Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jan 9;64(Pt 2):o398. doi: 10.1107/S1600536807068717

3-(4-Chloro­phen­yl)-7-methyl-4-(4-methyl­phen­yl)-1-oxa-2,7-diaza­spiro­[4.5]dec-2-en-10-one

D Gayathri a, D Velmurugan a,*, R Ranjith Kumar b, S Perumal b, K Ravikumar c
PMCID: PMC2960192  PMID: 21201426

Abstract

In the title compound, C21H21ClN2O2, the dihydro­isoxazole ring adopts an envelope conformation and the piperidinone ring is in a chair conformation. The dihedral angle between the two benzene rings is 84.2 (1)°. The crystal used was an inversion twin.

Related literature

For general background, see: Diana et al. (1985); Huisgen (1984); Lepage et al. (1992); Ryng et al. (1998); Torssell (1988). For puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Nardelli (1983).graphic file with name e-64-0o398-scheme1.jpg

Experimental

Crystal data

  • C21H21ClN2O2

  • M r = 368.85

  • Orthorhombic, Inline graphic

  • a = 11.4585 (8) Å

  • b = 16.1132 (11) Å

  • c = 10.1038 (7) Å

  • V = 1865.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 293 (2) K

  • 0.24 × 0.23 × 0.20 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: none

  • 16236 measured reflections

  • 4350 independent reflections

  • 3771 reflections with I > 2σ(I)

  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.111

  • S = 1.03

  • 4350 reflections

  • 238 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Flack (1983), with 1846 Friedel pairs

  • Flack parameter: 0.65 (6)

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807068717/ci2543sup1.cif

e-64-0o398-sup1.cif (20.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807068717/ci2543Isup2.hkl

e-64-0o398-Isup2.hkl (208.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

DG thanks the Council of Scientific and Industrial Research (CSIR), India, for a Senior Research Fellowship. The University Grants Commission (UGC–SAP) and the Department of Science and Technology (DST–FIST), Government of India, are acknowledged by DV for providing facilities to the department.

supplementary crystallographic information

Comment

1,3-Dipolar cycloaddition of nitrile oxides to alkenes and alkynes affords isoxazoles and isoxazolines (Torssell, 1988). Apart from exhibiting important biological activities such as antiviral (Diana et al., 1985), anticonvulsant (Lepage et al., 1992) and immunostimulatory (Ryng et al., 1998), isoxazolines are valuable synthons in the synthesis of α,β-unsaturated ketones, β-hydroxy ketones and γ-amino alcohols (Huisgen, 1984). In view of the above facts, we have undertaken the X-ray crystal structure determination of the title compound.

The sum of the bond angles around N2 (331.7°) indicates the sp3-hybridization. The dihydro-isoxazole ring (C1—C3/O1/N1) adopts an envelope conformation with atom C1 deviating by 0.350 (2) Å from the plane of rest of the atoms in the ring. The piperidinone ring adopts a chair conformation. The puckering parameters (Cremer & Pople, 1975) and the smallest displacement asymmetry parameters (Nardelli, 1983) for the dihydro-isoxazole ring are q2 = 0.220 (2) Å, φ = 142.2 (4)° and Δs(C1) = 1.1 (2)°, and for the piperidinone ring q2 = 0.074 (2) Å, q3 = 0.569 (2) Å, QT = 0.574 (2) Å and θ = 7.5 (2)°. The dihedral angle between the two benzene rings (C9—C14 and C16—C21) is 84.2 (1)°. The chlorine atom deviates by -0.065 (1) Å from the plane of the attached C16—C21 benzene ring, and the methyl carbon atom C15 deviates by 0.082 (2) Å from the plane of the C9—C14 benzene ring.

The crystal packing is stabilized by van der Waals forces.

Experimental

To a well stirred mixture of 1-methyl-3-[(E)-4-methylphenylmethylidene]tetrahydro-4(1H)-pyridinone (1 mmol) and 4-chlorobenzohydroximoyl chloride (3 mmol) in benzene (15 ml), triethylamine (3 mmol) was added dropwise over a period of 10 min and stirring was continued for 5 h at ambient temperature. The triethylamine hydrochloride was filtered off, solvent evaporated in vacuo, and the product was purified by column chromatography using petroleum ether-ethyl acetate (4:1 v/v) mixture. The compound was then recrystallized from ethanol-ethyl acetate (1:1 v/v).

Refinement

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.98 Å and Uiso(H) = 1.5Ueq(methyl C) or 1.2Ueq(C). The crystal used was an inversion twin.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The crystal packing of the title compound viewed down the c axis.

Crystal data

C21H21ClN2O2 F000 = 776
Mr = 368.85 Dx = 1.313 Mg m3
Orthorhombic, P212121 Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 2169 reflections
a = 11.4585 (8) Å θ = 2.2–25.0º
b = 16.1132 (11) Å µ = 0.22 mm1
c = 10.1038 (7) Å T = 293 (2) K
V = 1865.5 (2) Å3 Block, colourless
Z = 4 0.24 × 0.23 × 0.20 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer 3771 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.022
Monochromator: graphite θmax = 28.0º
T = 293(2) K θmin = 2.2º
ω scans h = −14→14
Absorption correction: none k = −20→20
16236 measured reflections l = −12→13
4350 independent reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.043   w = 1/[σ2(Fo2) + (0.0709P)2 + 0.0494P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.111 (Δ/σ)max = 0.001
S = 1.04 Δρmax = 0.24 e Å3
4350 reflections Δρmin = −0.16 e Å3
238 parameters Extinction correction: none
Primary atom site location: structure-invariant direct methods Absolute structure: Flack (1983); 1846 Friedel pairs
Secondary atom site location: difference Fourier map Flack parameter: 0.65 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.39999 (14) 0.21740 (10) 0.26025 (16) 0.0441 (4)
C2 0.47545 (14) 0.14014 (10) 0.28375 (16) 0.0432 (4)
H2 0.5027 0.1400 0.3757 0.052*
C3 0.57576 (15) 0.16160 (10) 0.19396 (17) 0.0451 (4)
C4 0.26874 (15) 0.20376 (11) 0.2506 (2) 0.0498 (4)
H4A 0.2523 0.1668 0.1771 0.060*
H4B 0.2414 0.1772 0.3310 0.060*
C5 0.2264 (2) 0.33753 (12) 0.3408 (2) 0.0643 (6)
H5A 0.2049 0.3109 0.4233 0.077*
H5B 0.1784 0.3866 0.3301 0.077*
C6 0.3552 (2) 0.36245 (12) 0.3452 (3) 0.0666 (6)
H6A 0.3773 0.3897 0.2633 0.080*
H6B 0.3691 0.4005 0.4179 0.080*
C7 0.42530 (17) 0.28489 (11) 0.36367 (19) 0.0516 (4)
C8 0.08128 (17) 0.26456 (16) 0.2160 (2) 0.0703 (6)
H8A 0.0523 0.2374 0.2939 0.106*
H8B 0.0692 0.2295 0.1405 0.106*
H8C 0.0404 0.3160 0.2035 0.106*
C9 0.42089 (13) 0.05732 (10) 0.25237 (16) 0.0422 (3)
C10 0.40319 (16) 0.03083 (11) 0.12336 (18) 0.0510 (4)
H10 0.4296 0.0634 0.0535 0.061*
C11 0.34703 (17) −0.04313 (12) 0.0970 (2) 0.0567 (5)
H11 0.3365 −0.0596 0.0096 0.068*
C12 0.30606 (15) −0.09324 (11) 0.1981 (2) 0.0535 (4)
C13 0.32650 (18) −0.06790 (12) 0.3258 (2) 0.0590 (5)
H13 0.3018 −0.1012 0.3955 0.071*
C14 0.38319 (16) 0.00627 (11) 0.35339 (18) 0.0520 (4)
H14 0.3959 0.0217 0.4409 0.062*
C15 0.2395 (2) −0.17151 (13) 0.1691 (3) 0.0755 (7)
H15A 0.2165 −0.1972 0.2507 0.113*
H15B 0.2882 −0.2090 0.1199 0.113*
H15C 0.1713 −0.1584 0.1180 0.113*
C16 0.69030 (15) 0.12007 (10) 0.19526 (18) 0.0453 (4)
C17 0.77102 (16) 0.13329 (12) 0.09496 (19) 0.0522 (4)
H17 0.7506 0.1654 0.0221 0.063*
C18 0.88106 (17) 0.09925 (12) 0.1024 (2) 0.0559 (4)
H18 0.9347 0.1079 0.0347 0.067*
C19 0.91083 (15) 0.05239 (11) 0.2108 (2) 0.0526 (4)
C20 0.83202 (17) 0.03571 (11) 0.30978 (19) 0.0559 (5)
H20 0.8526 0.0022 0.3810 0.067*
C21 0.72139 (17) 0.06986 (12) 0.30132 (19) 0.0527 (4)
H21 0.6671 0.0590 0.3676 0.063*
N1 0.55545 (14) 0.22078 (9) 0.11384 (15) 0.0530 (4)
N2 0.20607 (14) 0.28110 (9) 0.23159 (16) 0.0548 (4)
O1 0.44115 (11) 0.25059 (8) 0.13460 (12) 0.0552 (3)
O2 0.49219 (14) 0.27449 (9) 0.45270 (15) 0.0714 (4)
Cl1 1.05097 (4) 0.01181 (4) 0.22360 (6) 0.07411 (18)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0457 (8) 0.0424 (8) 0.0441 (9) 0.0017 (7) 0.0011 (7) 0.0028 (6)
C2 0.0438 (8) 0.0449 (8) 0.0410 (8) 0.0035 (6) −0.0025 (7) 0.0023 (7)
C3 0.0428 (8) 0.0451 (8) 0.0476 (9) −0.0007 (7) −0.0009 (7) −0.0016 (7)
C4 0.0457 (8) 0.0503 (9) 0.0532 (10) 0.0026 (7) −0.0022 (8) 0.0016 (8)
C5 0.0689 (13) 0.0495 (10) 0.0744 (14) 0.0179 (9) 0.0117 (11) 0.0037 (9)
C6 0.0768 (14) 0.0425 (9) 0.0805 (14) 0.0026 (9) 0.0013 (12) −0.0085 (9)
C7 0.0498 (10) 0.0469 (9) 0.0580 (10) −0.0047 (7) 0.0042 (9) 0.0014 (8)
C8 0.0503 (10) 0.0856 (14) 0.0751 (13) 0.0143 (10) 0.0057 (10) 0.0159 (12)
C9 0.0379 (7) 0.0420 (8) 0.0467 (9) 0.0046 (6) 0.0004 (7) 0.0029 (6)
C10 0.0549 (10) 0.0498 (9) 0.0482 (9) 0.0000 (8) 0.0031 (8) 0.0028 (7)
C11 0.0554 (10) 0.0553 (11) 0.0595 (11) 0.0033 (8) −0.0044 (9) −0.0067 (9)
C12 0.0407 (8) 0.0428 (9) 0.0769 (13) 0.0073 (7) −0.0018 (9) −0.0003 (8)
C13 0.0582 (11) 0.0477 (9) 0.0710 (13) 0.0022 (9) 0.0080 (9) 0.0151 (9)
C14 0.0563 (10) 0.0509 (9) 0.0489 (9) 0.0031 (8) 0.0013 (8) 0.0037 (8)
C15 0.0590 (12) 0.0509 (11) 0.116 (2) −0.0032 (9) −0.0063 (13) −0.0041 (12)
C16 0.0425 (8) 0.0422 (8) 0.0510 (9) −0.0008 (7) −0.0021 (7) −0.0060 (7)
C17 0.0485 (9) 0.0548 (10) 0.0534 (10) 0.0006 (8) 0.0014 (8) 0.0024 (8)
C18 0.0465 (9) 0.0619 (11) 0.0594 (11) 0.0015 (8) 0.0070 (9) −0.0020 (9)
C19 0.0428 (8) 0.0517 (9) 0.0634 (11) 0.0056 (7) −0.0035 (8) −0.0114 (8)
C20 0.0586 (11) 0.0551 (10) 0.0541 (10) 0.0111 (8) −0.0027 (9) 0.0004 (8)
C21 0.0505 (9) 0.0547 (10) 0.0527 (10) 0.0035 (8) 0.0059 (8) 0.0000 (8)
N1 0.0471 (8) 0.0580 (9) 0.0540 (8) 0.0063 (7) 0.0061 (7) 0.0053 (7)
N2 0.0495 (8) 0.0569 (9) 0.0580 (9) 0.0087 (7) 0.0036 (7) 0.0104 (7)
O1 0.0519 (7) 0.0619 (7) 0.0519 (6) 0.0132 (6) 0.0056 (6) 0.0146 (6)
O2 0.0826 (11) 0.0639 (9) 0.0678 (9) −0.0015 (8) −0.0190 (8) −0.0105 (7)
Cl1 0.0503 (3) 0.0879 (4) 0.0841 (4) 0.0210 (2) −0.0020 (2) −0.0061 (3)

Geometric parameters (Å, °)

C1—O1 1.456 (2) C9—C10 1.386 (2)
C1—C4 1.523 (2) C10—C11 1.380 (3)
C1—C2 1.534 (2) C10—H10 0.93
C1—C7 1.536 (2) C11—C12 1.384 (3)
C2—C3 1.505 (2) C11—H11 0.93
C2—C9 1.507 (2) C12—C13 1.374 (3)
C2—H2 0.98 C12—C15 1.503 (3)
C3—N1 1.272 (2) C13—C14 1.389 (3)
C3—C16 1.473 (2) C13—H13 0.93
C4—N2 1.451 (2) C14—H14 0.93
C4—H4A 0.97 C15—H15A 0.96
C4—H4B 0.97 C15—H15B 0.96
C5—N2 1.448 (3) C15—H15C 0.96
C5—C6 1.530 (3) C16—C17 1.388 (3)
C5—H5A 0.97 C16—C21 1.389 (3)
C5—H5B 0.97 C17—C18 1.377 (3)
C6—C7 1.497 (3) C17—H17 0.93
C6—H6A 0.97 C18—C19 1.373 (3)
C6—H6B 0.97 C18—H18 0.93
C7—O2 1.194 (2) C19—C20 1.374 (3)
C8—N2 1.463 (3) C19—Cl1 1.7386 (17)
C8—H8A 0.96 C20—C21 1.385 (3)
C8—H8B 0.96 C20—H20 0.93
C8—H8C 0.96 C21—H21 0.93
C9—C14 1.380 (2) N1—O1 1.411 (2)
O1—C1—C4 108.48 (14) C11—C10—C9 121.03 (17)
O1—C1—C2 104.50 (13) C11—C10—H10 119.5
C4—C1—C2 116.71 (14) C9—C10—H10 119.5
O1—C1—C7 105.78 (13) C10—C11—C12 121.29 (19)
C4—C1—C7 109.40 (14) C10—C11—H11 119.4
C2—C1—C7 111.27 (14) C12—C11—H11 119.4
C3—C2—C9 113.17 (14) C13—C12—C11 117.52 (17)
C3—C2—C1 98.68 (13) C13—C12—C15 121.3 (2)
C9—C2—C1 116.88 (13) C11—C12—C15 121.2 (2)
C3—C2—H2 109.2 C12—C13—C14 121.60 (18)
C9—C2—H2 109.2 C12—C13—H13 119.2
C1—C2—H2 109.2 C14—C13—H13 119.2
N1—C3—C16 120.60 (16) C9—C14—C13 120.73 (17)
N1—C3—C2 114.59 (15) C9—C14—H14 119.6
C16—C3—C2 124.81 (14) C13—C14—H14 119.6
N2—C4—C1 111.92 (15) C12—C15—H15A 109.5
N2—C4—H4A 109.2 C12—C15—H15B 109.5
C1—C4—H4A 109.2 H15A—C15—H15B 109.5
N2—C4—H4B 109.2 C12—C15—H15C 109.5
C1—C4—H4B 109.2 H15A—C15—H15C 109.5
H4A—C4—H4B 107.9 H15B—C15—H15C 109.5
N2—C5—C6 110.03 (17) C17—C16—C21 118.79 (16)
N2—C5—H5A 109.7 C17—C16—C3 121.15 (16)
C6—C5—H5A 109.7 C21—C16—C3 119.99 (16)
N2—C5—H5B 109.7 C18—C17—C16 120.60 (18)
C6—C5—H5B 109.7 C18—C17—H17 119.7
H5A—C5—H5B 108.2 C16—C17—H17 119.7
C7—C6—C5 107.56 (16) C19—C18—C17 119.33 (18)
C7—C6—H6A 110.2 C19—C18—H18 120.3
C5—C6—H6A 110.2 C17—C18—H18 120.3
C7—C6—H6B 110.2 C18—C19—C20 121.66 (16)
C5—C6—H6B 110.2 C18—C19—Cl1 119.72 (15)
H6A—C6—H6B 108.5 C20—C19—Cl1 118.62 (15)
O2—C7—C6 123.75 (19) C19—C20—C21 118.62 (17)
O2—C7—C1 122.32 (16) C19—C20—H20 120.7
C6—C7—C1 113.88 (17) C21—C20—H20 120.7
N2—C8—H8A 109.5 C20—C21—C16 120.92 (17)
N2—C8—H8B 109.5 C20—C21—H21 119.5
H8A—C8—H8B 109.5 C16—C21—H21 119.5
N2—C8—H8C 109.5 C3—N1—O1 109.30 (14)
H8A—C8—H8C 109.5 C5—N2—C4 111.01 (15)
H8B—C8—H8C 109.5 C5—N2—C8 110.72 (16)
C14—C9—C10 117.78 (16) C4—N2—C8 109.97 (16)
C14—C9—C2 120.12 (15) N1—O1—C1 107.77 (12)
C10—C9—C2 122.07 (15)
O1—C1—C2—C3 20.69 (15) C10—C11—C12—C15 176.79 (18)
C4—C1—C2—C3 140.47 (15) C11—C12—C13—C14 1.8 (3)
C7—C1—C2—C3 −93.02 (15) C15—C12—C13—C14 −176.97 (18)
O1—C1—C2—C9 −100.88 (16) C10—C9—C14—C13 −1.8 (3)
C4—C1—C2—C9 18.9 (2) C2—C9—C14—C13 176.12 (16)
C7—C1—C2—C9 145.41 (15) C12—C13—C14—C9 0.1 (3)
C9—C2—C3—N1 110.31 (17) N1—C3—C16—C17 −11.9 (3)
C1—C2—C3—N1 −13.93 (19) C2—C3—C16—C17 168.66 (16)
C9—C2—C3—C16 −70.2 (2) N1—C3—C16—C21 164.90 (17)
C1—C2—C3—C16 165.53 (15) C2—C3—C16—C21 −14.5 (3)
O1—C1—C4—N2 −63.77 (19) C21—C16—C17—C18 −1.9 (3)
C2—C1—C4—N2 178.61 (15) C3—C16—C17—C18 174.95 (17)
C7—C1—C4—N2 51.2 (2) C16—C17—C18—C19 −0.5 (3)
N2—C5—C6—C7 −60.1 (2) C17—C18—C19—C20 2.7 (3)
C5—C6—C7—O2 −123.4 (2) C17—C18—C19—Cl1 −178.00 (15)
C5—C6—C7—C1 54.2 (2) C18—C19—C20—C21 −2.4 (3)
O1—C1—C7—O2 −115.9 (2) Cl1—C19—C20—C21 178.29 (14)
C4—C1—C7—O2 127.43 (19) C19—C20—C21—C16 −0.1 (3)
C2—C1—C7—O2 −3.0 (2) C17—C16—C21—C20 2.2 (3)
O1—C1—C7—C6 66.42 (19) C3—C16—C21—C20 −174.70 (17)
C4—C1—C7—C6 −50.2 (2) C16—C3—N1—O1 −178.78 (14)
C2—C1—C7—C6 179.33 (16) C2—C3—N1—O1 0.7 (2)
C3—C2—C9—C14 141.75 (16) C6—C5—N2—C4 64.4 (2)
C1—C2—C9—C14 −104.61 (18) C6—C5—N2—C8 −173.13 (17)
C3—C2—C9—C10 −40.4 (2) C1—C4—N2—C5 −60.1 (2)
C1—C2—C9—C10 73.2 (2) C1—C4—N2—C8 177.08 (16)
C14—C9—C10—C11 1.6 (3) C3—N1—O1—C1 14.11 (18)
C2—C9—C10—C11 −176.26 (16) C4—C1—O1—N1 −147.46 (14)
C9—C10—C11—C12 0.3 (3) C2—C1—O1—N1 −22.29 (16)
C10—C11—C12—C13 −2.0 (3) C7—C1—O1—N1 95.25 (15)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2543).

References

  1. Bruker (2001). SMART (Version 5.625/NT/2000) and SAINT (Version 6.28a). Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  3. Diana, G. D., McKinlay, M. A., Brisson, C. J., Zalay, E. S., Miralles, J. V. & Salvador, U. J. (1985). J. Med. Chem.28, 748–752. [DOI] [PubMed]
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Huisgen, R. (1984). In 1,3-Dipolar Cycloaddition Chemistry, edited by A. Padwa. New York: John Wiley.
  6. Lepage, F., Tombert, F., Cuvier, G., Marivain, A. & Gillardin, J. M. (1992). Eur. J. Med. Chem.27, 581–593.
  7. Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  8. Nardelli, M. (1995). J. Appl. Cryst.28, 659.
  9. Ryng, S., Machon, Z., Wieczorek, Z., Zimecki, M. & Mokrosz, M. (1998). Eur. J. Med. Chem.33, 831–836.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  12. Torssell, K. (1988). Nitrile Oxides, Nitrones and Nitronates in Organic Synthesis New York: VCH.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807068717/ci2543sup1.cif

e-64-0o398-sup1.cif (20.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807068717/ci2543Isup2.hkl

e-64-0o398-Isup2.hkl (208.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES