Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jan 4;64(Pt 2):m282–m283. doi: 10.1107/S1600536807067852

Aqua­(4-methyl­quinoline-κN)[N-(2-oxidobenzyl­idene)glycinato-κ3 O,N,O′]copper(II) hemihydrate

Zdeněk Trávníček a,*, Jaromír Marek a,b, Ján Vančo a,c, Oľga Švajlenová d
PMCID: PMC2960168  PMID: 21201263

Abstract

The title complex, [Cu(C9H7NO3)(C10H9N)(H2O)]·0.5H2O, crystallizes with two independent formula units in the asymmetric unit; the solvent mol­ecule is located on a twofold axis of symmetry. The CuII atom is coordinated by one tridentate N-salicylideneglycinate Schiff base ligand, one 4-methyl­quinoline ligand and one water mol­ecule, leading to a slightly distorted square-pyramidal N2O3 geometry. In the crystal structure, the mol­ecules are linked by O—H⋯O hydrogen bonds into linear chains in the [100] direction. The structure is further stabilized by inter­molecular C—H⋯O inter­actions and C⋯C contacts with C⋯C = 3.3058 (2), 3.3636 (2) and 3.3946 (2) Å.

Related literature

For synthesis, see: Kishita et al. (1964). For related literature, see: Katsuki (2003); Vančo et al. (2004, 2008); Bauerová et al. (2005). For related structures, see: Valent et al. (2002); Warda (1998a ,b ,c ,d ).graphic file with name e-64-0m282-scheme1.jpg

Experimental

Crystal data

  • [Cu(C9H7NO3)(C10H9N)(H2O)]·0.5H2O

  • M r = 410.9

  • Monoclinic, Inline graphic

  • a = 10.0966 (7) Å

  • b = 12.3483 (6) Å

  • c = 28.8133 (17) Å

  • β = 97.730 (6)°

  • V = 3559.7 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.26 mm−1

  • T = 120 (2) K

  • 0.30 × 0.25 × 0.25 mm

Data collection

  • Kuma KM-4-CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006) T min = 0.690, T max = 0.729

  • 19645 measured reflections

  • 6242 independent reflections

  • 4225 reflections with I > 2σ(I)

  • R int = 0.049

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.113

  • S = 1.09

  • 6242 reflections

  • 499 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.54 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807067852/tk2236sup1.cif

e-64-0m282-sup1.cif (33KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807067852/tk2236Isup2.hkl

e-64-0m282-Isup2.hkl (305.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4V⋯O102i 0.879 (19) 1.88 (2) 2.756 (4) 174 (4)
O4—H4W⋯O2ii 0.87 (4) 2.01 (3) 2.825 (4) 155 (4)
O5—H5V⋯O101iii 0.890 (19) 1.99 (2) 2.865 (4) 169 (4)
O6—H6V⋯O1 0.876 (19) 2.01 (2) 2.867 (4) 165 (4)
O104—H4Y⋯O2 0.879 (19) 1.90 (2) 2.751 (4) 162 (4)
O104—H4Z⋯O102iii 0.87 (4) 1.98 (2) 2.823 (4) 162 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

Financial support of this work by the Ministry of Education, Youth and Sports of the Czech Republic (grant Nos. MSM6198959218, MSM0021622415 and MSM6215712403) and the Scientific Grant Agency of the Ministry of Education of the Slovak Republic (grant No. VEGA 1/3416/06) is gratefully acknowledged.

supplementary crystallographic information

Comment

Schiff bases, as condensation products of carbonyls and amines, and their coordination compounds find their utilization in different branches of chemical technology (Katsuki, 2003) and participate in some biochemical pathways, e.g. transamination processes, catalyzed by metalloenzymes.

In connection with our recent studies on copper and zinc salicylidene-derived Schiff base complexes, we report now the structure of (I). The Schiff base (Salgly) ligand represents a condensation product of salicylaldehyde and glycine. The title complex, in the form of an anhydrous compound, showed significant microbistatic and fungistatic effects (Valent et al., 2002). Moreover, similar compounds derived from different N-salicylideneamino acids have been intensively studied and showed some remarkable biological features, from which the antioxidant (Vančo et al., 2008), antiflogistic, antirheumatic (Bauerová et al., 2005), or antidiabetic activities (Vančo et al., 2004) could be considered as the most interesting.

To date, only four X-ray structures of monomeric copper(II) complexes involving the aqua-(N-salicylideneglycinato-κO,N,O')copper(II) moiety in combination with another N-donor ligand, i.e. an alkylated pyridine derivative, have been reported (Warda, 1998a-d). While the present structure is the first one with two-ring one-N-donor aromatic ligand, i.e. 4-methylquinoline (Mqui), there are similarities in the interatomic parameters defining the coordination of the central atom in these complexes.

Two independent formula units of Cu(Salgly)(Mqui)(H2O).1/2(H2O) comprise the asymmetric unit of (I), see Fig. 1; each of the solvent water molecules lies on a 2-fold axis. Each CuII atom is chelated by two N atoms and a O atom, derived from the Salgly ligand, one N atom from the Mqui ligand. The resultant penta-coordinated geometry is completed by a water molecule. The O atom of the latter ligand occupies an apical position in a slightly distorted square-pyramidal coordination geometry [τ = 0.102 (for Cu1) and 0.091 (for Cu2)]. The bond distances of Cu—Nazomethine [1.927 (3) and 1.926 (3) Å], Cu—Nimine [1.993 (3) and 1.982 (3) Å], Cu—Ocarboxy [1.986 (3) and 1.982 (3) Å], Cu—Ophenoxy [1.910 (3) and 1.909 (3) Å] and Cu—Owater [2.371 (3) and 2.367 (3) Å] as well as Ocarboxy—Cu—Ophenoxy [166.61 (12) and 166.81 (12) °] and Nazomethine—Cu—Nimine [172.74 (14) and 172.24 (14) °] bond angles are quite similar in the independent complex molecules.

The primary intermolecular contacts in the crystal structure are of the type O—H···O (Fig. 2 & Table 1) and involve both coordinated and free water molecules, and both O atoms of carboxy groups, joining them into linear chains in the [100] direction. Moreover, the secondary structure is stabilized by intermolecular C—H···O interactions and C···C contacts (Fig. 3).

Experimental

The title complex, (I), was prepared by the reaction of an ethanol/water solution (2:1, v/v) of aqua-(N-salicylideneglycinato)copper(II) hemihydrate (Kishita et al., 1964) with an ethanolic solution of 4-methylquinoline in the molar ratio of 1:4. The reaction mixture was stirred at 60 °C for 30 minutes. After cooling overnight, well developed single crystals of (I) suitable for X-ray analysis were isolated.

Refinement

C-bound H-atoms were included in the riding model approximation with C–H distances of 0.95 Å (Caromatic), 0.98 Å (CH3) and 0.99 Å (CH2), and with Uiso(H) values of 1.2Ueq(CH2, Caromatic) or 1.5Ueq(Cmethyl). The O-bound H atoms were refined, with the O—H distances restrained to 0.90 (2) Å and with Uiso(H) values of 1.5Ueq(Owater); distances are given in Table 1.

Figures

Fig. 1.

Fig. 1.

The molecular structures of the independent complex and water molecules in (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2.

Fig. 2.

Part of the crystal structure of (I), showing the formation of O—H···O hydrogen bonds as dashed lines [Symmetry codes: (ii) -x + 1, y, -z + 1/2; (iii) -x, y, -z + 1/2].

Fig. 3.

Fig. 3.

Part of the crystal structure of (I), showing the formation of intermolecular C—H···O interactions (dashed lines) and C···C contacts (dashed lines) with C102···O3i = 3.6974 (2), C2···C106 = 3.5391 (2), C4···C107 = 3.3636 (2), C4···C108 = 3.3058 (2), C104···C7i = 3.3946 (2), and C102···C6i = 3.5122 (2) Å [Symmetry code: (i) x + 1, y, z]. Water molecules of crystallization and H-atoms not involved in hydrogen bonding are omitted for clarity.

Crystal data

[Cu(C9H7NO3)(C10H9N)(H2O)]·0.5H2O F000 = 1696
Mr = 410.9 Dx = 1.533 Mg m3
Monoclinic, P2/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2yc Cell parameters from 3906 reflections
a = 10.0966 (7) Å θ = 2.6–26.5º
b = 12.3483 (6) Å µ = 1.26 mm1
c = 28.8133 (17) Å T = 120 (2) K
β = 97.730 (6)º Prism, blue
V = 3559.7 (4) Å3 0.30 × 0.25 × 0.25 mm
Z = 8

Data collection

Kuma KM-4-CCD diffractometer 6242 independent reflections
Radiation source: fine-focus sealed tube 4225 reflections with I > 2σ(I)
Monochromator: Enhance (Oxford Diffraction) Rint = 0.049
Detector resolution: 8.3611 pixels mm-1 θmax = 25.0º
T = 120(2) K θmin = 3.2º
rotation method ω scans h = −12→11
Absorption correction: multi-scan(CrysAlis RED; Oxford Diffraction, 2006) k = −14→13
Tmin = 0.690, Tmax = 0.729 l = −34→34
19645 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113   w = 1/[σ2(Fo2) + (0.04P)2 + 2.5P] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max = 0.001
6242 reflections Δρmax = 0.66 e Å3
499 parameters Δρmin = −0.54 e Å3
6 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.64949 (5) 0.89277 (4) 0.146484 (18) 0.01660 (15)
Cu2 0.14540 (5) 0.52717 (4) 0.145347 (17) 0.01668 (15)
O1 0.4892 (3) 0.8873 (2) 0.17954 (9) 0.0175 (7)
O2 0.3605 (3) 0.7712 (2) 0.21210 (9) 0.0198 (7)
O3 0.7735 (3) 0.8959 (2) 0.10193 (10) 0.0212 (7)
O4 0.7828 (3) 0.8607 (2) 0.21941 (10) 0.0199 (7)
H4V 0.802 (4) 0.7916 (18) 0.2171 (15) 0.030*
H4W 0.733 (4) 0.854 (4) 0.2415 (12) 0.030*
O101 −0.0123 (3) 0.5325 (2) 0.17948 (9) 0.0179 (7)
O102 −0.1400 (3) 0.6477 (2) 0.21334 (9) 0.0208 (7)
O103 0.2671 (3) 0.5247 (2) 0.10008 (10) 0.0221 (7)
O104 0.2815 (3) 0.5589 (2) 0.21757 (10) 0.0195 (7)
H4Y 0.323 (4) 0.621 (2) 0.2148 (15) 0.029*
H4Z 0.231 (4) 0.572 (4) 0.2391 (12) 0.029*
C1 0.4519 (4) 0.7919 (3) 0.18899 (13) 0.0168 (9)
C2 0.5282 (4) 0.6981 (3) 0.17115 (14) 0.0170 (9)
H2A 0.5803 0.6602 0.1979 0.020*
H2B 0.4646 0.6458 0.1543 0.020*
N3 0.6186 (3) 0.7393 (3) 0.13948 (11) 0.0142 (8)
C4 0.6656 (4) 0.6760 (3) 0.11074 (14) 0.0195 (10)
H4 0.6388 0.6022 0.1106 0.023*
C5 0.7556 (4) 0.7073 (3) 0.07865 (13) 0.0179 (9)
C6 0.8021 (4) 0.8155 (4) 0.07522 (14) 0.0214 (10)
C7 0.8874 (4) 0.8365 (4) 0.04121 (15) 0.0248 (10)
H7 0.9184 0.9082 0.0375 0.030*
C8 0.9263 (5) 0.7556 (4) 0.01340 (16) 0.0308 (12)
H8 0.9839 0.7725 −0.0091 0.037*
C9 0.8833 (5) 0.6487 (4) 0.01734 (15) 0.0306 (12)
H9 0.9121 0.5929 −0.0017 0.037*
C10 0.7983 (4) 0.6271 (4) 0.04955 (15) 0.0264 (11)
H10 0.7672 0.5550 0.0522 0.032*
N11 0.6567 (3) 1.0531 (3) 0.15411 (11) 0.0175 (8)
C12 0.7484 (4) 1.0987 (3) 0.18422 (14) 0.0184 (10)
H12 0.8134 1.0533 0.2014 0.022*
C13 0.7568 (4) 1.2106 (4) 0.19281 (15) 0.0237 (10)
H13 0.8264 1.2390 0.2150 0.028*
C14 0.6646 (4) 1.2783 (3) 0.16915 (15) 0.0225 (10)
C15 0.5640 (4) 1.2326 (3) 0.13509 (14) 0.0200 (10)
C16 0.5637 (4) 1.1192 (3) 0.12792 (13) 0.0179 (9)
C17 0.4669 (4) 1.0718 (4) 0.09435 (15) 0.0258 (11)
H17 0.4673 0.9958 0.0892 0.031*
C18 0.3730 (5) 1.1347 (4) 0.06929 (16) 0.0321 (12)
H18 0.3076 1.1023 0.0468 0.039*
C19 0.3712 (5) 1.2475 (4) 0.07621 (17) 0.0336 (12)
H19 0.3054 1.2907 0.0582 0.040*
C20 0.4634 (4) 1.2946 (4) 0.10850 (16) 0.0272 (11)
H20 0.4603 1.3706 0.1133 0.033*
C21 0.6709 (5) 1.3984 (3) 0.17792 (18) 0.0366 (13)
H21A 0.7418 1.4142 0.2037 0.055*
H21B 0.5850 1.4235 0.1862 0.055*
H21C 0.6900 1.4359 0.1496 0.055*
C101 −0.0500 (4) 0.6277 (3) 0.18915 (14) 0.0173 (9)
C102 0.0258 (4) 0.7220 (3) 0.17074 (13) 0.0175 (9)
H10A −0.0382 0.7751 0.1547 0.021*
H10B 0.0806 0.7591 0.1971 0.021*
N103 0.1120 (3) 0.6801 (3) 0.13791 (11) 0.0159 (8)
C104 0.1625 (4) 0.7452 (3) 0.11094 (13) 0.0174 (9)
H104 0.1374 0.8193 0.1117 0.021*
C105 0.2556 (4) 0.7147 (3) 0.07917 (14) 0.0192 (10)
C106 0.3004 (4) 0.6060 (3) 0.07514 (14) 0.0184 (10)
C107 0.3904 (4) 0.5879 (4) 0.04231 (14) 0.0225 (10)
H107 0.4198 0.5162 0.0375 0.027*
C108 0.4363 (4) 0.6710 (4) 0.01733 (15) 0.0258 (11)
H108 0.4982 0.6555 −0.0039 0.031*
C109 0.3949 (4) 0.7773 (4) 0.02211 (15) 0.0260 (11)
H109 0.4282 0.8343 0.0048 0.031*
C110 0.3047 (4) 0.7971 (4) 0.05253 (14) 0.0233 (10)
H110 0.2743 0.8692 0.0558 0.028*
N111 0.1532 (3) 0.3675 (3) 0.15199 (11) 0.0135 (7)
C112 0.2498 (4) 0.3203 (3) 0.18149 (14) 0.0186 (10)
H112 0.3161 0.3653 0.1982 0.022*
C113 0.2587 (4) 0.2090 (3) 0.18907 (14) 0.0212 (10)
H113 0.3303 0.1805 0.2103 0.025*
C114 0.1658 (5) 0.1406 (4) 0.16633 (15) 0.0227 (10)
C115 0.0611 (4) 0.1873 (3) 0.13443 (14) 0.0201 (10)
C116 0.0567 (4) 0.3009 (3) 0.12845 (14) 0.0184 (10)
C117 −0.0458 (4) 0.3493 (4) 0.09754 (14) 0.0204 (10)
H117 −0.0468 0.4256 0.0932 0.024*
C118 −0.1436 (4) 0.2872 (4) 0.07372 (15) 0.0275 (11)
H118 −0.2133 0.3205 0.0532 0.033*
C119 −0.1422 (5) 0.1741 (4) 0.07931 (15) 0.0272 (11)
H119 −0.2111 0.1313 0.0627 0.033*
C120 −0.0422 (4) 0.1257 (4) 0.10848 (15) 0.0250 (11)
H120 −0.0415 0.0491 0.1115 0.030*
C121 0.1741 (5) 0.0218 (4) 0.17441 (18) 0.0360 (13)
H12A 0.2479 0.0059 0.1992 0.054*
H12B 0.1897 −0.0147 0.1454 0.054*
H12C 0.0900 −0.0040 0.1840 0.054*
O5 0.0000 0.3678 (4) 0.2500 0.0289 (11)
H5V 0.005 (5) 0.412 (3) 0.2745 (11) 0.043*
O6 0.5000 1.0521 (4) 0.2500 0.0267 (10)
H6V 0.486 (5) 1.010 (3) 0.2254 (11) 0.040*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0187 (3) 0.0130 (3) 0.0189 (3) −0.0010 (2) 0.0059 (2) −0.0003 (2)
Cu2 0.0200 (3) 0.0126 (3) 0.0184 (3) 0.0014 (2) 0.0060 (2) 0.0005 (2)
O1 0.0172 (16) 0.0111 (15) 0.0255 (17) −0.0003 (12) 0.0073 (13) −0.0005 (13)
O2 0.0188 (17) 0.0211 (16) 0.0210 (16) −0.0043 (13) 0.0081 (13) −0.0015 (13)
O3 0.0272 (18) 0.0169 (16) 0.0217 (16) −0.0041 (13) 0.0112 (13) −0.0035 (13)
O4 0.0220 (17) 0.0182 (16) 0.0200 (16) 0.0005 (14) 0.0051 (13) 0.0009 (14)
O101 0.0201 (16) 0.0128 (16) 0.0217 (16) 0.0004 (12) 0.0062 (13) −0.0003 (12)
O102 0.0224 (17) 0.0204 (16) 0.0214 (16) 0.0026 (13) 0.0099 (13) 0.0018 (13)
O103 0.0284 (18) 0.0158 (16) 0.0248 (17) 0.0030 (13) 0.0136 (14) 0.0027 (13)
O104 0.0240 (18) 0.0180 (16) 0.0177 (16) −0.0030 (14) 0.0067 (13) −0.0027 (14)
C1 0.013 (2) 0.021 (2) 0.014 (2) −0.0017 (19) −0.0035 (17) 0.0011 (18)
C2 0.016 (2) 0.018 (2) 0.017 (2) −0.0066 (18) 0.0032 (17) 0.0014 (18)
N3 0.018 (2) 0.0127 (17) 0.0128 (18) −0.0022 (15) 0.0054 (14) −0.0002 (15)
C4 0.019 (2) 0.021 (2) 0.017 (2) 0.0015 (19) −0.0022 (18) 0.0001 (19)
C5 0.017 (2) 0.022 (2) 0.014 (2) 0.0056 (19) 0.0014 (17) −0.0001 (19)
C6 0.019 (2) 0.027 (3) 0.018 (2) 0.004 (2) 0.0001 (18) 0.000 (2)
C7 0.018 (2) 0.031 (3) 0.027 (3) 0.002 (2) 0.006 (2) 0.002 (2)
C8 0.025 (3) 0.046 (3) 0.022 (3) 0.003 (2) 0.007 (2) 0.002 (2)
C9 0.031 (3) 0.040 (3) 0.021 (2) 0.011 (2) 0.005 (2) −0.008 (2)
C10 0.025 (3) 0.027 (3) 0.025 (2) 0.005 (2) −0.003 (2) −0.002 (2)
N11 0.017 (2) 0.0182 (19) 0.019 (2) 0.0015 (16) 0.0072 (16) 0.0020 (16)
C12 0.021 (2) 0.020 (2) 0.016 (2) −0.0028 (19) 0.0087 (18) 0.0025 (19)
C13 0.025 (3) 0.023 (3) 0.024 (2) −0.009 (2) 0.007 (2) −0.001 (2)
C14 0.029 (3) 0.019 (2) 0.022 (2) −0.002 (2) 0.014 (2) 0.000 (2)
C15 0.021 (2) 0.021 (2) 0.020 (2) 0.007 (2) 0.0108 (19) 0.0043 (19)
C16 0.022 (2) 0.022 (2) 0.011 (2) 0.0025 (19) 0.0076 (18) 0.0057 (18)
C17 0.024 (3) 0.028 (3) 0.026 (3) −0.004 (2) 0.004 (2) 0.004 (2)
C18 0.029 (3) 0.043 (3) 0.023 (3) −0.004 (2) 0.000 (2) 0.009 (2)
C19 0.027 (3) 0.043 (3) 0.032 (3) 0.008 (2) 0.008 (2) 0.019 (3)
C20 0.027 (3) 0.024 (3) 0.034 (3) 0.006 (2) 0.016 (2) 0.009 (2)
C21 0.042 (3) 0.015 (3) 0.054 (4) 0.001 (2) 0.011 (3) −0.004 (2)
C101 0.020 (2) 0.016 (2) 0.014 (2) 0.0024 (19) −0.0038 (18) 0.0014 (18)
C102 0.025 (2) 0.014 (2) 0.013 (2) −0.0009 (19) 0.0046 (18) −0.0011 (18)
N103 0.0133 (19) 0.0157 (19) 0.0182 (19) −0.0009 (15) 0.0001 (15) −0.0004 (16)
C104 0.021 (2) 0.012 (2) 0.018 (2) 0.0010 (18) −0.0033 (18) −0.0013 (18)
C105 0.017 (2) 0.022 (2) 0.017 (2) −0.0003 (19) −0.0017 (18) −0.0009 (19)
C106 0.019 (2) 0.023 (2) 0.013 (2) −0.0007 (19) 0.0009 (18) −0.0006 (19)
C107 0.023 (3) 0.027 (3) 0.018 (2) 0.003 (2) 0.0040 (19) −0.004 (2)
C108 0.023 (3) 0.036 (3) 0.020 (2) −0.004 (2) 0.0061 (19) −0.001 (2)
C109 0.028 (3) 0.030 (3) 0.021 (2) −0.009 (2) 0.004 (2) 0.007 (2)
C110 0.030 (3) 0.019 (2) 0.021 (2) −0.003 (2) 0.002 (2) 0.0013 (19)
N111 0.0168 (19) 0.0130 (17) 0.0121 (17) 0.0010 (15) 0.0074 (14) −0.0007 (15)
C112 0.015 (2) 0.020 (2) 0.022 (2) 0.0020 (19) 0.0039 (18) 0.0002 (19)
C113 0.030 (3) 0.022 (2) 0.012 (2) 0.005 (2) 0.0030 (18) 0.0027 (19)
C114 0.031 (3) 0.017 (2) 0.021 (2) 0.002 (2) 0.010 (2) 0.002 (2)
C115 0.028 (3) 0.015 (2) 0.020 (2) 0.0014 (19) 0.0118 (19) −0.0003 (19)
C116 0.018 (2) 0.017 (2) 0.022 (2) −0.0004 (19) 0.0114 (18) −0.0010 (19)
C117 0.024 (3) 0.021 (2) 0.017 (2) 0.002 (2) 0.0061 (19) −0.0029 (19)
C118 0.020 (3) 0.039 (3) 0.024 (3) −0.002 (2) 0.002 (2) −0.001 (2)
C119 0.026 (3) 0.033 (3) 0.026 (3) −0.011 (2) 0.013 (2) −0.012 (2)
C120 0.032 (3) 0.019 (2) 0.027 (3) −0.008 (2) 0.011 (2) −0.007 (2)
C121 0.049 (3) 0.021 (3) 0.038 (3) −0.001 (2) 0.006 (3) 0.002 (2)
O5 0.043 (3) 0.022 (2) 0.023 (3) 0.000 0.008 (2) 0.000
O6 0.040 (3) 0.024 (3) 0.017 (2) 0.000 0.005 (2) 0.000

Geometric parameters (Å, °)

Cu1—O3 1.910 (3) C17—H17 0.9500
Cu1—N3 1.927 (3) C18—C19 1.408 (7)
Cu1—O1 1.986 (3) C18—H18 0.9500
Cu1—N11 1.993 (3) C19—C20 1.355 (7)
Cu1—O4 2.371 (3) C19—H19 0.9500
Cu2—O103 1.909 (3) C20—H20 0.9500
Cu2—N103 1.926 (3) C21—H21A 0.9800
Cu2—N111 1.982 (3) C21—H21B 0.9800
Cu2—O101 1.982 (3) C21—H21C 0.9800
Cu2—O104 2.367 (3) C101—C102 1.527 (5)
O1—C1 1.276 (5) C102—N103 1.463 (5)
O2—C1 1.235 (5) C102—H10A 0.9900
O3—C6 1.312 (5) C102—H10B 0.9900
O4—H4V 0.879 (19) N103—C104 1.272 (5)
O4—H4W 0.87 (4) C104—C105 1.447 (6)
O101—C101 1.278 (5) C104—H104 0.9500
O102—C101 1.242 (5) C105—C110 1.405 (6)
O103—C106 1.305 (5) C105—C106 1.426 (6)
O104—H4Y 0.879 (19) C106—C107 1.415 (6)
O104—H4Z 0.87 (4) C107—C108 1.369 (6)
C1—C2 1.518 (6) C107—H107 0.9500
C2—N3 1.465 (5) C108—C109 1.390 (6)
C2—H2A 0.9900 C108—H108 0.9500
C2—H2B 0.9900 C109—C110 1.368 (6)
N3—C4 1.276 (5) C109—H109 0.9500
C4—C5 1.434 (5) C110—H110 0.9500
C4—H4 0.9500 N111—C112 1.338 (5)
C5—C10 1.403 (6) N111—C116 1.381 (5)
C5—C6 1.424 (6) C112—C113 1.392 (6)
C6—C7 1.413 (6) C112—H112 0.9500
C7—C8 1.371 (6) C113—C114 1.363 (6)
C7—H7 0.9500 C113—H113 0.9500
C8—C9 1.398 (6) C114—C115 1.426 (6)
C8—H8 0.9500 C114—C121 1.486 (6)
C9—C10 1.373 (6) C115—C116 1.414 (6)
C9—H9 0.9500 C115—C120 1.419 (6)
C10—H10 0.9500 C116—C117 1.404 (6)
N11—C12 1.308 (5) C117—C118 1.361 (6)
N11—C16 1.388 (5) C117—H117 0.9500
C12—C13 1.404 (6) C118—C119 1.406 (6)
C12—H12 0.9500 C118—H118 0.9500
C13—C14 1.364 (6) C119—C120 1.362 (6)
C13—H13 0.9500 C119—H119 0.9500
C14—C15 1.430 (6) C120—H120 0.9500
C14—C21 1.505 (6) C121—H12A 0.9800
C15—C20 1.413 (6) C121—H12B 0.9800
C15—C16 1.416 (6) C121—H12C 0.9800
C16—C17 1.407 (6) O5—H5V 0.890 (19)
C17—C18 1.357 (6) O6—H6V 0.876 (19)
O3—Cu1—N3 93.49 (12) C17—C18—C19 120.8 (4)
O3—Cu1—O1 166.61 (12) C17—C18—H18 119.6
N3—Cu1—O1 83.42 (12) C19—C18—H18 119.6
O3—Cu1—N11 92.10 (12) C20—C19—C18 120.1 (4)
N3—Cu1—N11 172.74 (14) C20—C19—H19 120.0
O1—Cu1—N11 90.08 (12) C18—C19—H19 120.0
O3—Cu1—O4 104.68 (11) C19—C20—C15 121.2 (4)
N3—Cu1—O4 89.61 (12) C19—C20—H20 119.4
O1—Cu1—O4 88.37 (11) C15—C20—H20 119.4
N11—Cu1—O4 93.45 (12) C14—C21—H21A 109.5
O103—Cu2—N103 93.38 (13) C14—C21—H21B 109.5
O103—Cu2—N111 91.68 (12) H21A—C21—H21B 109.5
N103—Cu2—N111 172.24 (14) C14—C21—H21C 109.5
O103—Cu2—O101 166.81 (12) H21A—C21—H21C 109.5
N103—Cu2—O101 83.24 (12) H21B—C21—H21C 109.5
N111—Cu2—O101 90.51 (12) O102—C101—O101 124.6 (4)
O103—Cu2—O104 104.63 (11) O102—C101—C102 118.8 (4)
N103—Cu2—O104 90.45 (12) O101—C101—C102 116.6 (4)
N111—Cu2—O104 93.96 (12) N103—C102—C101 108.9 (3)
O101—Cu2—O104 88.19 (11) N103—C102—H10A 109.9
C1—O1—Cu1 114.6 (3) C101—C102—H10A 109.9
C6—O3—Cu1 126.5 (3) N103—C102—H10B 109.9
Cu1—O4—H4V 101 (3) C101—C102—H10B 109.9
Cu1—O4—H4W 110 (3) H10A—C102—H10B 108.3
H4V—O4—H4W 96 (4) C104—N103—C102 119.6 (3)
C101—O101—Cu2 114.9 (3) C104—N103—Cu2 127.5 (3)
C106—O103—Cu2 126.9 (3) C102—N103—Cu2 112.7 (2)
Cu2—O104—H4Y 107 (3) N103—C104—C105 124.8 (4)
Cu2—O104—H4Z 110 (3) N103—C104—H104 117.6
H4Y—O104—H4Z 103 (4) C105—C104—H104 117.6
O2—C1—O1 124.7 (4) C110—C105—C106 119.9 (4)
O2—C1—C2 118.3 (4) C110—C105—C104 117.7 (4)
O1—C1—C2 117.0 (3) C106—C105—C104 122.4 (4)
N3—C2—C1 109.4 (3) O103—C106—C107 118.8 (4)
N3—C2—H2A 109.8 O103—C106—C105 124.9 (4)
C1—C2—H2A 109.8 C107—C106—C105 116.3 (4)
N3—C2—H2B 109.8 C108—C107—C106 121.7 (4)
C1—C2—H2B 109.8 C108—C107—H107 119.1
H2A—C2—H2B 108.2 C106—C107—H107 119.1
C4—N3—C2 120.6 (3) C107—C108—C109 121.9 (4)
C4—N3—Cu1 126.9 (3) C107—C108—H108 119.1
C2—N3—Cu1 112.4 (2) C109—C108—H108 119.1
N3—C4—C5 125.2 (4) C110—C109—C108 117.9 (4)
N3—C4—H4 117.4 C110—C109—H109 121.1
C5—C4—H4 117.4 C108—C109—H109 121.1
C10—C5—C6 119.4 (4) C109—C110—C105 122.3 (4)
C10—C5—C4 117.9 (4) C109—C110—H110 118.8
C6—C5—C4 122.8 (4) C105—C110—H110 118.8
O3—C6—C7 118.1 (4) C112—N111—C116 117.3 (3)
O3—C6—C5 124.6 (4) C112—N111—Cu2 120.7 (3)
C7—C6—C5 117.3 (4) C116—N111—Cu2 121.9 (3)
C8—C7—C6 121.4 (4) N111—C112—C113 123.7 (4)
C8—C7—H7 119.3 N111—C112—H112 118.1
C6—C7—H7 119.3 C113—C112—H112 118.1
C7—C8—C9 121.6 (4) C114—C113—C112 120.7 (4)
C7—C8—H8 119.2 C114—C113—H113 119.6
C9—C8—H8 119.2 C112—C113—H113 119.6
C10—C9—C8 117.9 (4) C113—C114—C115 117.5 (4)
C10—C9—H9 121.1 C113—C114—C121 121.1 (4)
C8—C9—H9 121.1 C115—C114—C121 121.4 (4)
C9—C10—C5 122.5 (4) C116—C115—C120 117.3 (4)
C9—C10—H10 118.8 C116—C115—C114 119.2 (4)
C5—C10—H10 118.8 C120—C115—C114 123.5 (4)
C12—N11—C16 118.3 (4) N111—C116—C117 118.0 (4)
C12—N11—Cu1 120.9 (3) N111—C116—C115 121.5 (4)
C16—N11—Cu1 120.8 (3) C117—C116—C115 120.5 (4)
N11—C12—C13 124.1 (4) C118—C117—C116 120.2 (4)
N11—C12—H12 117.9 C118—C117—H117 119.9
C13—C12—H12 117.9 C116—C117—H117 119.9
C14—C13—C12 119.6 (4) C117—C118—C119 120.4 (4)
C14—C13—H13 120.2 C117—C118—H118 119.8
C12—C13—H13 120.2 C119—C118—H118 119.8
C13—C14—C15 118.4 (4) C120—C119—C118 120.1 (4)
C13—C14—C21 120.6 (4) C120—C119—H119 119.9
C15—C14—C21 121.0 (4) C118—C119—H119 119.9
C20—C15—C16 118.0 (4) C119—C120—C115 121.4 (4)
C20—C15—C14 123.4 (4) C119—C120—H120 119.3
C16—C15—C14 118.6 (4) C115—C120—H120 119.3
N11—C16—C17 119.1 (4) C114—C121—H12A 109.5
N11—C16—C15 120.9 (4) C114—C121—H12B 109.5
C17—C16—C15 120.0 (4) H12A—C121—H12B 109.5
C18—C17—C16 119.9 (4) C114—C121—H12C 109.5
C18—C17—H17 120.0 H12A—C121—H12C 109.5
C16—C17—H17 120.0 H12B—C121—H12C 109.5
O3—Cu1—O1—C1 88.7 (5) C14—C15—C16—C17 −179.4 (4)
N3—Cu1—O1—C1 11.4 (3) N11—C16—C17—C18 178.3 (4)
N11—Cu1—O1—C1 −171.9 (3) C15—C16—C17—C18 −0.8 (6)
O4—Cu1—O1—C1 −78.4 (3) C16—C17—C18—C19 0.3 (7)
N3—Cu1—O3—C6 6.8 (3) C17—C18—C19—C20 −0.6 (7)
O1—Cu1—O3—C6 −69.4 (6) C18—C19—C20—C15 1.2 (7)
N11—Cu1—O3—C6 −168.6 (3) C16—C15—C20—C19 −1.7 (6)
O4—Cu1—O3—C6 97.3 (3) C14—C15—C20—C19 179.2 (4)
O103—Cu2—O101—C101 −87.7 (6) Cu2—O101—C101—O102 −174.3 (3)
N103—Cu2—O101—C101 −11.9 (3) Cu2—O101—C101—C102 3.4 (4)
N111—Cu2—O101—C101 172.8 (3) O102—C101—C102—N103 −171.8 (3)
O104—Cu2—O101—C101 78.8 (3) O101—C101—C102—N103 10.4 (5)
N103—Cu2—O103—C106 −1.9 (3) C101—C102—N103—C104 165.2 (3)
N111—Cu2—O103—C106 172.3 (3) C101—C102—N103—Cu2 −19.5 (4)
O101—Cu2—O103—C106 72.8 (6) O103—Cu2—N103—C104 −0.5 (4)
O104—Cu2—O103—C106 −93.2 (3) O101—Cu2—N103—C104 −167.7 (4)
Cu1—O1—C1—O2 174.8 (3) O104—Cu2—N103—C104 104.2 (3)
Cu1—O1—C1—C2 −3.8 (4) O103—Cu2—N103—C102 −175.4 (3)
O2—C1—C2—N3 172.2 (3) O101—Cu2—N103—C102 17.4 (3)
O1—C1—C2—N3 −9.0 (5) O104—Cu2—N103—C102 −70.7 (3)
C1—C2—N3—C4 −161.0 (4) C102—N103—C104—C105 176.0 (4)
C1—C2—N3—Cu1 17.7 (4) Cu2—N103—C104—C105 1.3 (6)
O3—Cu1—N3—C4 −4.4 (4) N103—C104—C105—C110 −178.5 (4)
O1—Cu1—N3—C4 162.6 (4) N103—C104—C105—C106 −0.1 (6)
O4—Cu1—N3—C4 −109.0 (3) Cu2—O103—C106—C107 −178.5 (3)
O3—Cu1—N3—C2 177.0 (3) Cu2—O103—C106—C105 3.4 (6)
O1—Cu1—N3—C2 −16.0 (3) C110—C105—C106—O103 175.9 (4)
O4—Cu1—N3—C2 72.4 (3) C104—C105—C106—O103 −2.4 (6)
C2—N3—C4—C5 −179.3 (4) C110—C105—C106—C107 −2.2 (6)
Cu1—N3—C4—C5 2.2 (6) C104—C105—C106—C107 179.4 (4)
N3—C4—C5—C10 179.6 (4) O103—C106—C107—C108 −175.5 (4)
N3—C4—C5—C6 −0.6 (6) C105—C106—C107—C108 2.7 (6)
Cu1—O3—C6—C7 174.1 (3) C106—C107—C108—C109 −1.4 (7)
Cu1—O3—C6—C5 −7.3 (6) C107—C108—C109—C110 −0.6 (7)
C10—C5—C6—O3 −176.9 (4) C108—C109—C110—C105 1.1 (7)
C4—C5—C6—O3 3.3 (6) C106—C105—C110—C109 0.4 (6)
C10—C5—C6—C7 1.6 (6) C104—C105—C110—C109 178.8 (4)
C4—C5—C6—C7 −178.1 (4) O103—Cu2—N111—C112 85.4 (3)
O3—C6—C7—C8 177.2 (4) O101—Cu2—N111—C112 −107.6 (3)
C5—C6—C7—C8 −1.5 (6) O104—Cu2—N111—C112 −19.4 (3)
C6—C7—C8—C9 0.1 (7) O103—Cu2—N111—C116 −97.9 (3)
C7—C8—C9—C10 1.2 (7) O101—Cu2—N111—C116 69.1 (3)
C8—C9—C10—C5 −1.0 (7) O104—Cu2—N111—C116 157.4 (3)
C6—C5—C10—C9 −0.4 (6) C116—N111—C112—C113 0.8 (6)
C4—C5—C10—C9 179.3 (4) Cu2—N111—C112—C113 177.7 (3)
O3—Cu1—N11—C12 −86.6 (3) N111—C112—C113—C114 −0.5 (6)
O1—Cu1—N11—C12 106.6 (3) C112—C113—C114—C115 0.6 (6)
O4—Cu1—N11—C12 18.3 (3) C112—C113—C114—C121 −179.6 (4)
O3—Cu1—N11—C16 94.1 (3) C113—C114—C115—C116 −1.1 (6)
O1—Cu1—N11—C16 −72.7 (3) C121—C114—C115—C116 179.2 (4)
O4—Cu1—N11—C16 −161.1 (3) C113—C114—C115—C120 −179.9 (4)
C16—N11—C12—C13 1.8 (6) C121—C114—C115—C120 0.3 (7)
Cu1—N11—C12—C13 −177.5 (3) C112—N111—C116—C117 179.7 (4)
N11—C12—C13—C14 0.6 (6) Cu2—N111—C116—C117 2.8 (5)
C12—C13—C14—C15 −1.9 (6) C112—N111—C116—C115 −1.3 (6)
C12—C13—C14—C21 179.6 (4) Cu2—N111—C116—C115 −178.2 (3)
C13—C14—C15—C20 180.0 (4) C120—C115—C116—N111 −179.6 (4)
C21—C14—C15—C20 −1.5 (6) C114—C115—C116—N111 1.5 (6)
C13—C14—C15—C16 0.8 (6) C120—C115—C116—C117 −0.6 (6)
C21—C14—C15—C16 179.3 (4) C114—C115—C116—C117 −179.6 (4)
C12—N11—C16—C17 178.1 (4) N111—C116—C117—C118 −179.6 (4)
Cu1—N11—C16—C17 −2.6 (5) C115—C116—C117—C118 1.4 (6)
C12—N11—C16—C15 −2.9 (6) C116—C117—C118—C119 −0.9 (6)
Cu1—N11—C16—C15 176.5 (3) C117—C118—C119—C120 −0.4 (6)
C20—C15—C16—N11 −177.6 (4) C118—C119—C120—C115 1.1 (6)
C14—C15—C16—N11 1.6 (6) C116—C115—C120—C119 −0.6 (6)
C20—C15—C16—C17 1.4 (6) C114—C115—C120—C119 178.3 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O4—H4V···O102i 0.879 (19) 1.88 (2) 2.756 (4) 174 (4)
O4—H4W···O2ii 0.87 (4) 2.01 (3) 2.825 (4) 155 (4)
O5—H5V···O101iii 0.890 (19) 1.99 (2) 2.865 (4) 169 (4)
O6—H6V···O1 0.876 (19) 2.01 (2) 2.867 (4) 165 (4)
O104—H4Y···O2 0.879 (19) 1.90 (2) 2.751 (4) 162 (4)
O104—H4Z···O102iii 0.87 (4) 1.98 (2) 2.823 (4) 162 (4)

Symmetry codes: (i) x+1, y, z; (ii) −x+1, y, −z+1/2; (iii) −x, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2236).

References

  1. Bauerová, K., Valentová, J., Poništ, S., Navarová, J., Komendová, D. & Mihalová, D. (2005). Biologia, 60, 65–68.
  2. Brandenburg, K. (2006). DIAMOND Release 3.1e. Crystal Impact GbR, Bonn, Germany.
  3. Katsuki, T. (2003). Synlett, pp. 281–297.
  4. Kishita, M., Nakahara, A. & Kubo, M. (1964). Aust. J. Chem.17, 810–816.
  5. Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED Versions 1.171.31.7. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  6. Sheldrick, G. M. (1990). Acta Cryst. A46, 467–473.
  7. Sheldrick, G. M. (1997). SHELXL97 University of Göttingen, Germany.
  8. Valent, A., Melník, M., Hudecová, D., Dudová, B., Kivekäs, R. & Sundberg, M. R. (2002). Inorg. Chim. Acta, 340, 15–20.
  9. Vančo, J., Marek, J., Trávníček, Z., Račanská, E., Muselík, J. & Švajlenová, O. (2008). J. Inorg. Biochem In the press. doi:10.1016/j.jinorgbio.2007.10.003. [DOI] [PubMed]
  10. Vančo, J., Švajlenová, O., Račanská, E., Muselík, J. & Valentová, J. (2004). J. Trace Elem. Med. Biol.18, 155–161. [DOI] [PubMed]
  11. Warda, S. A. (1998a). Acta Cryst. C54, 187–189.
  12. Warda, S. A. (1998b). Acta Cryst. C54, 768–770.
  13. Warda, S. A. (1998c). Acta Cryst. C54, 1236–1238.
  14. Warda, S. A. (1998d). Acta Cryst. C54, 1754–1755.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807067852/tk2236sup1.cif

e-64-0m282-sup1.cif (33KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807067852/tk2236Isup2.hkl

e-64-0m282-Isup2.hkl (305.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES