529 (8) | −0.0123 (6) | 0.0438 (6) | −0.0074 (5) |
| Cl3 | 0.0646 (9) | 0.0640 (9) | 0.0639 (8) | −0.0105 (5) | 0.0454 (6) | −0.0179 (5) |
Geometric parameters (Å, °)
| C1—C2 | 1.384 (5) | C5—H5 | 0.9300 |
| C1—C6 | 1.391 (5) | C6—H6 | 0.9300 |
| C1—N1 | 1.409 (4) | C7—O1 | 1.211 (5) |
| C2—C3 | 1.392 (5) | C7—N1 | 1.337 (5) |
| C2—Cl1 | 1.718 (3) | C7—C8 | 1.512 (5) |
| C3—C4 | 1.366 (6) | C8—Cl3 | 1.750 (4) |
| C3—Cl2 | 1.725 (4) | C8—H8A | 0.9700 |
| C4—C5 | 1.363 (7) | C8—H8B | 0.9700 |
| C4—H4 | 0.9300 | N1—H1N | 0.85 (5) |
| C5—C6 | 1.379 (6) | ||
| C2—C1—C6 | 119.2 (3) | C5—C6—C1 | 119.9 (4) |
| C2—C1—N1 | 119.2 (3) | C5—C6—H6 | 120.0 |
| C6—C1—N1 | 121.7 (3) | C1—C6—H6 | 120.0 |
| C1—C2—C3 | 119.5 (3) | O1—C7—N1 | 124.2 (4) |
| C1—C2—Cl1 | 119.7 (3) | O1—C7—C8 | 122.5 (4) |
| C3—C2—Cl1 | 120.8 (3) | N1—C7—C8 | 113.3 (3) |
| C4—C3—C2 | 120.9 (4) | C7—C8—Cl3 | 111.8 (3) |
| C4—C3—Cl2 | 119.4 (3) | C7—C8—H8A | 109.3 |
| C2—C3—Cl2 | 119.7 (3) | Cl3—C8—H8A | 109.3 |
| C5—C4—C3 | 119.5 (4) | C7—C8—H8B | 109.3 |
| C5—C4—H4 | 120.2 | Cl3—C8—H8B | 109.3 |
| C3—C4—H4 | 120.2 | H8A—C8—H8B | 107.9 |
| C4—C5—C6 | 121.0 (4) | C7—N1—C1 | 124.9 (3) |
| C4—C5—H5 | 119.5 | C7—N1—H1N | 119 (3) |
| C6—C5—H5 | 119.5 | C1—N1—H1N | 116 (3) |
| C6—C1—C2—C3 | −0.3 (5) | C3—C4—C5—C6 | 0.2 (7) |
| N1—C1—C2—C3 | 179.3 (3) | C4—C5—C6—C1 | −1.0 (7) |
| C6—C1—C2—Cl1 | 179.3 (3) | C2—C1—C6—C5 | 1.0 (6) |
| N1—C1—C2—Cl1 | −1.1 (5) | N1—C1—C6—C5 | −178.6 (4) |
| C1—C2—C3—C4 | −0.4 (6) | O1—C7—C8—Cl3 | −20.3 (5) |
| Cl1—C2—C3—C4 | −180.0 (3) | N1—C7—C8—Cl3 | 161.7 (3) |
| C1—C2—C3—Cl2 | 179.9 (3) | O1—C7—N1—C1 | −5.7 (6) |
| Cl1—C2—C3—Cl2 | 0.3 (5) | C8—C7—N1—C1 | 172.3 (3) |
| C2—C3—C4—C5 | 0.4 (6) | C2—C1—N1—C7 | −135.6 (4) |
| Cl2—C3—C4—C5 | −179.9 (3) | C6—C1—N1—C7 | 44.0 (5) |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N1—H1N···O1i | 0.85 (5) | 2.05 (5) | 2.862 (4) | 161 (4) |
Symmetry codes: (i) x, y−1, z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2201).
References
- Enraf–Nonius (1996). CAD-4-PC. Version 1.2. Enraf–Nonius, Delft, The Netherlands.
- Gowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o2631–o2632.
- Gowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o4611.
- Gowda, B. T., Foro, S. & Fuess, H. (2007c). Acta Cryst. E63, o4708.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Shilpa & Gowda, B. T. (2007). Z. Naturforsch. Teil A, 62, 84–90.
- Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
- Stoe & Cie (1987). REDU4 Version 6.2c. Stoe & Cie GmbH, Darmstadt, Germany.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808000408/om2201sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808000408/om2201Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


