Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jan 9;64(Pt 2):o404. doi: 10.1107/S1600536807068274

4-Nitro­phenyl N-phenyl­carbamate

Yun-Hua Xu a, Fanqi Qu b,*
PMCID: PMC2960206  PMID: 21201432

Abstract

The title compound, C13H10N2O4, was synthesized as an inter­mediate for the preparation of ureas. The two aromatic rings are twisted about the central carbamate group with a C—C—N—C torsion angle of 139.6 (2)° and a C—C—O—C torsion angle of 95.9 (2)°. The mol­ecules are linked into one-dimensional chains by N—H⋯O hydrogen bonds along the b axis. Weak inter­actions between O atoms of the nitro groups (O⋯O = 3.012 Å) connect two adjacent chains.

Related literature

For related literature, see: Allen et al. (1987); Izdebski & Pawlak (1989); Olma et al. (2006); Tye et al. (2002).graphic file with name e-64-0o404-scheme1.jpg

Experimental

Crystal data

  • C13H10N2O4

  • M r = 258.23

  • Monoclinic, Inline graphic

  • a = 6.0170 (2) Å

  • b = 5.0650 (1) Å

  • c = 18.8960 (5) Å

  • β = 92.538 (1)°

  • V = 575.31 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 90 (2) K

  • 0.50 × 0.40 × 0.26 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) T min = 0.946, T max = 0.971

  • 2630 measured reflections

  • 1473 independent reflections

  • 1363 reflections with I > 2σ(I)

  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.104

  • S = 1.14

  • 1473 reflections

  • 172 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: COLLECT (Nonius, 2002); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO–SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL/PC (Sheldrick, 1995); software used to prepare material for publication: SHELXL97 and local procedures.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807068274/fl2180sup1.cif

e-64-0o404-sup1.cif (15.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807068274/fl2180Isup2.hkl

e-64-0o404-Isup2.hkl (72.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.88 2.05 2.903 (3) 164

Symmetry code: (i) Inline graphic.

Acknowledgments

FQ and Y-HX thank Dr Sihui Long for helpful discussions during the preparation of this paper.

supplementary crystallographic information

Comment

The title compound (I), along with other 4-nitrophenyl carbamates, are important intermediates for the synthesis of ureas (Olma, et al. 2006; Izdebski & Pawlak, 1989). Although it has been used in organic sythesis for a long time, the crystal structure, as far as we know, is reported here for the first time.

The compound, two aromatic rings connected by a carbamate group, is not planar as would be expected. This is evidenced by the dihedral angles between the nitrophenyl ring and the carbamate, C13—C8—O2—C7=95.9 (2)°, and the benzyl ring and the carbamate, C2—C1—N1—C7=139.6 (2)°. Bond lengths and angles for (I) are within normal ranges (Allen et al., 1987). The molecules form one-dimensional chains formed through N—H···O hydrogen bonds along the b axis (Table 1). In addition, intermolecular O···O interactions exists between nitro groups in neighboring chains (Fig. 2).

Experimental

Aniline (1.0 g, 10.7 mmol) was added dropwise to a round-bottom flask containing 4-nitrophenyl chloroformate (2.2 g, 10.9 mmol) and pyridine (0.9 ml, 11.1 mmol) in 20 ml me thylene chloride cooled with ice water. After the solutuion was warmed to ambient temperature, the mixture was refluxed overnight with stirring. The solution was then washed with 1 N NaHCO3, water and brine, and then dried with anhydrous Na2SO4. After removal of the solvent, the product was recovered as a yellow solid (2.5 g, 90%) (Tye, et al. 2002). Colorless crystals of (I) were obtained by recrystallization from ethyl acetate.

Refinement

H atoms were found in difference Fourier maps and subsequently placed in idealized positions with constrained C—H distances of 0.95 Å (CArH), and 0.88 Å (NH1). Uiso(H) values were set to 1.2Ueq for all H atoms. In the absence of significant anomalous scattering effects, Friedel pairs were merged prior to refinement.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level (arbitrary spheres for the H atoms).

Fig. 2.

Fig. 2.

A packing diagram of (I) along a axis.

Crystal data

C13H10N2O4 F000 = 268
Mr = 258.23 Dx = 1.491 Mg m3
Monoclinic, P21 Mo Kα radiation λ = 0.71073 Å
Hall symbol: P2yb Cell parameters from 1469 reflections
a = 6.0170 (2) Å θ = 1–27.5º
b = 5.0650 (1) Å µ = 0.11 mm1
c = 18.8960 (5) Å T = 90 (2) K
β = 92.538 (1)º Block, colorless
V = 575.31 (3) Å3 0.50 × 0.40 × 0.26 mm
Z = 2

Data collection

Nonius KappaCCD diffractometer 1473 independent reflections
Radiation source: fine-focus sealed tube 1363 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.020
Detector resolution: 18 pixels mm-1 θmax = 27.5º
T = 90(2) K θmin = 1.1º
ω scans at fixed χ = 55° h = −7→7
Absorption correction: multi-scan(SCALEPACK; Otwinowski & Minor, 1997) k = −6→6
Tmin = 0.946, Tmax = 0.971 l = −24→24
2630 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038 H-atom parameters constrained
wR(F2) = 0.104   w = 1/[σ2(Fo2) + (0.0582P)2 + 0.1763P] where P = (Fo2 + 2Fc2)/3
S = 1.14 (Δ/σ)max = 0.009
1473 reflections Δρmax = 0.24 e Å3
172 parameters Δρmin = −0.32 e Å3
1 restraint Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.9665 (3) 0.7781 (5) 0.84935 (11) 0.0179 (5)
N1 0.7888 (3) 0.8052 (4) 0.79739 (10) 0.0185 (4)
H1 0.7443 0.9655 0.7857 0.022*
N2 0.0763 (3) −0.1088 (4) 0.56535 (9) 0.0180 (4)
O1 0.7161 (3) 0.3675 (4) 0.77761 (9) 0.0227 (4)
O2 0.5362 (3) 0.6890 (3) 0.71426 (8) 0.0196 (4)
O3 −0.1087 (2) −0.1712 (4) 0.58598 (9) 0.0248 (4)
O4 0.1657 (3) −0.2175 (4) 0.51627 (8) 0.0231 (4)
C2 1.1431 (4) 0.9546 (5) 0.84631 (12) 0.0219 (5)
H2 1.1414 1.0883 0.8110 0.026*
C3 1.3226 (4) 0.9341 (6) 0.89534 (12) 0.0248 (5)
H3 1.4432 1.0546 0.8935 0.030*
C4 1.3255 (4) 0.7399 (6) 0.94631 (12) 0.0257 (6)
H4 1.4489 0.7249 0.9792 0.031*
C5 1.1480 (4) 0.5660 (6) 0.94961 (12) 0.0261 (5)
H5 1.1498 0.4330 0.9851 0.031*
C6 0.9670 (4) 0.5853 (6) 0.90111 (11) 0.0214 (5)
H6 0.8451 0.4669 0.9037 0.026*
C7 0.6852 (4) 0.5994 (5) 0.76518 (11) 0.0169 (4)
C8 0.4214 (4) 0.4908 (5) 0.67556 (11) 0.0177 (5)
C9 0.5166 (3) 0.3802 (5) 0.61711 (11) 0.0190 (5)
H9 0.6578 0.4381 0.6027 0.023*
C10 0.4012 (4) 0.1825 (5) 0.58006 (11) 0.0187 (5)
H10 0.4625 0.1017 0.5400 0.022*
C11 0.1954 (3) 0.1055 (5) 0.60271 (11) 0.0161 (4)
C12 0.0975 (4) 0.2213 (5) 0.65993 (11) 0.0189 (5)
H12 −0.0457 0.1672 0.6735 0.023*
C13 0.2135 (4) 0.4187 (5) 0.69708 (11) 0.0198 (5)
H13 0.1508 0.5024 0.7365 0.024*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0170 (10) 0.0182 (11) 0.0183 (9) 0.0038 (10) −0.0015 (7) −0.0028 (9)
N1 0.0191 (9) 0.0118 (9) 0.0241 (9) 0.0013 (8) −0.0045 (7) −0.0005 (8)
N2 0.0152 (9) 0.0161 (10) 0.0224 (8) −0.0008 (8) −0.0022 (7) 0.0029 (9)
O1 0.0238 (8) 0.0150 (9) 0.0286 (8) 0.0000 (7) −0.0060 (6) 0.0001 (7)
O2 0.0188 (8) 0.0154 (8) 0.0240 (7) −0.0009 (7) −0.0058 (6) −0.0014 (7)
O3 0.0153 (7) 0.0257 (10) 0.0334 (8) −0.0076 (8) 0.0006 (6) 0.0016 (8)
O4 0.0207 (8) 0.0215 (9) 0.0269 (8) 0.0002 (8) −0.0016 (6) −0.0052 (8)
C2 0.0230 (11) 0.0208 (13) 0.0218 (10) −0.0031 (10) −0.0008 (8) 0.0009 (10)
C3 0.0205 (11) 0.0267 (14) 0.0269 (11) −0.0036 (10) −0.0020 (8) −0.0045 (10)
C4 0.0218 (11) 0.0264 (14) 0.0280 (11) 0.0036 (11) −0.0076 (9) −0.0041 (11)
C5 0.0303 (13) 0.0235 (13) 0.0238 (10) 0.0022 (12) −0.0061 (9) 0.0027 (11)
C6 0.0215 (11) 0.0204 (12) 0.0221 (10) −0.0020 (11) −0.0017 (8) 0.0002 (10)
C7 0.0163 (10) 0.0155 (11) 0.0190 (9) 0.0017 (9) 0.0008 (7) −0.0003 (9)
C8 0.0188 (10) 0.0130 (11) 0.0209 (10) −0.0012 (10) −0.0049 (8) 0.0010 (9)
C9 0.0127 (9) 0.0196 (12) 0.0244 (10) −0.0032 (10) −0.0012 (8) 0.0019 (10)
C10 0.0151 (10) 0.0198 (11) 0.0212 (9) −0.0010 (9) 0.0013 (8) −0.0002 (9)
C11 0.0133 (10) 0.0146 (10) 0.0200 (9) −0.0004 (9) −0.0039 (7) 0.0013 (9)
C12 0.0151 (10) 0.0201 (13) 0.0215 (10) 0.0008 (9) 0.0004 (8) 0.0019 (9)
C13 0.0191 (10) 0.0201 (12) 0.0203 (9) 0.0011 (10) 0.0012 (8) −0.0004 (9)

Geometric parameters (Å, °)

C1—C6 1.382 (3) C4—C5 1.388 (4)
C1—C2 1.392 (4) C4—H4 0.9500
C1—N1 1.426 (3) C5—C6 1.396 (3)
N1—C7 1.346 (3) C5—H5 0.9500
N1—H1 0.8800 C6—H6 0.9500
N2—O4 1.224 (3) C8—C13 1.381 (3)
N2—O3 1.237 (2) C8—C9 1.385 (3)
N2—C11 1.465 (3) C9—C10 1.390 (3)
O1—C7 1.210 (3) C9—H9 0.9500
O2—C7 1.364 (3) C10—C11 1.384 (3)
O2—C8 1.405 (3) C10—H10 0.9500
C2—C3 1.395 (3) C11—C12 1.385 (3)
C2—H2 0.9500 C12—C13 1.391 (3)
C3—C4 1.376 (4) C12—H12 0.9500
C3—H3 0.9500 C13—H13 0.9500
C6—C1—C2 120.4 (2) C1—C6—H6 120.3
C6—C1—N1 122.2 (2) C5—C6—H6 120.3
C2—C1—N1 117.4 (2) O1—C7—N1 126.8 (2)
C7—N1—C1 123.7 (2) O1—C7—O2 123.4 (2)
C7—N1—H1 118.1 N1—C7—O2 109.8 (2)
C1—N1—H1 118.1 C13—C8—C9 122.7 (2)
O4—N2—O3 123.8 (2) C13—C8—O2 117.8 (2)
O4—N2—C11 118.45 (18) C9—C8—O2 119.5 (2)
O3—N2—C11 117.76 (19) C8—C9—C10 118.6 (2)
C7—O2—C8 114.97 (19) C8—C9—H9 120.7
C3—C2—C1 119.7 (2) C10—C9—H9 120.7
C3—C2—H2 120.2 C11—C10—C9 118.8 (2)
C1—C2—H2 120.2 C11—C10—H10 120.6
C4—C3—C2 120.2 (2) C9—C10—H10 120.6
C4—C3—H3 119.9 C10—C11—C12 122.7 (2)
C2—C3—H3 119.9 C10—C11—N2 119.0 (2)
C3—C4—C5 120.0 (2) C12—C11—N2 118.30 (19)
C3—C4—H4 120.0 C11—C12—C13 118.5 (2)
C5—C4—H4 120.0 C11—C12—H12 120.8
C4—C5—C6 120.4 (2) C13—C12—H12 120.8
C4—C5—H5 119.8 C8—C13—C12 118.8 (2)
C6—C5—H5 119.8 C8—C13—H13 120.6
C1—C6—C5 119.4 (2) C12—C13—H13 120.6
C6—C1—N1—C7 −40.3 (3) C7—O2—C8—C9 −85.5 (3)
C2—C1—N1—C7 139.6 (2) C13—C8—C9—C10 −2.2 (4)
C6—C1—C2—C3 0.8 (4) O2—C8—C9—C10 179.3 (2)
N1—C1—C2—C3 −179.1 (2) C8—C9—C10—C11 0.5 (3)
C1—C2—C3—C4 0.2 (4) C9—C10—C11—C12 1.4 (4)
C2—C3—C4—C5 −0.9 (4) C9—C10—C11—N2 −178.0 (2)
C3—C4—C5—C6 0.5 (4) O4—N2—C11—C10 1.8 (3)
C2—C1—C6—C5 −1.1 (4) O3—N2—C11—C10 −179.0 (2)
N1—C1—C6—C5 178.8 (2) O4—N2—C11—C12 −177.6 (2)
C4—C5—C6—C1 0.5 (4) O3—N2—C11—C12 1.6 (3)
C1—N1—C7—O1 4.5 (4) C10—C11—C12—C13 −1.6 (4)
C1—N1—C7—O2 −174.95 (18) N2—C11—C12—C13 177.8 (2)
C8—O2—C7—O1 −1.1 (3) C9—C8—C13—C12 2.0 (4)
C8—O2—C7—N1 178.43 (18) O2—C8—C13—C12 −179.5 (2)
C7—O2—C8—C13 95.9 (2) C11—C12—C13—C8 −0.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.88 2.05 2.903 (3) 164

Symmetry codes: (i) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2180).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Izdebski, J. & Pawlak, D. (1989). Synthesis, 6, 423–425.
  3. Nonius (2002). COLLECT Nonius BV, Delft, The Netherlands.
  4. Olma, S., Ermert, J. & Coenen, H. H. (2006). J. Label. Compd. Radiopharm.49, 1037–1050.
  5. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  6. Sheldrick, G. M. (1995). XP in SHELXTL/PC Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Tye, H., Eldred, C. & Wills, M. (2002). Tetrahedron Lett.43, 155–158.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807068274/fl2180sup1.cif

e-64-0o404-sup1.cif (15.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807068274/fl2180Isup2.hkl

e-64-0o404-Isup2.hkl (72.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES