Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jan 4;64(Pt 2):o366. doi: 10.1107/S1600536807067773

Dicyclo­hexyl­ammonium thio­cyanate

M Khawar Rauf a, Masahiro Ebihara a, Imtiaz-ud-Din b, Amin Badshah b,*
PMCID: PMC2960191  PMID: 21201398

Abstract

In the crystal structure of the title compound, C12H24N+·NCS, the anions and cations are linked through N—H⋯N and N—H⋯S hydrogen bonds, resulting in a chain along the a axis.

Related literature

For related literature, see: Ng (1992, 1993, 1995a ,b ).graphic file with name e-64-0o366-scheme1.jpg

Experimental

Crystal data

  • C12H24N+·CNS

  • M r = 240.40

  • Orthorhombic, Inline graphic

  • a = 8.781 (2) Å

  • b = 16.479 (4) Å

  • c = 19.026 (4) Å

  • V = 2753.2 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 123 (2) K

  • 0.38 × 0.32 × 0.26 mm

Data collection

  • Rigaku/MSC Mercury CCD diffractometer

  • Absorption correction: none

  • 20885 measured reflections

  • 3151 independent reflections

  • 3014 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.092

  • S = 1.20

  • 3151 reflections

  • 153 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2001); cell refinement: CrystalClear; data reduction: TEXSAN (Rigaku/MSC, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 and TEXSAN.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807067773/hg2363sup1.cif

e-64-0o366-sup1.cif (17.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807067773/hg2363Isup2.hkl

e-64-0o366-Isup2.hkl (154.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯N2 0.901 (18) 1.986 (19) 2.8811 (17) 172.8 (16)
N1—H1A⋯S1i 0.926 (17) 2.440 (17) 3.3610 (13) 172.8 (13)

Symmetry code: (i) Inline graphic.

Acknowledgments

MKR is grateful to the Higher Education Commission of Pakistan for financial support under the International Support Initiative Program for a Doctoral Fellowship at Gifu University, Japan.

supplementary crystallographic information

Comment

Ethanolic solution of dicyclohexylamine, when treated with equimolar amount of a dicarboxylic acid, affords the dicyclohexylammonium hydrogen dicarboxylate, which can be used in a condensation reaction with an organotin(IV) hydroxides or oxides to produce the corresponding organostannate (Ng, 1995b). The dicyclohexylammonium cation has been used in earlier studies to form crystalline derivatives of the dicarboxylic acids (Ng, 1992, 1993). The title compound (I) is an unexpected product of a reaction to synthesis a bifunctionalthiourea. As a result of the steric hindrance of the two cyclohexyl rings in the cation, the C—N—C angle is opened up to 117.23 (9)°, relative to the typical tetrahedral angle of 109.5°. Both of the cyclohexyl rings, exhibit chair conformations. The anionic thiocyanate group is strongly hydrogen bonded to the cation through N—H···N and N—H···S. All the other geometric parameters are in agreement with the previous studies of similar compounds (Ng, 1995a).

Experimental

The title compound was obtained as an unexpected product from a reaction mixture containing dicyclhexylamine, benzoylchloride and potassiumthiocyanate in acetone, refluxed at 60 °C. Crystals were grown from a solution of the compound in toluene.

Refinement

The nitrogen H atoms were refined isotropically. Other H atoms were placed in idealized positions and treated as riding atoms with C—H distance in the range 0.95–0.99 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 30% probability level.

Fig. 2.

Fig. 2.

Showing hydrogen bonded anion to the cation through N—H···N and N—H···S.

Crystal data

C12H24N+·CNS F000 = 1056
Mr = 240.40 Dx = 1.160 Mg m3
Orthorhombic, Pbca Mo Kα radiation λ = 0.71070 Å
Hall symbol: -P 2ac 2ab Cell parameters from 7454 reflections
a = 8.781 (2) Å θ = 3.2–27.5º
b = 16.479 (4) Å µ = 0.21 mm1
c = 19.026 (4) Å T = 123 (2) K
V = 2753.2 (11) Å3 Block, colorless
Z = 8 0.38 × 0.32 × 0.26 mm

Data collection

Rigaku/MSC Mercury CCD diffractometer 3014 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.029
Detector resolution: 14.62 pixels mm-1 θmax = 27.5º
T = 123(2) K θmin = 3.2º
ω scans h = −11→7
Absorption correction: none k = −17→21
20885 measured reflections l = −23→24
3151 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.092   w = 1/[σ2(Fo2) + (0.037P)2 + 1.0451P] where P = (Fo2 + 2Fc2)/3
S = 1.20 (Δ/σ)max = 0.001
3151 reflections Δρmax = 0.32 e Å3
153 parameters Δρmin = −0.17 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.37002 (12) 0.15566 (6) 0.52333 (5) 0.0141 (2)
H1A 0.4620 (19) 0.1381 (9) 0.5417 (8) 0.024 (4)*
H1B 0.371 (2) 0.2103 (11) 0.5215 (9) 0.028 (4)*
C1 0.36414 (14) 0.12612 (7) 0.44808 (6) 0.0145 (2)
H1 0.3743 0.0657 0.4479 0.017*
C2 0.49937 (14) 0.16257 (8) 0.40919 (6) 0.0176 (3)
H2A 0.5952 0.1431 0.4308 0.021*
H2B 0.4966 0.2224 0.4135 0.021*
C3 0.49638 (15) 0.13897 (8) 0.33142 (7) 0.0209 (3)
H3A 0.5820 0.1657 0.3067 0.025*
H3B 0.5097 0.0795 0.3269 0.025*
C4 0.34657 (15) 0.16400 (9) 0.29723 (7) 0.0220 (3)
H4A 0.3372 0.2239 0.2980 0.026*
H4B 0.3455 0.1461 0.2476 0.026*
C5 0.21236 (15) 0.12627 (8) 0.33614 (7) 0.0208 (3)
H5A 0.2169 0.0665 0.3314 0.025*
H5B 0.1161 0.1451 0.3145 0.025*
C6 0.21305 (14) 0.14887 (8) 0.41423 (6) 0.0173 (3)
H6A 0.1958 0.2079 0.4193 0.021*
H6B 0.1291 0.1202 0.4385 0.021*
C7 0.24518 (14) 0.12773 (7) 0.57191 (6) 0.0151 (2)
H7 0.1450 0.1455 0.5522 0.018*
C8 0.26768 (15) 0.16798 (8) 0.64351 (6) 0.0184 (3)
H8A 0.2641 0.2277 0.6382 0.022*
H8B 0.3687 0.1531 0.6627 0.022*
C9 0.14262 (17) 0.14035 (8) 0.69417 (7) 0.0239 (3)
H9A 0.1596 0.1653 0.7408 0.029*
H9B 0.0424 0.1588 0.6765 0.029*
C10 0.14189 (17) 0.04800 (8) 0.70150 (7) 0.0263 (3)
H10A 0.2385 0.0300 0.7233 0.032*
H10B 0.0572 0.0314 0.7327 0.032*
C11 0.12341 (16) 0.00738 (8) 0.62991 (7) 0.0241 (3)
H11A 0.0214 0.0203 0.6108 0.029*
H11B 0.1302 −0.0522 0.6357 0.029*
C12 0.24540 (15) 0.03553 (7) 0.57788 (7) 0.0197 (3)
H12A 0.3467 0.0168 0.5940 0.024*
H12B 0.2255 0.0113 0.5312 0.024*
N2 0.36405 (13) 0.32916 (7) 0.50487 (6) 0.0223 (2)
C13 0.29457 (14) 0.35958 (7) 0.45967 (7) 0.0175 (3)
S1 0.19380 (4) 0.40074 (2) 0.396108 (18) 0.02252 (11)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0148 (5) 0.0155 (5) 0.0121 (5) 0.0004 (4) −0.0009 (4) 0.0003 (4)
C1 0.0159 (6) 0.0167 (5) 0.0108 (5) −0.0004 (4) −0.0004 (4) −0.0018 (4)
C2 0.0130 (6) 0.0258 (6) 0.0141 (6) −0.0001 (5) 0.0000 (5) −0.0015 (5)
C3 0.0170 (6) 0.0309 (7) 0.0146 (6) 0.0008 (5) 0.0024 (5) −0.0026 (5)
C4 0.0212 (7) 0.0322 (7) 0.0126 (6) −0.0012 (5) −0.0007 (5) 0.0018 (5)
C5 0.0176 (6) 0.0302 (7) 0.0145 (6) −0.0033 (5) −0.0034 (5) −0.0002 (5)
C6 0.0134 (6) 0.0237 (6) 0.0147 (6) −0.0020 (5) −0.0001 (5) −0.0008 (5)
C7 0.0144 (6) 0.0177 (5) 0.0132 (6) −0.0002 (5) 0.0015 (5) 0.0016 (4)
C8 0.0208 (6) 0.0204 (6) 0.0142 (6) −0.0004 (5) 0.0004 (5) −0.0010 (5)
C9 0.0269 (7) 0.0285 (7) 0.0161 (6) 0.0002 (6) 0.0050 (5) −0.0006 (5)
C10 0.0307 (7) 0.0287 (7) 0.0196 (7) −0.0019 (6) 0.0054 (6) 0.0078 (5)
C11 0.0258 (7) 0.0218 (6) 0.0248 (7) −0.0045 (5) 0.0045 (6) 0.0046 (5)
C12 0.0224 (6) 0.0172 (6) 0.0196 (6) −0.0016 (5) 0.0031 (5) 0.0008 (5)
N2 0.0192 (6) 0.0197 (5) 0.0279 (6) −0.0004 (4) 0.0000 (5) −0.0013 (5)
C13 0.0151 (6) 0.0149 (6) 0.0226 (6) −0.0022 (5) 0.0061 (5) −0.0035 (5)
S1 0.02052 (18) 0.02481 (18) 0.02222 (18) 0.00004 (12) 0.00086 (13) 0.00398 (12)

Geometric parameters (Å, °)

N1—C7 1.5060 (16) C6—H6B 0.9900
N1—C1 1.5132 (15) C7—C12 1.5237 (17)
N1—H1A 0.926 (17) C7—C8 1.5280 (17)
N1—H1B 0.901 (18) C7—H7 1.0000
C1—C6 1.5216 (17) C8—C9 1.5304 (18)
C1—C2 1.5226 (17) C8—H8A 0.9900
C1—H1 1.0000 C8—H8B 0.9900
C2—C3 1.5301 (17) C9—C10 1.528 (2)
C2—H2A 0.9900 C9—H9A 0.9900
C2—H2B 0.9900 C9—H9B 0.9900
C3—C4 1.5244 (18) C10—C11 1.526 (2)
C3—H3A 0.9900 C10—H10A 0.9900
C3—H3B 0.9900 C10—H10B 0.9900
C4—C5 1.5243 (18) C11—C12 1.5304 (18)
C4—H4A 0.9900 C11—H11A 0.9900
C4—H4B 0.9900 C11—H11B 0.9900
C5—C6 1.5317 (17) C12—H12A 0.9900
C5—H5A 0.9900 C12—H12B 0.9900
C5—H5B 0.9900 N2—C13 1.1676 (18)
C6—H6A 0.9900 C13—S1 1.6448 (14)
C7—N1—C1 117.23 (9) C5—C6—H6B 109.5
C7—N1—H1A 107.9 (10) H6A—C6—H6B 108.1
C1—N1—H1A 106.6 (10) N1—C7—C12 110.47 (10)
C7—N1—H1B 109.4 (11) N1—C7—C8 108.69 (10)
C1—N1—H1B 106.6 (11) C12—C7—C8 111.48 (10)
H1A—N1—H1B 108.8 (15) N1—C7—H7 108.7
N1—C1—C6 110.54 (10) C12—C7—H7 108.7
N1—C1—C2 107.84 (10) C8—C7—H7 108.7
C6—C1—C2 112.16 (10) C7—C8—C9 109.85 (11)
N1—C1—H1 108.7 C7—C8—H8A 109.7
C6—C1—H1 108.7 C9—C8—H8A 109.7
C2—C1—H1 108.7 C7—C8—H8B 109.7
C1—C2—C3 110.87 (10) C9—C8—H8B 109.7
C1—C2—H2A 109.5 H8A—C8—H8B 108.2
C3—C2—H2A 109.5 C10—C9—C8 110.90 (11)
C1—C2—H2B 109.5 C10—C9—H9A 109.5
C3—C2—H2B 109.5 C8—C9—H9A 109.5
H2A—C2—H2B 108.1 C10—C9—H9B 109.5
C4—C3—C2 111.02 (10) C8—C9—H9B 109.5
C4—C3—H3A 109.4 H9A—C9—H9B 108.0
C2—C3—H3A 109.4 C11—C10—C9 110.85 (11)
C4—C3—H3B 109.4 C11—C10—H10A 109.5
C2—C3—H3B 109.4 C9—C10—H10A 109.5
H3A—C3—H3B 108.0 C11—C10—H10B 109.5
C5—C4—C3 110.46 (11) C9—C10—H10B 109.5
C5—C4—H4A 109.6 H10A—C10—H10B 108.1
C3—C4—H4A 109.6 C10—C11—C12 111.70 (11)
C5—C4—H4B 109.6 C10—C11—H11A 109.3
C3—C4—H4B 109.6 C12—C11—H11A 109.3
H4A—C4—H4B 108.1 C10—C11—H11B 109.3
C4—C5—C6 111.65 (11) C12—C11—H11B 109.3
C4—C5—H5A 109.3 H11A—C11—H11B 107.9
C6—C5—H5A 109.3 C7—C12—C11 110.47 (11)
C4—C5—H5B 109.3 C7—C12—H12A 109.6
C6—C5—H5B 109.3 C11—C12—H12A 109.6
H5A—C5—H5B 108.0 C7—C12—H12B 109.6
C1—C6—C5 110.73 (10) C11—C12—H12B 109.6
C1—C6—H6A 109.5 H12A—C12—H12B 108.1
C5—C6—H6A 109.5 N2—C13—S1 178.68 (12)
C1—C6—H6B 109.5
C7—N1—C1—C6 56.44 (13) C1—N1—C7—C12 60.50 (14)
C7—N1—C1—C2 179.38 (10) C1—N1—C7—C8 −176.89 (10)
N1—C1—C2—C3 −176.97 (10) N1—C7—C8—C9 −179.73 (10)
C6—C1—C2—C3 −55.03 (13) C12—C7—C8—C9 −57.74 (14)
C1—C2—C3—C4 56.09 (14) C7—C8—C9—C10 57.46 (14)
C2—C3—C4—C5 −56.87 (15) C8—C9—C10—C11 −56.47 (15)
C3—C4—C5—C6 56.52 (15) C9—C10—C11—C12 55.21 (16)
N1—C1—C6—C5 174.64 (10) N1—C7—C12—C11 177.35 (10)
C2—C1—C6—C5 54.26 (13) C8—C7—C12—C11 56.39 (14)
C4—C5—C6—C1 −54.99 (14) C10—C11—C12—C7 −54.95 (15)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1B···N2 0.901 (18) 1.986 (19) 2.8811 (17) 172.8 (16)
N1—H1A···S1i 0.926 (17) 2.440 (17) 3.3610 (13) 172.8 (13)

Symmetry codes: (i) x+1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2363).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  2. Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  3. Molecular Structure Corporation & Rigaku (2001). CrystalClear Version 1.3. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  4. Ng, S. W. (1992). J. Crystallogr. Spectrosc. Res.22, 615–618.
  5. Ng, S. W. (1993). J. Crystallogr. Spectrosc. Res.23, 73–75.
  6. Ng, S. W. (1995a). Acta Cryst. C51, 2149–2150.
  7. Ng, S. W. (1995b). Malays. J. Sci.16B, 2353–2356.
  8. Rigaku/MSC (2004). TEXSAN Version 2.0. Rigaku/MSC, The Woodlands, Texas, USA.
  9. Sheldrick, G. M. (1997). SHELXL97 University of Göttingen, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807067773/hg2363sup1.cif

e-64-0o366-sup1.cif (17.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807067773/hg2363Isup2.hkl

e-64-0o366-Isup2.hkl (154.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES