Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jan 16;64(Pt 2):m353–m354. doi: 10.1107/S160053680706535X

Dichlorido{2-hydroxy­imino-N′-[1-(2-pyrid­yl)ethyl­idene]propanohydrazide-κ3 N,N′,O}zinc(II) hemihydrate

Yurii S Moroz a,*, Tetyana Yu Sliva a, Kinga Kulon b, Henryk Kozłowski b, Igor O Fritsky a
PMCID: PMC2960173  PMID: 21201313

Abstract

The title compound, [ZnCl2(C10H12N4O2)]·0.5H2O, was readily prepared by the reaction between ZnCl2 and 2-hydroxy­imino-N′-[1-(2-pyrid­yl)ethyl­idene]propanohydrazide. The Zn atom has a distorted trigonal–bipyramidal geometry with two Cl atoms and one azomethine N atom in the equatorial plane and one pyridine N atom and one amide O atom in the axial positions. In the crystal structure, complex mol­ecules are connected in pairs by N—H⋯Cl hydrogen bonds, formed between the amide NH of one mol­ecule and the Cl atom of a neighboring one. Mol­ecular pairs are connected by hydrogen bonds involving the uncoordinated water mol­ecule, which lies on a twofold axis.

Related literature

For details of the structure and biological activity of zinc(II) complexes, see: Canary et al. (1998); Comba et al. (2002); Kasuga et al. (2003); Panosyan et al. (2003); Rodriuez-Argüelles et al. (1995); Sousa et al. (2003). For the preparation of 2-(oximato)propane­hydrazide, see: Fritsky et al. (1998).graphic file with name e-64-0m353-scheme1.jpg

Experimental

Crystal data

  • [ZnCl2(C10H12N4O2)]·0.5H2O

  • M r = 365.51

  • Monoclinic, Inline graphic

  • a = 14.5666 (8) Å

  • b = 12.9898 (8) Å

  • c = 15.8671 (8) Å

  • β = 109.873 (5)°

  • V = 2823.5 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.13 mm−1

  • T = 100 (2) K

  • 0.5 × 0.1 × 0.05 mm

Data collection

  • Kuma KM-4 CCD area-detector diffractometer

  • Absorption correction: multi-scan (PLATON; Spek, 2003) T min = 0.774, T max = 0.891

  • 17382 measured reflections

  • 3373 independent reflections

  • 3069 reflections with I > 2σ(I)

  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.070

  • S = 1.21

  • 3373 reflections

  • 191 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: KM-4 CCD Software (Kuma, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680706535X/hy2108sup1.cif

e-64-0m353-sup1.cif (17.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680706535X/hy2108Isup2.hkl

e-64-0m353-Isup2.hkl (162.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Zn1—N1 2.1409 (19)
Zn1—N2 2.1142 (18)
Zn1—O1 2.2348 (16)
Zn1—Cl2 2.2513 (6)
Zn1—Cl3 2.2195 (6)
N2—Zn1—N1 74.71 (7)
N2—Zn1—O1 72.57 (6)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H2⋯Cl3i 0.80 (3) 2.59 (3) 3.310 (2) 150 (3)
O1W—H1W⋯Cl2ii 0.81 (3) 2.44 (3) 3.182 (2) 153 (3)
O2—H1⋯O1Wiii 0.88 (3) 1.89 (4) 2.7015 (19) 153 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors are grateful to NATO for financial support (grant CBP. NUKR. CLG 982019).

supplementary crystallographic information

Comment

In the past few decades mononuclear zinc(II) complexes attract a lot of attention because of their biological and catalytical activity (Kasuga et al., 2003; Panosyan et al., 2003; Rodriuez-Argüelles et al., 1995; Sousa et al., 2003). On the other hand, many zinc mononuclear complexes containing additional vacant donor sets and chelate centers are taken as ligands for building of homo- and heteropolynuclear systems, which are widely used in bioinorganic modeling and catalysis. The properties of the obtained compounds are closely connected with their structure, so the best results one could obtain using well designed ligand systems. We report here the synthesis and structure of a zinc complex, [ZnCl2(C10H12N4O2)].0.5H2O, based on a novel polynucleative ligand 2-(oximato)-N'-(1-(pyridin-2-yl)ethylidene)propanehydrazide (L).

The title compound consists of neutral complex molecules and solvated water molecules (Fig. 1). The Zn atom has a distorted trigonal-bipyramidal geometry, defined by two Cl atoms and one azomethine N atom at the equatorial plane and a pyridine N atom and an amide O atom at the axial positions. The Zn—N, Zn—O and Zn—Cl bond lengths are comparable to previously reported zinc complexes with thiosemicarbasone and semicarbasone derivatives (Kasuga et al., 2003) and with pyridine complexed to the metal ion (Canary et al., 1998; Comba et al., 2002) (Table 1). The bite angles around the central atom deviate from an ideal square-planar configuration [e.g. N2—Zn1—O1 = 72.57 (6)°, N2—Zn1—N1 = 74.71 (7)°], that is a consequence of the formation of two almost flat five-membered chelate rings. In the crystal packing, the molecules are connected in pairs by N—H···Cl hydrogen bonds (Fig. 2), where the protonated amide group from one molecule acts as a donor and the Cl atom from the neighboring molecule as an acceptor (Table 2). The weak π-stacking interaction is observed between the pyridine ring and oximic group. The molecular pairs are connected to each other by hydrogen bonds involving the solvated water molecules, resulting in an extensive three-dimensional system (Fig. 3).

Experimental

2-(Oximato)-N'-(1-(pyridin-2-yl)ethylidene)propanehydrazide (L) was prepared according to early reported method (Fritsky et al., 1998). 2-Acetylpyridine (1.2 ml, 0.0107 mol) was added to a stirred warm ethanol/water solution (20 ml) of 2-(oximato)propanehydrazide (1.17 g, 0.01 mol). After stirring at 333 k for 6 h, the solution was cooled and a white precipitate was formed immediately. It was filtered off, washed with water and acetone and dried under vacuum (yield 72%, 1.59 g). 1H NMR, 400.13 MHz, (DMSO-d6): 12.118 (s, 1H, N—OH), 10.242 (s, 1H, NH), 8.608 (dt, 1H, py-6, J6,5 = 4.8 Hz, J6,4 = 1.8 Hz), 8.066 (d, 1H, py-3, J3,4 = 7.8 Hz), 7.861 (td, 1H, py-4, J4,5,3 = 7.8 Hz, J4,6 = 1.8 Hz), 7.415 (ddd, 1H, py-5, J5,6 = 4.8 Hz, J5,4 = 7.8 Hz, J = 1.2 Hz), 2.376 (s, 3H, CH3(py)), 1.985(s, 3H, CH3). IR (KBr, cm-1): 1660 (COamid), 1030 (NOoxim), 3340 (NHas). Analysis calculated for C10H12N4O2: C 54.54, H 5.49, N 25.44%; found: C 54.41, H 5.62, N 25.42%.

Zinc(II) chloride (0.014 g, 0.1 mmol) in H2O (5 ml) was added to 10 ml of hot methanol solution of L (0.022 g, 0.1 mmol). The solution was left for slow evaporation at room temperature. After 5 days cubic crystals of the title compound suitable for X-ray analysis were obtained.

Refinement

H atoms on C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93Å (CH) and 0.96Å (CH3), and with Uiso(H) = 1.2Ueq(C) for aromatic and Uiso(H) = 1.5Ueq(C) for methyl group. H atoms on N and O atoms were located from a difference Fourier map and were refined isotropically.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are shown at the 40% probability level. Water molecule is not shown.

Fig. 2.

Fig. 2.

A view of a pair of the complex molecules. Displacement ellipsoids are shown at the 40% probability level. Hydrogen bonds are indicated by dashed lines.

Fig. 3.

Fig. 3.

A packing diagram of the title compound along the b-axis direction. Hydrogen bonds are indicated by dashed lines. H atoms have been omitted for clarity.

Crystal data

[ZnCl2(C10H12N4O2)]·0.5H2O F000 = 1480
Mr = 365.51 Dx = 1.720 Mg m3
Monoclinic, C2/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 3373 reflections
a = 14.5666 (8) Å θ = 3.1–28.5º
b = 12.9898 (8) Å µ = 2.13 mm1
c = 15.8671 (8) Å T = 100 (2) K
β = 109.873 (5)º Cubic, yellow
V = 2823.5 (3) Å3 0.5 × 0.1 × 0.05 mm
Z = 8

Data collection

Kum KM4 CCD area-detector diffractometer 3373 independent reflections
Radiation source: fine-focus sealed tube 3069 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.043
T = 100(2) K θmax = 28.5º
ω scans θmin = 3.1º
Absorption correction: multi-scan(PLATON; Spek, 2003) h = −19→19
Tmin = 0.774, Tmax = 0.891 k = −16→16
17382 measured reflections l = −20→21

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.070   w = 1/[σ2(Fo2) + (0.0282P)2 + 3.185P] where P = (Fo2 + 2Fc2)/3
S = 1.21 (Δ/σ)max = 0.002
3373 reflections Δρmax = 0.45 e Å3
191 parameters Δρmin = −0.37 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.8446 (2) 0.45584 (19) 0.90460 (16) 0.0300 (6)
H1A 0.8849 0.3958 0.9225 0.045*
H1B 0.8500 0.4827 0.8501 0.045*
H1C 0.7778 0.4378 0.8949 0.045*
C2 0.87720 (17) 0.53560 (17) 0.97658 (14) 0.0155 (4)
C3 0.86291 (17) 0.64543 (17) 0.95017 (14) 0.0149 (4)
C4 0.89866 (16) 0.89516 (17) 1.03894 (14) 0.0127 (4)
C5 0.96032 (18) 0.89213 (18) 1.13564 (14) 0.0187 (5)
H5A 0.9937 0.8272 1.1490 0.028*
H5B 0.9197 0.9003 1.1718 0.028*
H5C 1.0073 0.9469 1.1483 0.028*
C6 0.86661 (16) 0.99579 (17) 0.99301 (14) 0.0124 (4)
C7 0.89136 (17) 1.08943 (18) 1.03628 (15) 0.0163 (5)
H7 0.9293 1.0921 1.0967 0.020*
C8 0.85855 (19) 1.17985 (18) 0.98807 (16) 0.0194 (5)
H8 0.8745 1.2437 1.0157 0.023*
C9 0.80194 (19) 1.17314 (18) 0.89857 (16) 0.0203 (5)
H9 0.7788 1.2323 0.8650 0.024*
C10 0.78027 (17) 1.07659 (18) 0.85973 (15) 0.0181 (5)
H10 0.7424 1.0722 0.7994 0.022*
N1 0.81153 (14) 0.98950 (15) 0.90538 (12) 0.0140 (4)
N2 0.86837 (14) 0.81687 (14) 0.98712 (12) 0.0127 (4)
N3 0.88998 (14) 0.71758 (14) 1.01651 (13) 0.0144 (4)
N4 0.91703 (14) 0.51964 (14) 1.06044 (12) 0.0161 (4)
O1 0.82753 (14) 0.67055 (12) 0.87067 (10) 0.0213 (4)
O2 0.92836 (13) 0.41557 (13) 1.08008 (11) 0.0211 (4)
Cl2 0.88241 (4) 0.85938 (4) 0.75864 (3) 0.01726 (13)
Cl3 0.63307 (4) 0.81753 (5) 0.78506 (4) 0.01874 (13)
Zn1 0.793127 (19) 0.838156 (19) 0.848619 (16) 0.01239 (8)
H1 0.954 (3) 0.413 (3) 1.139 (2) 0.048 (10)*
O1W 0.0000 0.34448 (19) 0.2500 0.0206 (5)
H1W 0.045 (2) 0.308 (3) 0.250 (2) 0.048 (11)*
H2 0.905 (2) 0.699 (2) 1.068 (2) 0.024 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0471 (17) 0.0123 (12) 0.0180 (12) −0.0014 (11) −0.0052 (11) −0.0005 (9)
C2 0.0178 (11) 0.0114 (11) 0.0162 (11) −0.0004 (9) 0.0045 (9) 0.0004 (8)
C3 0.0163 (11) 0.0135 (11) 0.0150 (10) −0.0008 (9) 0.0054 (9) −0.0011 (8)
C4 0.0134 (11) 0.0124 (11) 0.0129 (10) −0.0022 (8) 0.0054 (8) −0.0001 (8)
C5 0.0235 (13) 0.0145 (12) 0.0138 (10) −0.0020 (9) 0.0005 (9) 0.0002 (9)
C6 0.0122 (10) 0.0130 (11) 0.0135 (10) 0.0006 (8) 0.0063 (8) 0.0016 (8)
C7 0.0181 (12) 0.0163 (11) 0.0141 (10) −0.0019 (9) 0.0050 (9) −0.0016 (8)
C8 0.0256 (13) 0.0108 (11) 0.0220 (12) −0.0017 (9) 0.0086 (10) −0.0027 (9)
C9 0.0243 (13) 0.0140 (12) 0.0211 (12) 0.0019 (9) 0.0058 (10) 0.0033 (9)
C10 0.0196 (12) 0.0179 (12) 0.0152 (11) 0.0031 (9) 0.0039 (9) 0.0019 (9)
N1 0.0153 (9) 0.0132 (9) 0.0130 (9) −0.0003 (7) 0.0042 (7) −0.0008 (7)
N2 0.0150 (9) 0.0103 (9) 0.0130 (9) 0.0011 (7) 0.0051 (7) 0.0016 (7)
N3 0.0202 (10) 0.0115 (9) 0.0097 (9) −0.0001 (8) 0.0028 (8) 0.0021 (7)
N4 0.0208 (10) 0.0103 (9) 0.0169 (9) 0.0011 (8) 0.0062 (8) 0.0019 (7)
O1 0.0333 (10) 0.0136 (8) 0.0122 (7) 0.0026 (7) 0.0015 (7) 0.0002 (6)
O2 0.0322 (10) 0.0126 (8) 0.0164 (8) 0.0014 (7) 0.0054 (7) 0.0043 (6)
Cl2 0.0152 (3) 0.0210 (3) 0.0172 (3) −0.0004 (2) 0.0076 (2) −0.0007 (2)
Cl3 0.0154 (3) 0.0255 (3) 0.0158 (3) −0.0057 (2) 0.0059 (2) −0.0026 (2)
Zn1 0.01436 (14) 0.01195 (13) 0.01015 (12) −0.00066 (10) 0.00323 (9) −0.00064 (9)
O1W 0.0272 (14) 0.0137 (12) 0.0202 (12) 0.000 0.0070 (11) 0.000

Geometric parameters (Å, °)

C1—C2 1.495 (3) C7—H7 0.9300
C1—H1A 0.9600 C8—C9 1.381 (3)
C1—H1B 0.9600 C8—H8 0.9300
C1—H1C 0.9600 C9—C10 1.386 (3)
C2—N4 1.275 (3) C9—H9 0.9300
C2—C3 1.482 (3) C10—N1 1.337 (3)
C3—O1 1.233 (3) C10—H10 0.9300
C3—N3 1.364 (3) Zn1—N1 2.1409 (19)
C4—N2 1.288 (3) N2—N3 1.371 (3)
C4—C5 1.492 (3) Zn1—N2 2.1142 (18)
C4—C6 1.492 (3) N3—H2 0.80 (3)
C5—H5A 0.9600 N4—O2 1.384 (2)
C5—H5B 0.9600 Zn1—O1 2.2348 (16)
C5—H5C 0.9600 O2—H1 0.88 (3)
C6—N1 1.351 (3) Zn1—Cl2 2.2513 (6)
C6—C7 1.383 (3) Zn1—Cl3 2.2195 (6)
C7—C8 1.394 (3) O1W—H1W 0.81 (3)
C2—C1—H1A 109.5 C7—C8—H8 120.5
C2—C1—H1B 109.5 C8—C9—C10 118.7 (2)
H1A—C1—H1B 109.5 C8—C9—H9 120.6
C2—C1—H1C 109.5 C10—C9—H9 120.6
H1A—C1—H1C 109.5 N1—C10—C9 122.7 (2)
H1B—C1—H1C 109.5 N1—C10—H10 118.6
N4—C2—C3 115.0 (2) C9—C10—H10 118.6
N4—C2—C1 126.8 (2) C10—N1—C6 118.69 (19)
C3—C2—C1 118.27 (19) C10—N1—Zn1 125.33 (15)
O1—C3—N3 121.2 (2) C6—N1—Zn1 115.73 (15)
O1—C3—C2 120.9 (2) C4—N2—N3 122.44 (18)
N3—C3—C2 117.88 (19) C4—N2—Zn1 120.30 (15)
N2—C4—C5 126.3 (2) N3—N2—Zn1 117.03 (13)
N2—C4—C6 113.42 (18) C3—N3—N2 114.28 (18)
C5—C4—C6 120.29 (19) C3—N3—H2 119 (2)
C4—C5—H5A 109.5 N2—N3—H2 125 (2)
C4—C5—H5B 109.5 C2—N4—O2 111.77 (18)
H5A—C5—H5B 109.5 C3—O1—Zn1 114.29 (14)
C4—C5—H5C 109.5 N4—O2—H1 104 (2)
H5A—C5—H5C 109.5 N2—Zn1—N1 74.71 (7)
H5B—C5—H5C 109.5 N2—Zn1—Cl3 123.36 (5)
N1—C6—C7 121.8 (2) N1—Zn1—Cl3 105.30 (5)
N1—C6—C4 115.30 (19) N2—Zn1—O1 72.57 (6)
C7—C6—C4 122.86 (19) N1—Zn1—O1 147.07 (6)
C6—C7—C8 119.1 (2) Cl3—Zn1—O1 95.66 (5)
C6—C7—H7 120.5 N2—Zn1—Cl2 117.91 (5)
C8—C7—H7 120.5 N1—Zn1—Cl2 97.91 (5)
C9—C8—C7 119.0 (2) Cl3—Zn1—Cl2 118.08 (2)
C9—C8—H8 120.5 O1—Zn1—Cl2 94.10 (5)
N4—C2—C3—O1 178.0 (2) Zn1—N2—N3—C3 2.7 (2)
C1—C2—C3—O1 −2.0 (4) C3—C2—N4—O2 −179.79 (19)
N4—C2—C3—N3 −2.1 (3) C1—C2—N4—O2 0.2 (4)
C1—C2—C3—N3 177.9 (2) N3—C3—O1—Zn1 −8.3 (3)
N2—C4—C6—N1 0.0 (3) C2—C3—O1—Zn1 171.56 (16)
C5—C4—C6—N1 179.6 (2) C4—N2—Zn1—N1 −6.55 (17)
N2—C4—C6—C7 −179.8 (2) N3—N2—Zn1—N1 178.85 (17)
C5—C4—C6—C7 −0.1 (3) C4—N2—Zn1—Cl3 −105.03 (17)
N1—C6—C7—C8 0.0 (3) N3—N2—Zn1—Cl3 80.36 (16)
C4—C6—C7—C8 179.7 (2) C4—N2—Zn1—O1 169.73 (19)
C6—C7—C8—C9 0.3 (4) N3—N2—Zn1—O1 −4.88 (15)
C7—C8—C9—C10 −0.4 (4) C4—N2—Zn1—Cl2 84.41 (17)
C8—C9—C10—N1 0.3 (4) N3—N2—Zn1—Cl2 −90.20 (15)
C9—C10—N1—C6 −0.1 (3) C10—N1—Zn1—N2 −179.8 (2)
C9—C10—N1—Zn1 −173.99 (18) C6—N1—Zn1—N2 6.09 (15)
C7—C6—N1—C10 −0.1 (3) C10—N1—Zn1—Cl3 −58.74 (19)
C4—C6—N1—C10 −179.9 (2) C6—N1—Zn1—Cl3 127.17 (14)
C7—C6—N1—Zn1 174.42 (17) C10—N1—Zn1—O1 173.63 (16)
C4—C6—N1—Zn1 −5.4 (2) C6—N1—Zn1—O1 −0.5 (2)
C5—C4—N2—N3 0.4 (3) C10—N1—Zn1—Cl2 63.31 (19)
C6—C4—N2—N3 179.97 (19) C6—N1—Zn1—Cl2 −110.78 (15)
C5—C4—N2—Zn1 −173.95 (18) C3—O1—Zn1—N2 6.96 (17)
C6—C4—N2—Zn1 5.7 (3) C3—O1—Zn1—N1 13.6 (2)
O1—C3—N3—N2 4.1 (3) C3—O1—Zn1—Cl3 −116.27 (17)
C2—C3—N3—N2 −175.80 (19) C3—O1—Zn1—Cl2 124.96 (17)
C4—N2—N3—C3 −171.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H2···Cl3i 0.80 (3) 2.59 (3) 3.310 (2) 150 (3)
O1W—H1W···Cl2ii 0.81 (3) 2.44 (3) 3.182 (2) 153 (3)
O2—H1···O1Wiii 0.88 (3) 1.89 (4) 2.7015 (19) 153 (3)

Symmetry codes: (i) −x+3/2, −y+3/2, −z+2; (ii) −x+1, −y+1, −z+1; (iii) x+1, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2108).

References

  1. Bruker (1999). SAINT Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Canary, J. W., Allen, C. S., Castagnetto, J. M., Chiu, Y. H., Toscano, P. J. & Wang, Y. H. (1998). Inorg. Chem.37, 6255–6262.
  3. Comba, P., Kerscher, M., Merz, M., Muller, V., Pritzkow, H., Remenyi, R., Schiek, W. & Xiong, Y. (2002). Chem. Eur. J.8, 5750–5760. [DOI] [PubMed]
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  6. Fritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Świątek-Kozłowska, J., Kalibabchuk, V. A. & Glowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269–3274.
  7. Kasuga, N. C., Sekino, K., Ishikawa, M., Honda, A., Yokoyama, M., Nakano, S., Shimada, N., Koumo, S. & Nomiya, K. (2003). J. Inorg. Biochem.96, 298–310. [DOI] [PubMed]
  8. Kuma (1999). KM-4 CCD Software Version 1.61. Kuma Diffraction, Wrocław, Poland.
  9. Panosyan, F. B., Lough, A. J. & Chin, J. (2003). Acta Cryst. E59, m827–m829.
  10. Rodriuez-Argüelles, M. C., Ferrari, M. B., Fava, G. G., Pelizzi, C., Tarasconi, P., Albertini, R., Dall’Aglio, P. P., Lunghi, P. & Pinelli, S. (1995). J. Inorg. Biochem.58, 157–175. [DOI] [PubMed]
  11. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  12. Sousa, G. F. de & Deflon, V. M. (2003). Transition Met. Chem.28, 74–78.
  13. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680706535X/hy2108sup1.cif

e-64-0m353-sup1.cif (17.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680706535X/hy2108Isup2.hkl

e-64-0m353-Isup2.hkl (162.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES