Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jan 4;64(Pt 2):m280–m281. doi: 10.1107/S1600536807068031

A one-dimensional zigzag coordination polymer: catena-poly[[[triaqua­cadmium(II)]-[μ-2,2′-(5-methyl-1,3-phenyl­enedi­oxy)diacetato-κ4 O,O′:O′′,O′′′]] monohydrate]

Ying Lin a, Yun Wei a, Xian-Wen Wei a, Hong-Tao Zhang a,*
PMCID: PMC2960183  PMID: 21201262

Abstract

In the title one-dimensional coordination polymer, {[Cd(C11H10O6)(H2O)3]·H2O}n, the 2,2′-(5-methyl-1,3-phenyl­enedi­oxy)diacetate dianions connect CdII ions in a head-to-tail fashion to generate zigzag chains. The coordination geometry of the Cd atom is distorted penta­gonal bipyramidal. There are O—H⋯O hydrogen bonds between the carboxyl O atoms, the aqua ligands and the uncoordinated water mol­ecules.

Related literature

For related literature on coordination polymers, see: Burrows et al. (2004); Hong et al. (2006); Janiak (2000, 2003); Kitagawa et al. (2004); Moulton & Zaworotko (2001); Russell et al. (2001).graphic file with name e-64-0m280-scheme1.jpg

Experimental

Crystal data

  • [Cd(C11H10O6)(H2O)3]·H2O

  • M r = 422.66

  • Triclinic, Inline graphic

  • a = 7.3792 (11) Å

  • b = 8.6946 (12) Å

  • c = 11.9495 (17) Å

  • α = 85.294 (19)°

  • β = 82.52 (2)°

  • γ = 88.44 (2)°

  • V = 757.47 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.49 mm−1

  • T = 298 (2) K

  • 0.24 × 0.08 × 0.02 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.717, T max = 0.971

  • 5397 measured reflections

  • 2647 independent reflections

  • 2121 reflections with I > 2σ(I)

  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.093

  • S = 0.98

  • 2647 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.75 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2000); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807068031/ob2104sup1.cif

e-64-0m280-sup1.cif (20.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807068031/ob2104Isup2.hkl

e-64-0m280-Isup2.hkl (130KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Cd—O9 2.262 (4)
Cd—O7 2.297 (4)
Cd—O1 2.303 (3)
Cd—O6i 2.331 (4)
Cd—O8 2.381 (4)
Cd—O5i 2.432 (4)
Cd—O2 2.573 (4)
O9—Cd—O7 167.09 (14)
O9—Cd—O1 85.66 (14)
O9—Cd—O8 92.24 (14)
O7—Cd—O8 88.31 (14)
O1—Cd—O8 130.96 (13)
O6i—Cd—O8 80.48 (13)
O9—Cd—O5i 88.92 (13)
O9—Cd—O2 83.86 (14)
O8—Cd—O2 77.69 (12)
O5i—Cd—O2 146.90 (12)

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7B⋯O8ii 0.85 2.08 2.875 (5) 156
O7—H7C⋯O5iii 0.85 2.00 2.846 (5) 174
O8—H8C⋯O9iv 0.85 2.51 3.263 (5) 148
O8—H8C⋯O10v 0.85 2.38 3.008 (7) 131
O8—H8D⋯O2iv 0.85 2.14 2.808 (5) 136
O9—H9E⋯O1vi 0.85 1.92 2.752 (5) 165
O9—H9F⋯O10vii 0.85 2.10 2.659 (6) 123
O10—H10C⋯O6 0.85 2.08 2.731 (6) 133
O10—H10D⋯O2v 0.85 1.95 2.793 (6) 170

Symmetry codes: (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Acknowledgments

This work was funded by the Doctoral Research Launch Foundation of Anhui Normal University and the Youth Research Foundation of Anhui Normal University (grant No. 2006xqn64).

supplementary crystallographic information

Comment

Supramolecular self-assembly of coordination polymers have been one of the areas of rapid growth in chemistry recently, owing to their intriguing molecular topologies and useful properties, such as molecular recognition, electronic, optical, magnetic and catalytic properties (Janiak, 2003; Kitagawa et al., 2004). Generally, the structure of such a molecular architecture is governed by coordination interaction and other non-covalent interactions such as hydrogen bonding and π-π stacking as well as the conformations of ligands depending on their rigidity and flexibility (Russell et al., 2001; Moulton & Zaworotko, 2001; Burrows et al., 2004). To date, there is a great research interest focused on the coordination interaction, hydrogen bonding and π-π stacking as well as the rigidity of ligands, whereas there is scant attention to the influence of the flexibility of ligands on the structure of coordination polymer. In order to further understand the role of the flexibility of ligands in the self-assembly of coordination polymers, we have designed and synthesized a ligand bearing the flexible group, 2,2'-(5-methyl-1,3-phenylenedioxy)diacetic acid (abbreviated to H25-mpdoa), and employed it with CdII ion to assemble the title coordination polymer, (I), [Cd(5-mpdoa)(H2O)3]n.nH2O.

As shown in Fig. 1, the coordination geometry of the CdII atom is a distorted pentagonal bipyramid. The equatorial positions are occupied by four carboxyl O atoms (O1, O2, O5i, O6i, symmetry code (i) x - 1, y, z + 1) from two symmetry related 5-mpdoa ligands and the aqua O8 atom. The aqua O7 and O9 atoms are located at the axial vertices of the pentagonal bipyramid. Both two carboxylate groups of the 5-mpdoa ligands, O1/C1/O2 and O5i/C11i/O6i, chelate the CdIIatom in the same mode. The O5/C11/O6 carboxylate is almost coplanar with the benzene ring C3—C8, whereas the O1/C1/O2 carboxylate has a slightly twisted from the benzene ring with the dihedral angle of 10.7 (7)°. Due to the flexibility of the molecule induced by the σ-rotation of the C—O bond (selected torsion angles are listed in Table 1), the 5-mpdoa ligand adopts a W-shape conformation.

The 5-mpdoa ligands connect the neighbouring CdII atoms in a head-to-tail mode to construct an infinite zigzag chain which runs along the [101] direction. Such a supramolecular geometry could be regarded as a result of the cooperation of coordination interaction, the symmetry and the flexibility of ligand molecule as well as the hydrogen bonds. All zigzag chains are packing together through an amount of hydrogen bonding interactions between the carboxyl O atoms, the aqua ligands and the lattice water molecules (Fig. 2, Table 2). The shortest center-center distance between two adjacent benzene rings of the different chains is 4.997 (15) Å, indicating no interchain π-π interaction of 5-mpdoa (Janiak et al., 2000).

Experimental

The H25-mpdoa ligand, 2,2'-(5-methyl-1,3-phenylenedioxy)diacetic acid, was synthesized from 5-methylbenzene-1,3-diol and 2-chloroacetic acid according to a literature method reported by Hong et al. (2006). Cd(CH3COO)2.2(H2O) (26.8 mg, 0.10 mmol) and H25-mpdoa (24.0 mg, 0.10 mmol) were dissolved in 10 ml water. The resulting yellow solution was filtered and the filtrate was left at room temperature. Yellow column-like crystals were obtained (25.5 mg, yield ca 60%) after several weeks by slow evaporation of the solvent.

Refinement

All non-hydrogen atoms were refined anisotropically. H atoms bonded to C atoms were introduced at calculated positions and refined using a riding model with C—H distances of 0.93–0.97 Å. All hydrogen atoms of the water molecules were located in difference maps at an intermediate stage of the refinement and were then treated as riding, with O—H=0.85 (3) Å. In all cases, the H-atom Uiso(H) is 1.2 times Ueq of the parent atom.

Figures

Fig. 1.

Fig. 1.

A drawing of the asymmetric unit of (I) (solid line portion) with displacement ellipsoids at the 30% probability level. [symmetry code: (i) x - 1, y, z + 1].

Fig. 2.

Fig. 2.

A packing diagram of (I) viewed down the c axis. Dotted lines show O—H···O hydrogen bonds. All hydrogen atoms have been omitted for clarity.

Crystal data

[Cd(C11H10O6)(H2O)3]·H2O Z = 2
Mr = 422.66 F000 = 424
Triclinic, P1 Dx = 1.853 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 7.3792 (11) Å Cell parameters from 1908 reflections
b = 8.6946 (12) Å θ = 2.4–25.5º
c = 11.9495 (17) Å µ = 1.49 mm1
α = 85.294 (19)º T = 298 (2) K
β = 82.52 (2)º Column, yellow
γ = 88.44 (2)º 0.24 × 0.08 × 0.02 mm
V = 757.47 (19) Å3

Data collection

Bruker SMART CCD area-detector diffractometer 2647 independent reflections
Radiation source: fine-focus sealed tube 2121 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.037
T = 274(2) K θmax = 25.0º
φ and ω scans θmin = 1.7º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −8→8
Tmin = 0.717, Tmax = 0.971 k = −10→10
5397 measured reflections l = −14→14

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040 H-atom parameters constrained
wR(F2) = 0.093   w = 1/[σ2(Fo2) + (0.0479P)2] where P = (Fo2 + 2Fc2)/3
S = 0.98 (Δ/σ)max = 0.001
2647 reflections Δρmax = 0.41 e Å3
200 parameters Δρmin = −0.75 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 −0.0333 (7) 0.3276 (6) 0.8172 (4) 0.0364 (12)
C2 0.0773 (7) 0.3784 (6) 0.7048 (4) 0.0357 (12)
H2A 0.2052 0.3511 0.7070 0.043*
H2B 0.0346 0.3267 0.6445 0.043*
C3 0.1556 (6) 0.6127 (6) 0.5904 (4) 0.0304 (11)
C4 0.2445 (6) 0.5368 (5) 0.5016 (4) 0.0289 (11)
H4 0.2422 0.4298 0.5022 0.035*
C5 0.3370 (6) 0.6246 (6) 0.4120 (4) 0.0301 (11)
C6 0.3419 (6) 0.7843 (6) 0.4103 (4) 0.0339 (12)
H6 0.4059 0.8411 0.3491 0.041*
C7 0.2513 (7) 0.8586 (6) 0.4997 (5) 0.0350 (12)
C8 0.1596 (7) 0.7715 (6) 0.5901 (4) 0.0358 (12)
H8 0.0999 0.8201 0.6514 0.043*
C9 0.2558 (8) 1.0326 (6) 0.5005 (5) 0.0515 (15)
H9A 0.1448 1.0770 0.4773 0.061*
H9B 0.3583 1.0715 0.4492 0.061*
H9C 0.2671 1.0595 0.5756 0.061*
C10 0.4195 (7) 0.4039 (5) 0.3083 (4) 0.0348 (12)
H10A 0.2934 0.3767 0.3065 0.042*
H10B 0.4627 0.3468 0.3732 0.042*
C11 0.5344 (6) 0.3625 (7) 0.2014 (4) 0.0363 (13)
Cd −0.24893 (5) 0.25748 (4) 1.02124 (3) 0.03576 (16)
O1 −0.1211 (5) 0.4250 (4) 0.8748 (3) 0.0411 (9)
O2 −0.0333 (5) 0.1860 (4) 0.8455 (3) 0.0499 (10)
O3 0.0573 (5) 0.5399 (4) 0.6840 (3) 0.0387 (9)
O4 0.4307 (5) 0.5637 (4) 0.3184 (3) 0.0383 (9)
O5 0.6157 (5) 0.4624 (4) 0.1334 (3) 0.0455 (9)
O6 0.5458 (5) 0.2198 (4) 0.1862 (3) 0.0500 (10)
O7 −0.4729 (5) 0.2338 (5) 0.9073 (3) 0.0635 (12)
H7B −0.5520 0.1705 0.9401 0.076*
H7C −0.5233 0.3214 0.8950 0.076*
O8 −0.2346 (5) −0.0167 (4) 1.0480 (3) 0.0570 (11)
H8C −0.1671 −0.0518 0.9923 0.069*
H8D −0.1896 −0.0430 1.1088 0.069*
O9 0.0139 (5) 0.2816 (4) 1.0963 (3) 0.0580 (11)
H9E 0.0262 0.3754 1.1086 0.069*
H9F 0.0093 0.2255 1.1580 0.069*
O10 0.2207 (6) 0.0730 (5) 0.1980 (4) 0.0801 (15)
H10C 0.3344 0.0701 0.1748 0.096*
H10D 0.1737 −0.0127 0.1891 0.096*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.028 (3) 0.047 (3) 0.034 (3) −0.010 (2) −0.003 (2) −0.001 (3)
C2 0.040 (3) 0.035 (3) 0.031 (3) −0.001 (2) 0.000 (2) −0.002 (2)
C3 0.030 (3) 0.036 (3) 0.024 (3) −0.004 (2) −0.001 (2) 0.002 (2)
C4 0.029 (3) 0.027 (3) 0.031 (3) −0.002 (2) −0.003 (2) −0.003 (2)
C5 0.027 (3) 0.039 (3) 0.025 (3) −0.001 (2) −0.002 (2) −0.003 (2)
C6 0.030 (3) 0.037 (3) 0.031 (3) −0.005 (2) 0.004 (2) 0.000 (2)
C7 0.034 (3) 0.030 (3) 0.043 (3) −0.003 (2) −0.010 (2) −0.003 (2)
C8 0.043 (3) 0.032 (3) 0.032 (3) 0.008 (2) −0.001 (2) −0.008 (2)
C9 0.050 (4) 0.035 (3) 0.067 (4) −0.002 (3) 0.003 (3) −0.006 (3)
C10 0.034 (3) 0.036 (3) 0.032 (3) −0.005 (2) 0.004 (2) −0.001 (2)
C11 0.027 (3) 0.057 (4) 0.026 (3) 0.004 (3) −0.002 (2) −0.007 (3)
Cd 0.0367 (2) 0.0382 (2) 0.0297 (2) −0.00158 (16) 0.00579 (15) −0.00233 (16)
O1 0.043 (2) 0.046 (2) 0.030 (2) −0.0051 (18) 0.0085 (17) 0.0003 (17)
O2 0.059 (3) 0.038 (2) 0.050 (3) −0.0106 (19) −0.003 (2) 0.0085 (19)
O3 0.047 (2) 0.0324 (19) 0.031 (2) 0.0022 (16) 0.0131 (16) −0.0004 (16)
O4 0.051 (2) 0.031 (2) 0.029 (2) −0.0055 (16) 0.0096 (17) −0.0030 (16)
O5 0.045 (2) 0.053 (2) 0.033 (2) 0.0000 (19) 0.0115 (17) −0.0003 (18)
O6 0.058 (3) 0.040 (2) 0.050 (3) −0.0003 (19) 0.0103 (19) −0.0144 (19)
O7 0.060 (3) 0.059 (3) 0.072 (3) −0.022 (2) −0.023 (2) 0.023 (2)
O8 0.047 (2) 0.046 (2) 0.072 (3) 0.0030 (19) 0.006 (2) 0.005 (2)
O9 0.070 (3) 0.048 (2) 0.062 (3) −0.001 (2) −0.023 (2) −0.013 (2)
O10 0.078 (3) 0.047 (3) 0.124 (4) −0.006 (2) −0.044 (3) −0.008 (3)

Geometric parameters (Å, °)

C1—O1 1.249 (6) C10—O4 1.409 (5)
C1—O2 1.250 (6) C10—C11 1.503 (7)
C1—C2 1.517 (7) C10—H10A 0.9700
C1—Cd 2.766 (5) C10—H10B 0.9700
C2—O3 1.413 (6) C11—O5 1.249 (6)
C2—H2A 0.9700 C11—O6 1.268 (6)
C2—H2B 0.9700 C11—Cdi 2.715 (5)
C3—O3 1.370 (6) Cd—O9 2.262 (4)
C3—C4 1.379 (7) Cd—O7 2.297 (4)
C3—C8 1.382 (7) Cd—O1 2.303 (3)
C4—C5 1.378 (7) Cd—O6ii 2.331 (4)
C4—H4 0.9300 Cd—O8 2.381 (4)
C5—O4 1.374 (5) Cd—O5ii 2.432 (4)
C5—C6 1.388 (7) Cd—O2 2.573 (4)
C6—C7 1.382 (7) O7—H7B 0.8489
C6—H6 0.9300 O7—H7C 0.8491
C7—C8 1.379 (7) O8—H8C 0.8499
C7—C9 1.515 (7) O8—H8D 0.8492
C8—H8 0.9300 O9—H9E 0.8495
C9—H9A 0.9600 O9—H9F 0.8482
C9—H9B 0.9600 O10—H10C 0.8492
C9—H9C 0.9600 O10—H10D 0.8499
O1—C1—O2 123.5 (5) O7—Cd—O1 84.25 (13)
O1—C1—C2 120.1 (5) O9—Cd—O6ii 100.20 (15)
O2—C1—C2 116.4 (5) O7—Cd—O6ii 92.61 (15)
O1—C1—Cd 55.6 (3) O1—Cd—O6ii 148.09 (13)
O2—C1—Cd 68.0 (3) O9—Cd—O8 92.24 (14)
C2—C1—Cd 175.5 (4) O7—Cd—O8 88.31 (14)
O3—C2—C1 109.0 (4) O1—Cd—O8 130.96 (13)
O3—C2—H2A 109.9 O6ii—Cd—O8 80.48 (13)
C1—C2—H2A 109.9 O9—Cd—O5ii 88.92 (13)
O3—C2—H2B 109.9 O7—Cd—O5ii 99.79 (15)
C1—C2—H2B 109.9 O1—Cd—O5ii 93.99 (12)
H2A—C2—H2B 108.3 O6ii—Cd—O5ii 55.16 (12)
O3—C3—C4 123.9 (4) O8—Cd—O5ii 135.00 (13)
O3—C3—C8 114.8 (4) O9—Cd—O2 83.86 (14)
C4—C3—C8 121.3 (5) O7—Cd—O2 83.67 (14)
C3—C4—C5 117.8 (4) O1—Cd—O2 53.34 (12)
C3—C4—H4 121.1 O6ii—Cd—O2 157.94 (13)
C5—C4—H4 121.1 O8—Cd—O2 77.69 (12)
O4—C5—C4 123.7 (4) O5ii—Cd—O2 146.90 (12)
O4—C5—C6 114.6 (4) O9—Cd—C11ii 94.48 (14)
C4—C5—C6 121.7 (5) O7—Cd—C11ii 97.62 (15)
C5—C6—C7 119.8 (5) O1—Cd—C11ii 121.12 (15)
C5—C6—H6 120.1 O6ii—Cd—C11ii 27.78 (14)
C7—C6—H6 120.1 O8—Cd—C11ii 107.90 (16)
C8—C7—C6 118.9 (4) O5ii—Cd—C11ii 27.38 (14)
C8—C7—C9 120.1 (5) O2—Cd—C11ii 174.26 (15)
C6—C7—C9 120.9 (5) O9—Cd—C1 84.11 (15)
C7—C8—C3 120.5 (5) O7—Cd—C1 83.27 (14)
C7—C8—H8 119.7 O1—Cd—C1 26.58 (14)
C3—C8—H8 119.7 O6ii—Cd—C1 173.43 (14)
C7—C9—H9A 109.5 O8—Cd—C1 104.43 (15)
C7—C9—H9B 109.5 O5ii—Cd—C1 120.41 (15)
H9A—C9—H9B 109.5 O2—Cd—C1 26.77 (13)
C7—C9—H9C 109.5 C11ii—Cd—C1 147.67 (18)
H9A—C9—H9C 109.5 C1—O1—Cd 97.9 (3)
H9B—C9—H9C 109.5 C1—O2—Cd 85.3 (3)
O4—C10—C11 109.4 (4) C3—O3—C2 119.1 (4)
O4—C10—H10A 109.8 C5—O4—C10 118.4 (4)
C11—C10—H10A 109.8 C11—O5—Cdi 89.0 (3)
O4—C10—H10B 109.8 C11—O6—Cdi 93.2 (3)
C11—C10—H10B 109.8 Cd—O7—H7B 109.4
H10A—C10—H10B 108.3 Cd—O7—H7C 109.2
O5—C11—O6 122.5 (5) H7B—O7—H7C 109.7
O5—C11—C10 121.9 (5) Cd—O8—H8C 109.3
O6—C11—C10 115.6 (5) Cd—O8—H8D 109.2
O5—C11—Cdi 63.6 (3) H8C—O8—H8D 109.6
O6—C11—Cdi 59.0 (3) Cd—O9—H9E 109.2
C10—C11—Cdi 173.6 (4) Cd—O9—H9F 109.1
O9—Cd—O7 167.09 (14) H9E—O9—H9F 109.7
O9—Cd—O1 85.66 (14) H10C—O10—H10D 109.6
O1—C1—C2—O3 −0.6 (7) O2—C1—O1—Cd 0.1 (6)
O2—C1—C2—O3 177.9 (4) C2—C1—O1—Cd 178.5 (4)
O3—C3—C4—C5 179.3 (4) O9—Cd—O1—C1 85.5 (3)
C8—C3—C4—C5 −0.3 (7) O7—Cd—O1—C1 −86.4 (3)
C3—C4—C5—O4 −179.9 (4) O6ii—Cd—O1—C1 −172.1 (3)
C3—C4—C5—C6 0.1 (7) O8—Cd—O1—C1 −3.7 (4)
O4—C5—C6—C7 179.5 (4) O5ii—Cd—O1—C1 174.1 (3)
C4—C5—C6—C7 −0.5 (7) O2—Cd—O1—C1 −0.1 (3)
C5—C6—C7—C8 0.9 (7) C11ii—Cd—O1—C1 178.1 (3)
C5—C6—C7—C9 179.4 (5) O1—C1—O2—Cd −0.1 (5)
C6—C7—C8—C3 −1.1 (7) C2—C1—O2—Cd −178.5 (4)
C9—C7—C8—C3 −179.6 (5) O9—Cd—O2—C1 −89.1 (3)
O3—C3—C8—C7 −178.9 (4) O7—Cd—O2—C1 87.6 (3)
C4—C3—C8—C7 0.8 (7) O1—Cd—O2—C1 0.1 (3)
O4—C10—C11—O5 −3.2 (7) O6ii—Cd—O2—C1 168.9 (3)
O4—C10—C11—O6 175.4 (4) O8—Cd—O2—C1 177.3 (3)
O1—C1—Cd—O9 −92.1 (3) O5ii—Cd—O2—C1 −10.6 (4)
O2—C1—Cd—O9 88.0 (3) C4—C3—O3—C2 14.2 (7)
O1—C1—Cd—O7 90.6 (3) C8—C3—O3—C2 −166.1 (4)
O2—C1—Cd—O7 −89.3 (3) C1—C2—O3—C3 175.6 (4)
O2—C1—Cd—O1 −179.9 (5) C4—C5—O4—C10 5.6 (7)
O1—C1—Cd—O8 177.1 (3) C6—C5—O4—C10 −174.4 (4)
O2—C1—Cd—O8 −2.8 (3) C11—C10—O4—C5 −179.0 (4)
O1—C1—Cd—O5ii −6.8 (4) O6—C11—O5—Cdi −2.4 (5)
O2—C1—Cd—O5ii 173.3 (3) C10—C11—O5—Cdi 176.1 (4)
O1—C1—Cd—O2 179.9 (5) O5—C11—O6—Cdi 2.5 (5)
O1—C1—Cd—C11ii −3.0 (5) C10—C11—O6—Cdi −176.1 (4)
O2—C1—Cd—C11ii 177.1 (3)

Symmetry codes: (i) x+1, y, z−1; (ii) x−1, y, z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O7—H7B···O8iii 0.85 2.08 2.875 (5) 156
O7—H7C···O5iv 0.85 2.00 2.846 (5) 174
O8—H8C···O9v 0.85 2.51 3.263 (5) 148
O8—H8C···O10vi 0.85 2.38 3.008 (7) 131
O8—H8D···O2v 0.85 2.14 2.808 (5) 136
O9—H9E···O1vii 0.85 1.92 2.752 (5) 165
O9—H9F···O10viii 0.85 2.10 2.659 (6) 123
O10—H10C···O6 0.85 2.08 2.731 (6) 133
O10—H10D···O2vi 0.85 1.95 2.793 (6) 170

Symmetry codes: (iii) −x−1, −y, −z+2; (iv) −x, −y+1, −z+1; (v) −x, −y, −z+2; (vi) −x, −y, −z+1; (vii) −x, −y+1, −z+2; (viii) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OB2104).

References

  1. Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Burrows, A. D., Donovan, A. S., Harrington, R. W. & Mahon, M. (2004). Eur. J. Inorg. Chem. pp. 4686–4695.
  3. Hong, X.-L., Bai, J., Song, Y., Li, Y.-Z. & Pan, Y. (2006). Eur. J. Inorg. Chem. pp. 3659–3666.
  4. Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.
  5. Janiak, C. (2003). Dalton Trans. pp. 2781–2804.
  6. Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed.43, 2334–2375. [DOI] [PubMed]
  7. Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev.101, 1629–1658. [DOI] [PubMed]
  8. Russell, V., Craig, D., Scudder, M. & Dance, I. (2001). CrystEngComm, 3, 96–106.
  9. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  10. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  11. Sheldrick, G. M. (2000). SHELXTL Bruker AXS Inc., Madison, Wisconsin, USA.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807068031/ob2104sup1.cif

e-64-0m280-sup1.cif (20.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807068031/ob2104Isup2.hkl

e-64-0m280-Isup2.hkl (130KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES