Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jan 23;64(Pt 2):o500. doi: 10.1107/S1600536808001918

Dimethyl 6H,12H-5,11-methano­dibenzo[b,f][1,5]diazo­cine-2,8-diacetate

Masoud Faroughi a, Paul Jensen b, Andrew C Try c,*
PMCID: PMC2960187  PMID: 21201521

Abstract

The asymmetric unit of the title compound, C21H22N2O4, a Tröger’s base analogue derived from methyl 4-amino­phenyl­acetate, contains two crystallographically independent mol­ecules with dihedral angles of 88.44 (5) and 88.68 (6)° between the two benzene rings.

Related literature

For related literature, see: Faroughi et al. (2006, 2007, 2008a ,b ); Solano et al. (2005); Bag & Maitra (1995).graphic file with name e-64-0o500-scheme1.jpg

Experimental

Crystal data

  • C21H22N2O4

  • M r = 366.41

  • Monoclinic, Inline graphic

  • a = 11.559 (1) Å

  • b = 10.957 (1) Å

  • c = 28.976 (3) Å

  • β = 100.080 (1)°

  • V = 3613.2 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 (2) K

  • 0.50 × 0.39 × 0.36 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.919, T max = 0.967

  • 35113 measured reflections

  • 8689 independent reflections

  • 5732 reflections with I > 2σ(I)

  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.138

  • S = 1.01

  • 8689 reflections

  • 491 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001) and SHELXTL (Sheldrick, 2008); software used to prepare material for publication: modiCIFer (Guzei, 2005).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808001918/hk2419sup1.cif

e-64-0o500-sup1.cif (31.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808001918/hk2419Isup2.hkl

e-64-0o500-Isup2.hkl (425KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Australian Research Council for a Discovery Project grant to ACT (grant No. DP0345180) and Macquarie University for the award of a Macquarie University Research Development grant to ACT.

supplementary crystallographic information

Comment

The near perpendicular arrangement of the aryl rings in Tröger's base analogues is a result of the methano-strap that is connected to the two nitrogen atoms in the diazocine bridge. Changing the length of this strap has significant effects on the geometry of the resultant compounds, with straps of three and four atoms creating a larger cavity (Faroughi et al., 2007) and a strap of two atoms creating a smaller cavity (Faroughi et al., 2007, 2008a,b). However, even within the methano-strapped family of simple dibenzo Tröger's base analogues there is significant variation of 26° in the dihedral angle that has been measured to lie between 82° (Solano et al., 2005) and 108.44 (4)° (Faroughi et al., 2006). Both types of molecules in the asymmetric unit of (I) shown in Fig. 1 lie toward the middle of this range, with dihedral angles of 91.56 (5)° and 91.32 (6)°.

Experimental

The title compound was prepared according to the literature procedure (Bag & Maitra, 1995). For the preparation of the title compound, methyl 4-aminophenyl- acetate (4.14 g, 25.1 mmol) and paraformaldehyde (1.21 mg, 40.16 mmol) were dissolved in trifluoroacetic acid (50 ml) and the mixture was stirred under an argon atmosphere in the dark for 8 d. The reaction mixture was then treated with a solution of concentrated ammonia (55 ml) in water (100 ml) and further basified by the addition of a saturated sodium hydrogen carbonate solution (150 ml). The crude material was extracted into dichloromethane (3 x 75 ml) and the combined organic layers were washed with brine (100 ml), dried over anhydrous sodium sulfate, filtered and evaporated to dryness to yield brown solid. The crude material was chromatographed (silica gel, ethyl acetate:dichloromethane 1:3) to afford the title compound, (I), (2.82 g, 61%) as a white solid. Single crystals of (I) were produced from slow evaporation of a dichloromethane solution.

Refinement

H atoms were positioned geometrically, with C—H = 0.95, 0.99 and 0.98 Å for aromatic, methylene, and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl and 1.2 for all other H atoms. The methyl groups were free to rotate about the C—O bonds.

Figures

Fig. 1.

Fig. 1.

View of one of the two unique molecules present in the asymmetric unit of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

View of the second of the two unique molecules present in the asymmetric unit of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 3.

Fig. 3.

Synthetic scheme for the synthesis of (I).

Crystal data

C21H22N2O4 F000 = 1552
Mr = 366.41 Dx = 1.347 Mg m3
Monoclinic, P21/n Melting point: 395 K
Hall symbol: -P 2yn Mo Kα radiation λ = 0.71073 Å
a = 11.559 (1) Å Cell parameters from 7374 reflections
b = 10.957 (1) Å θ = 2.3–28.3º
c = 28.976 (3) Å µ = 0.09 mm1
β = 100.080 (1)º T = 150 (2) K
V = 3613.2 (6) Å3 Prism, colorless
Z = 8 0.50 × 0.39 × 0.36 mm

Data collection

Bruker SMART 1000 CCD area-detector diffractometer 8689 independent reflections
Radiation source: fine-focus sealed tube 5732 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.036
T = 150(2) K θmax = 28.4º
ω scans θmin = 1.8º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −15→15
Tmin = 0.919, Tmax = 0.967 k = −14→14
35113 measured reflections l = −37→37

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047 H-atom parameters constrained
wR(F2) = 0.138   w = 1/[σ2(Fo2) + (0.0601P)2 + 1.5095P] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max < 0.001
8689 reflections Δρmax = 0.44 e Å3
491 parameters Δρmin = −0.22 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.13353 (12) −0.55544 (13) 0.41076 (5) 0.0504 (4)
O2 0.01037 (12) −0.45369 (13) 0.35657 (5) 0.0438 (3)
O3 0.19132 (12) 0.35292 (11) 0.23292 (4) 0.0380 (3)
O4 0.27173 (13) 0.23178 (11) 0.18499 (4) 0.0392 (3)
O5 0.69961 (12) 0.11996 (11) 0.23969 (4) 0.0373 (3)
O6 0.76216 (12) 0.23781 (11) 0.18596 (4) 0.0357 (3)
O7 0.45898 (15) 1.00557 (18) 0.40087 (7) 0.0765 (6)
O8 0.61390 (12) 0.93383 (14) 0.37529 (5) 0.0484 (4)
N1 −0.04445 (12) 0.14840 (13) 0.40096 (5) 0.0265 (3)
N2 0.13389 (12) 0.09436 (13) 0.45479 (5) 0.0254 (3)
N3 0.62531 (13) 0.36677 (14) 0.45458 (5) 0.0310 (3)
N4 0.44164 (12) 0.35297 (14) 0.39983 (5) 0.0302 (3)
C1 0.10001 (14) −0.03141 (15) 0.44837 (5) 0.0235 (3)
C2 0.18112 (15) −0.12287 (16) 0.46428 (5) 0.0273 (4)
H2 0.2589 −0.1010 0.4782 0.033*
C3 0.15049 (15) −0.24462 (16) 0.46012 (6) 0.0295 (4)
H3 0.2070 −0.3054 0.4715 0.035*
C4 0.03710 (15) −0.27907 (15) 0.43931 (5) 0.0275 (4)
C5 0.00082 (16) −0.41203 (16) 0.43529 (6) 0.0338 (4)
H5A 0.0222 −0.4511 0.4664 0.041*
H5B −0.0857 −0.4167 0.4260 0.041*
C6 0.05666 (15) −0.48195 (15) 0.40050 (6) 0.0303 (4)
C7 0.05890 (19) −0.51676 (19) 0.32034 (7) 0.0463 (5)
H7A 0.1425 −0.4968 0.3232 0.069*
H7B 0.0172 −0.4911 0.2895 0.069*
H7C 0.0498 −0.6050 0.3238 0.069*
C8 −0.04269 (15) −0.18824 (15) 0.42258 (6) 0.0269 (4)
H8 −0.1198 −0.2108 0.4079 0.032*
C9 −0.01339 (14) −0.06501 (15) 0.42656 (5) 0.0244 (3)
C10 −0.10157 (14) 0.03062 (16) 0.40602 (6) 0.0295 (4)
H10A −0.1428 0.0030 0.3749 0.035*
H10B −0.1608 0.0408 0.4266 0.035*
C11 0.03016 (14) 0.17429 (15) 0.44624 (5) 0.0270 (4)
H11A −0.0161 0.1628 0.4716 0.032*
H11B 0.0561 0.2605 0.4469 0.032*
C12 0.21233 (14) 0.13466 (16) 0.42262 (5) 0.0266 (4)
H12A 0.2771 0.0751 0.4234 0.032*
H12B 0.2473 0.2146 0.4331 0.032*
C13 0.14591 (14) 0.14595 (14) 0.37304 (5) 0.0238 (3)
C14 0.20687 (15) 0.14763 (15) 0.33536 (6) 0.0271 (4)
H14 0.2903 0.1503 0.3415 0.033*
C15 0.14880 (16) 0.14550 (15) 0.28933 (6) 0.0291 (4)
C16 0.21643 (19) 0.13771 (16) 0.24954 (6) 0.0378 (4)
H16A 0.2977 0.1114 0.2623 0.045*
H16B 0.1803 0.0737 0.2275 0.045*
C17 0.22199 (15) 0.25389 (15) 0.22257 (6) 0.0276 (4)
C18 0.2918 (2) 0.33655 (17) 0.15714 (6) 0.0427 (5)
H18A 0.2164 0.3742 0.1439 0.064*
H18B 0.3319 0.3106 0.1316 0.064*
H18C 0.3409 0.3959 0.1770 0.064*
C19 0.02681 (17) 0.14257 (15) 0.28116 (6) 0.0328 (4)
H19 −0.0144 0.1401 0.2498 0.039*
C20 −0.03572 (15) 0.14312 (15) 0.31745 (6) 0.0289 (4)
H20 −0.1192 0.1415 0.3110 0.035*
C21 0.02329 (14) 0.14598 (14) 0.36379 (5) 0.0242 (3)
C22 0.50833 (15) 0.34330 (15) 0.36265 (6) 0.0270 (4)
C23 0.44928 (17) 0.35394 (16) 0.31657 (6) 0.0333 (4)
H23 0.3664 0.3645 0.3104 0.040*
C24 0.51062 (19) 0.34919 (16) 0.27986 (6) 0.0387 (5)
H24 0.4693 0.3571 0.2486 0.046*
C25 0.63154 (19) 0.33299 (16) 0.28764 (6) 0.0363 (4)
C26 0.6987 (2) 0.33876 (17) 0.24756 (7) 0.0483 (6)
H26A 0.6562 0.3938 0.2233 0.058*
H26B 0.7765 0.3758 0.2592 0.058*
C27 0.71734 (15) 0.21890 (15) 0.22503 (6) 0.0284 (4)
C28 0.79035 (17) 0.13024 (17) 0.16143 (6) 0.0359 (4)
H28A 0.8519 0.0839 0.1816 0.054*
H28B 0.8182 0.1545 0.1327 0.054*
H28C 0.7200 0.0793 0.1533 0.054*
C29 0.68939 (17) 0.31939 (16) 0.33344 (6) 0.0346 (4)
H29 0.7719 0.3059 0.3392 0.042*
C30 0.62957 (16) 0.32496 (15) 0.37123 (6) 0.0292 (4)
C31 0.69570 (16) 0.31802 (18) 0.42110 (6) 0.0347 (4)
H31A 0.7164 0.2320 0.4291 0.042*
H31B 0.7697 0.3651 0.4237 0.042*
C32 0.50945 (16) 0.30973 (17) 0.44408 (6) 0.0327 (4)
H32A 0.5190 0.2201 0.4425 0.039*
H32B 0.4657 0.3278 0.4698 0.039*
C33 0.40789 (15) 0.47987 (17) 0.40761 (6) 0.0321 (4)
H33A 0.3466 0.4803 0.4276 0.039*
H33B 0.3741 0.5174 0.3771 0.039*
C34 0.51138 (14) 0.55484 (16) 0.43082 (5) 0.0259 (3)
C35 0.50775 (16) 0.68228 (16) 0.43139 (6) 0.0310 (4)
H35 0.4371 0.7227 0.4180 0.037*
C36 0.60485 (17) 0.75178 (16) 0.45100 (6) 0.0331 (4)
C37 0.59910 (19) 0.88985 (18) 0.45326 (7) 0.0423 (5)
H37A 0.5508 0.9130 0.4769 0.051*
H37B 0.6794 0.9217 0.4640 0.051*
C38 0.54884 (16) 0.95020 (16) 0.40758 (7) 0.0339 (4)
C39 0.57179 (19) 0.9885 (2) 0.32980 (7) 0.0463 (5)
H39A 0.4990 0.9480 0.3151 0.069*
H39B 0.6314 0.9789 0.3098 0.069*
H39C 0.5566 1.0755 0.3338 0.069*
C40 0.70736 (16) 0.69204 (18) 0.47061 (6) 0.0347 (4)
H40 0.7750 0.7381 0.4835 0.042*
C41 0.71187 (15) 0.56696 (17) 0.47161 (6) 0.0317 (4)
H41 0.7822 0.5274 0.4859 0.038*
C42 0.61535 (14) 0.49713 (16) 0.45202 (5) 0.0265 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0385 (8) 0.0433 (8) 0.0660 (10) 0.0107 (7) 0.0002 (7) −0.0019 (7)
O2 0.0525 (8) 0.0448 (8) 0.0361 (7) 0.0137 (7) 0.0128 (6) 0.0003 (6)
O3 0.0568 (8) 0.0253 (7) 0.0353 (7) 0.0063 (6) 0.0175 (6) 0.0015 (5)
O4 0.0702 (9) 0.0274 (7) 0.0252 (6) 0.0035 (6) 0.0228 (6) 0.0034 (5)
O5 0.0562 (8) 0.0262 (7) 0.0315 (7) −0.0006 (6) 0.0134 (6) 0.0014 (5)
O6 0.0555 (8) 0.0303 (7) 0.0248 (6) 0.0020 (6) 0.0164 (6) −0.0003 (5)
O7 0.0632 (11) 0.0919 (14) 0.0805 (13) 0.0386 (10) 0.0294 (10) 0.0105 (10)
O8 0.0411 (8) 0.0682 (10) 0.0379 (8) 0.0125 (7) 0.0123 (6) 0.0044 (7)
N1 0.0246 (7) 0.0294 (8) 0.0263 (7) 0.0031 (6) 0.0070 (6) −0.0007 (6)
N2 0.0263 (7) 0.0296 (7) 0.0208 (7) −0.0020 (6) 0.0052 (5) −0.0040 (6)
N3 0.0322 (8) 0.0376 (8) 0.0231 (7) 0.0030 (6) 0.0042 (6) 0.0037 (6)
N4 0.0303 (8) 0.0352 (8) 0.0256 (7) −0.0058 (6) 0.0068 (6) −0.0003 (6)
C1 0.0266 (8) 0.0306 (9) 0.0143 (7) −0.0008 (7) 0.0064 (6) −0.0020 (6)
C2 0.0259 (8) 0.0364 (10) 0.0196 (8) 0.0013 (7) 0.0038 (6) −0.0010 (7)
C3 0.0338 (9) 0.0348 (10) 0.0208 (8) 0.0069 (7) 0.0077 (7) 0.0030 (7)
C4 0.0338 (9) 0.0309 (9) 0.0202 (8) −0.0008 (7) 0.0106 (7) 0.0009 (7)
C5 0.0374 (10) 0.0328 (10) 0.0327 (10) −0.0009 (8) 0.0103 (8) 0.0065 (8)
C6 0.0269 (9) 0.0229 (8) 0.0408 (10) −0.0041 (7) 0.0052 (7) 0.0024 (7)
C7 0.0577 (13) 0.0399 (11) 0.0460 (12) −0.0026 (10) 0.0218 (10) −0.0110 (9)
C8 0.0253 (8) 0.0343 (9) 0.0222 (8) −0.0036 (7) 0.0073 (6) −0.0002 (7)
C9 0.0240 (8) 0.0315 (9) 0.0190 (8) 0.0003 (7) 0.0074 (6) 0.0007 (6)
C10 0.0236 (8) 0.0335 (9) 0.0322 (9) 0.0004 (7) 0.0071 (7) 0.0010 (7)
C11 0.0311 (9) 0.0292 (9) 0.0222 (8) 0.0024 (7) 0.0089 (7) −0.0040 (7)
C12 0.0234 (8) 0.0325 (9) 0.0241 (8) −0.0027 (7) 0.0053 (6) −0.0036 (7)
C13 0.0290 (8) 0.0199 (8) 0.0230 (8) −0.0013 (6) 0.0061 (6) −0.0026 (6)
C14 0.0320 (9) 0.0228 (8) 0.0284 (9) −0.0001 (7) 0.0103 (7) −0.0014 (7)
C15 0.0468 (11) 0.0186 (8) 0.0246 (8) 0.0023 (7) 0.0143 (7) 0.0008 (6)
C16 0.0654 (13) 0.0253 (9) 0.0279 (9) 0.0061 (9) 0.0221 (9) 0.0025 (7)
C17 0.0374 (9) 0.0254 (9) 0.0201 (8) 0.0000 (7) 0.0048 (7) −0.0002 (6)
C18 0.0682 (14) 0.0347 (10) 0.0287 (10) −0.0001 (9) 0.0181 (9) 0.0093 (8)
C19 0.0506 (11) 0.0250 (9) 0.0210 (8) 0.0037 (8) 0.0014 (8) −0.0005 (7)
C20 0.0314 (9) 0.0272 (9) 0.0266 (9) 0.0030 (7) 0.0008 (7) −0.0001 (7)
C21 0.0281 (9) 0.0212 (8) 0.0238 (8) 0.0010 (6) 0.0055 (6) −0.0008 (6)
C22 0.0358 (9) 0.0226 (8) 0.0230 (8) −0.0041 (7) 0.0066 (7) −0.0005 (6)
C23 0.0416 (10) 0.0288 (9) 0.0279 (9) −0.0054 (8) 0.0016 (8) −0.0009 (7)
C24 0.0649 (14) 0.0283 (9) 0.0218 (9) −0.0065 (9) 0.0042 (9) −0.0004 (7)
C25 0.0625 (13) 0.0212 (9) 0.0299 (9) −0.0019 (8) 0.0210 (9) −0.0011 (7)
C26 0.0887 (17) 0.0268 (10) 0.0377 (11) −0.0040 (10) 0.0344 (11) −0.0031 (8)
C27 0.0359 (9) 0.0290 (9) 0.0193 (8) 0.0002 (7) 0.0022 (7) 0.0003 (7)
C28 0.0433 (11) 0.0372 (10) 0.0274 (9) 0.0059 (8) 0.0071 (8) −0.0058 (8)
C29 0.0457 (11) 0.0251 (9) 0.0363 (10) 0.0038 (8) 0.0160 (8) −0.0013 (7)
C30 0.0373 (10) 0.0237 (8) 0.0276 (9) 0.0025 (7) 0.0085 (7) 0.0009 (7)
C31 0.0361 (10) 0.0388 (10) 0.0298 (9) 0.0101 (8) 0.0073 (8) 0.0021 (8)
C32 0.0405 (10) 0.0338 (10) 0.0253 (9) −0.0031 (8) 0.0099 (7) 0.0047 (7)
C33 0.0231 (8) 0.0404 (10) 0.0330 (9) −0.0012 (7) 0.0055 (7) −0.0034 (8)
C34 0.0253 (8) 0.0346 (9) 0.0196 (8) 0.0003 (7) 0.0086 (6) −0.0007 (7)
C35 0.0328 (9) 0.0374 (10) 0.0243 (9) 0.0045 (8) 0.0087 (7) −0.0004 (7)
C36 0.0448 (11) 0.0359 (10) 0.0220 (8) −0.0089 (8) 0.0150 (8) −0.0067 (7)
C37 0.0552 (13) 0.0394 (11) 0.0344 (10) −0.0064 (9) 0.0141 (9) −0.0103 (8)
C38 0.0306 (9) 0.0269 (9) 0.0467 (11) −0.0036 (7) 0.0136 (8) −0.0095 (8)
C39 0.0546 (13) 0.0454 (12) 0.0392 (11) 0.0006 (10) 0.0091 (10) 0.0066 (9)
C40 0.0333 (10) 0.0501 (12) 0.0217 (8) −0.0113 (8) 0.0075 (7) −0.0067 (8)
C41 0.0269 (9) 0.0479 (11) 0.0206 (8) −0.0020 (8) 0.0050 (7) −0.0015 (7)
C42 0.0261 (8) 0.0372 (10) 0.0175 (8) −0.0018 (7) 0.0078 (6) 0.0005 (7)

Geometric parameters (Å, °)

O1—C6 1.197 (2) C15—C19 1.389 (3)
O2—C6 1.328 (2) C15—C16 1.504 (2)
O2—C7 1.449 (2) C16—C17 1.501 (2)
O3—C17 1.196 (2) C16—H16A 0.9900
O4—C17 1.340 (2) C16—H16B 0.9900
O4—C18 1.445 (2) C18—H18A 0.9800
O5—C27 1.195 (2) C18—H18B 0.9800
O6—C27 1.341 (2) C18—H18C 0.9800
O6—C28 1.443 (2) C19—C20 1.377 (2)
O7—C38 1.189 (2) C19—H19 0.9500
O8—C38 1.311 (2) C20—C21 1.396 (2)
O8—C39 1.452 (2) C20—H20 0.9500
N1—C21 1.438 (2) C22—C23 1.394 (2)
N1—C11 1.466 (2) C22—C30 1.394 (2)
N1—C10 1.469 (2) C23—C24 1.379 (3)
N2—C1 1.436 (2) C23—H23 0.9500
N2—C11 1.470 (2) C24—C25 1.388 (3)
N2—C12 1.477 (2) C24—H24 0.9500
N3—C42 1.434 (2) C25—C29 1.385 (3)
N3—C32 1.461 (2) C25—C26 1.507 (2)
N3—C31 1.471 (2) C26—C27 1.499 (2)
N4—C22 1.434 (2) C26—H26A 0.9900
N4—C32 1.460 (2) C26—H26B 0.9900
N4—C33 1.472 (2) C28—H28A 0.9800
C1—C2 1.394 (2) C28—H28B 0.9800
C1—C9 1.401 (2) C28—H28C 0.9800
C2—C3 1.380 (2) C29—C30 1.395 (2)
C2—H2 0.9500 C29—H29 0.9500
C3—C4 1.395 (2) C30—C31 1.514 (2)
C3—H3 0.9500 C31—H31A 0.9900
C4—C8 1.385 (2) C31—H31B 0.9900
C4—C5 1.515 (2) C32—H32A 0.9900
C5—C6 1.499 (2) C32—H32B 0.9900
C5—H5A 0.9900 C33—C34 1.509 (2)
C5—H5B 0.9900 C33—H33A 0.9900
C7—H7A 0.9800 C33—H33B 0.9900
C7—H7B 0.9800 C34—C35 1.397 (2)
C7—H7C 0.9800 C34—C42 1.401 (2)
C8—C9 1.392 (2) C35—C36 1.392 (2)
C8—H8 0.9500 C35—H35 0.9500
C9—C10 1.509 (2) C36—C40 1.386 (3)
C10—H10A 0.9900 C36—C37 1.516 (3)
C10—H10B 0.9900 C37—C38 1.502 (3)
C11—H11A 0.9900 C37—H37A 0.9900
C11—H11B 0.9900 C37—H37B 0.9900
C12—C13 1.511 (2) C39—H39A 0.9800
C12—H12A 0.9900 C39—H39B 0.9800
C12—H12B 0.9900 C39—H39C 0.9800
C13—C21 1.396 (2) C40—C41 1.372 (3)
C13—C14 1.399 (2) C40—H40 0.9500
C14—C15 1.384 (2) C41—C42 1.389 (2)
C14—H14 0.9500 C41—H41 0.9500
C6—O2—C7 116.17 (15) C20—C19—H19 119.2
C17—O4—C18 116.37 (14) C15—C19—H19 119.2
C27—O6—C28 116.34 (14) C19—C20—C21 120.10 (16)
C38—O8—C39 116.64 (16) C19—C20—H20 120.0
C21—N1—C11 111.19 (13) C21—C20—H20 120.0
C21—N1—C10 111.82 (13) C13—C21—C20 119.59 (15)
C11—N1—C10 106.56 (13) C13—C21—N1 121.58 (14)
C1—N2—C11 110.73 (13) C20—C21—N1 118.83 (14)
C1—N2—C12 112.88 (12) C23—C22—C30 119.43 (16)
C11—N2—C12 106.74 (13) C23—C22—N4 118.41 (16)
C42—N3—C32 110.67 (14) C30—C22—N4 122.15 (15)
C42—N3—C31 112.10 (14) C24—C23—C22 120.27 (18)
C32—N3—C31 107.46 (14) C24—C23—H23 119.9
C22—N4—C32 111.06 (14) C22—C23—H23 119.9
C22—N4—C33 112.11 (13) C23—C24—C25 121.25 (17)
C32—N4—C33 106.73 (14) C23—C24—H24 119.4
C2—C1—C9 118.82 (15) C25—C24—H24 119.4
C2—C1—N2 119.64 (14) C29—C25—C24 118.23 (16)
C9—C1—N2 121.54 (14) C29—C25—C26 121.02 (19)
C3—C2—C1 121.23 (16) C24—C25—C26 120.63 (18)
C3—C2—H2 119.4 C27—C26—C25 115.57 (15)
C1—C2—H2 119.4 C27—C26—H26A 108.4
C2—C3—C4 120.42 (16) C25—C26—H26A 108.4
C2—C3—H3 119.8 C27—C26—H26B 108.4
C4—C3—H3 119.8 C25—C26—H26B 108.4
C8—C4—C3 118.31 (16) H26A—C26—H26B 107.4
C8—C4—C5 120.37 (15) O5—C27—O6 123.78 (16)
C3—C4—C5 121.32 (16) O5—C27—C26 126.39 (16)
C6—C5—C4 113.41 (14) O6—C27—C26 109.79 (14)
C6—C5—H5A 108.9 O6—C28—H28A 109.5
C4—C5—H5A 108.9 O6—C28—H28B 109.5
C6—C5—H5B 108.9 H28A—C28—H28B 109.5
C4—C5—H5B 108.9 O6—C28—H28C 109.5
H5A—C5—H5B 107.7 H28A—C28—H28C 109.5
O1—C6—O2 123.48 (17) H28B—C28—H28C 109.5
O1—C6—C5 124.39 (17) C25—C29—C30 121.65 (18)
O2—C6—C5 112.12 (15) C25—C29—H29 119.2
O2—C7—H7A 109.5 C30—C29—H29 119.2
O2—C7—H7B 109.5 C22—C30—C29 119.14 (16)
H7A—C7—H7B 109.5 C22—C30—C31 120.10 (15)
O2—C7—H7C 109.5 C29—C30—C31 120.69 (16)
H7A—C7—H7C 109.5 N3—C31—C30 111.47 (14)
H7B—C7—H7C 109.5 N3—C31—H31A 109.3
C4—C8—C9 122.04 (16) C30—C31—H31A 109.3
C4—C8—H8 119.0 N3—C31—H31B 109.3
C9—C8—H8 119.0 C30—C31—H31B 109.3
C8—C9—C1 119.15 (15) H31A—C31—H31B 108.0
C8—C9—C10 120.20 (15) N4—C32—N3 112.08 (13)
C1—C9—C10 120.62 (15) N4—C32—H32A 109.2
N1—C10—C9 111.41 (13) N3—C32—H32A 109.2
N1—C10—H10A 109.3 N4—C32—H32B 109.2
C9—C10—H10A 109.3 N3—C32—H32B 109.2
N1—C10—H10B 109.3 H32A—C32—H32B 107.9
C9—C10—H10B 109.3 N4—C33—C34 111.82 (14)
H10A—C10—H10B 108.0 N4—C33—H33A 109.3
N1—C11—N2 111.73 (12) C34—C33—H33A 109.3
N1—C11—H11A 109.3 N4—C33—H33B 109.3
N2—C11—H11A 109.3 C34—C33—H33B 109.3
N1—C11—H11B 109.3 H33A—C33—H33B 107.9
N2—C11—H11B 109.3 C35—C34—C42 118.10 (16)
H11A—C11—H11B 107.9 C35—C34—C33 121.76 (15)
N2—C12—C13 111.02 (13) C42—C34—C33 120.14 (15)
N2—C12—H12A 109.4 C36—C35—C34 121.85 (17)
C13—C12—H12A 109.4 C36—C35—H35 119.1
N2—C12—H12B 109.4 C34—C35—H35 119.1
C13—C12—H12B 109.4 C40—C36—C35 118.64 (17)
H12A—C12—H12B 108.0 C40—C36—C37 119.64 (17)
C21—C13—C14 118.89 (15) C35—C36—C37 121.66 (18)
C21—C13—C12 120.84 (14) C38—C37—C36 114.47 (15)
C14—C13—C12 120.10 (14) C38—C37—H37A 108.6
C15—C14—C13 121.73 (16) C36—C37—H37A 108.6
C15—C14—H14 119.1 C38—C37—H37B 108.6
C13—C14—H14 119.1 C36—C37—H37B 108.6
C14—C15—C19 118.13 (15) H37A—C37—H37B 107.6
C14—C15—C16 120.66 (17) O7—C38—O8 123.1 (2)
C19—C15—C16 121.08 (16) O7—C38—C37 124.11 (18)
C17—C16—C15 115.23 (14) O8—C38—C37 112.75 (16)
C17—C16—H16A 108.5 O8—C39—H39A 109.5
C15—C16—H16A 108.5 O8—C39—H39B 109.5
C17—C16—H16B 108.5 H39A—C39—H39B 109.5
C15—C16—H16B 108.5 O8—C39—H39C 109.5
H16A—C16—H16B 107.5 H39A—C39—H39C 109.5
O3—C17—O4 123.79 (15) H39B—C39—H39C 109.5
O3—C17—C16 126.69 (16) C41—C40—C36 120.49 (17)
O4—C17—C16 109.48 (14) C41—C40—H40 119.8
O4—C18—H18A 109.5 C36—C40—H40 119.8
O4—C18—H18B 109.5 C40—C41—C42 121.11 (17)
H18A—C18—H18B 109.5 C40—C41—H41 119.4
O4—C18—H18C 109.5 C42—C41—H41 119.4
H18A—C18—H18C 109.5 C41—C42—C34 119.77 (16)
H18B—C18—H18C 109.5 C41—C42—N3 118.42 (15)
C20—C19—C15 121.52 (16) C34—C42—N3 121.82 (15)
C11—N2—C1—C2 −166.37 (14) C32—N4—C22—C23 165.62 (15)
C12—N2—C1—C2 74.03 (18) C33—N4—C22—C23 −75.07 (19)
C11—N2—C1—C9 13.35 (19) C32—N4—C22—C30 −15.0 (2)
C12—N2—C1—C9 −106.24 (16) C33—N4—C22—C30 104.28 (18)
C9—C1—C2—C3 −1.9 (2) C30—C22—C23—C24 −1.5 (3)
N2—C1—C2—C3 177.80 (14) N4—C22—C23—C24 177.88 (15)
C1—C2—C3—C4 0.7 (2) C22—C23—C24—C25 0.4 (3)
C2—C3—C4—C8 0.8 (2) C23—C24—C25—C29 1.2 (3)
C2—C3—C4—C5 −178.71 (15) C23—C24—C25—C26 −174.72 (16)
C8—C4—C5—C6 109.90 (18) C29—C25—C26—C27 91.4 (2)
C3—C4—C5—C6 −70.6 (2) C24—C25—C26—C27 −92.9 (2)
C7—O2—C6—O1 −0.5 (3) C28—O6—C27—O5 −0.5 (3)
C7—O2—C6—C5 179.95 (15) C28—O6—C27—C26 177.14 (16)
C4—C5—C6—O1 106.9 (2) C25—C26—C27—O5 −11.5 (3)
C4—C5—C6—O2 −73.57 (19) C25—C26—C27—O6 170.94 (17)
C3—C4—C8—C9 −0.9 (2) C24—C25—C29—C30 −1.8 (3)
C5—C4—C8—C9 178.58 (15) C26—C25—C29—C30 174.11 (16)
C4—C8—C9—C1 −0.4 (2) C23—C22—C30—C29 0.9 (2)
C4—C8—C9—C10 177.43 (15) N4—C22—C30—C29 −178.45 (15)
C2—C1—C9—C8 1.8 (2) C23—C22—C30—C31 177.67 (16)
N2—C1—C9—C8 −177.96 (14) N4—C22—C30—C31 −1.7 (2)
C2—C1—C9—C10 −176.02 (14) C25—C29—C30—C22 0.7 (3)
N2—C1—C9—C10 4.2 (2) C25—C29—C30—C31 −176.02 (16)
C21—N1—C10—C9 71.68 (17) C42—N3—C31—C30 −72.47 (19)
C11—N1—C10—C9 −50.01 (17) C32—N3—C31—C30 49.33 (19)
C8—C9—C10—N1 −162.57 (14) C22—C30—C31—N3 −16.3 (2)
C1—C9—C10—N1 15.2 (2) C29—C30—C31—N3 160.41 (16)
C21—N1—C11—N2 −50.30 (18) C22—N4—C32—N3 51.30 (19)
C10—N1—C11—N2 71.78 (16) C33—N4—C32—N3 −71.18 (17)
C1—N2—C11—N1 −51.81 (17) C42—N3—C32—N4 52.55 (18)
C12—N2—C11—N1 71.41 (16) C31—N3—C32—N4 −70.14 (18)
C1—N2—C12—C13 72.00 (17) C22—N4—C33—C34 −72.87 (18)
C11—N2—C12—C13 −49.88 (16) C32—N4—C33—C34 48.95 (17)
N2—C12—C13—C21 14.0 (2) N4—C33—C34—C35 164.18 (15)
N2—C12—C13—C14 −161.30 (14) N4—C33—C34—C42 −14.9 (2)
C21—C13—C14—C15 −2.0 (2) C42—C34—C35—C36 2.0 (2)
C12—C13—C14—C15 173.41 (15) C33—C34—C35—C36 −177.16 (15)
C13—C14—C15—C19 0.5 (2) C34—C35—C36—C40 −0.3 (2)
C13—C14—C15—C16 −175.30 (15) C34—C35—C36—C37 −177.57 (16)
C14—C15—C16—C17 −105.8 (2) C40—C36—C37—C38 132.60 (18)
C19—C15—C16—C17 78.5 (2) C35—C36—C37—C38 −50.2 (2)
C18—O4—C17—O3 2.3 (3) C39—O8—C38—O7 0.7 (3)
C18—O4—C17—C16 −175.43 (16) C39—O8—C38—C37 179.70 (16)
C15—C16—C17—O3 9.8 (3) C36—C37—C38—O7 114.6 (2)
C15—C16—C17—O4 −172.60 (16) C36—C37—C38—O8 −64.4 (2)
C14—C15—C19—C20 0.7 (2) C35—C36—C40—C41 −1.5 (2)
C16—C15—C19—C20 176.50 (15) C37—C36—C40—C41 175.78 (16)
C15—C19—C20—C21 −0.4 (3) C36—C40—C41—C42 1.7 (3)
C14—C13—C21—C20 2.4 (2) C40—C41—C42—C34 0.0 (2)
C12—C13—C21—C20 −173.05 (15) C40—C41—C42—N3 −179.44 (15)
C14—C13—C21—N1 −177.90 (14) C35—C34—C42—C41 −1.8 (2)
C12—C13—C21—N1 6.7 (2) C33—C34—C42—C41 177.34 (15)
C19—C20—C21—C13 −1.2 (2) C35—C34—C42—N3 177.64 (14)
C19—C20—C21—N1 179.04 (15) C33—C34—C42—N3 −3.2 (2)
C11—N1—C21—C13 10.9 (2) C32—N3—C42—C41 164.77 (14)
C10—N1—C21—C13 −108.06 (17) C31—N3—C42—C41 −75.28 (18)
C11—N1—C21—C20 −169.33 (14) C32—N3—C42—C34 −14.7 (2)
C10—N1—C21—C20 71.69 (18) C31—N3—C42—C34 105.26 (17)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2419).

References

  1. Bag, B. G. & Maitra, U. (1995). Synth. Commun.25, 1849–1856.
  2. Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  3. Bruker (1998). SMART Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2003). SAINT Version 6.45. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Faroughi, M., Try, A. C., Klepetko, J. & Turner, P. (2007). Tetrahedron Lett.48, 6548–6551.
  6. Faroughi, M., Try, A. C. & Turner, P. (2006). Acta Cryst. E62, o3893–o3894.
  7. Faroughi, M., Try, A. C. & Turner, P. (2008a). Acta Cryst. E64, o39. [DOI] [PMC free article] [PubMed]
  8. Faroughi, M., Try, A. C. & Turner, P. (2008b). Acta Cryst. E64, o458. [DOI] [PMC free article] [PubMed]
  9. Guzei, I. A. (2005). modiCIFer Version Dec-16-2005. University of Wisconsin–Madison, Madison, Wisconsin, USA.
  10. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Solano, C., Svensson, D., Olomi, Z., Jensen, J., Wendt, O. F. & Wärnmark, K. (2005). Eur. J. Org. Chem. pp. 3510–3517.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808001918/hk2419sup1.cif

e-64-0o500-sup1.cif (31.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808001918/hk2419Isup2.hkl

e-64-0o500-Isup2.hkl (425KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES