Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jan 11;64(Pt 2):o434. doi: 10.1107/S1600536807067086

1-[Bicyclo[4.2.0]octa-1(6),2,4-trien-3-yl]-3-[bicyclo[4.2.0]octa-1(6),2,4-trien-3-yl­methyl]imidazolium hexa­fluoro­phos­phate

Fang-Hua Zhu a, Jun-Xiao Yang b, Zhi-Hua Mao c, Ru-Gang Xie a,*
PMCID: PMC2960209  PMID: 21201461

Abstract

In the title compound, C20H19N2 +·PF6 , the two benzocyclo­butene units are essentially planar and they form dihedral angles of 38.0 (2) and 72.7 (2)°, with the central imidazolium ring. In the crystal structure, weak C—H⋯π and π-–π stacking inter­actions [centroid–centroid distance = 3.742 (2) Å] contribute to the stability of the crystal structure. The PF6 ion is disordered over two positions with site occupancies of 0.869 (9) and 0.131 (9).

Related literature

For related literature, see: Farona (1996); Kirchhoff & Bruza (1993); Michellys et al. (2001); Nemeto & Fukumoto (1998); Zhang et al. (2006).graphic file with name e-64-0o434-scheme1.jpg

Experimental

Crystal data

  • C20H19N2 +·F6P

  • M r = 432.34

  • Triclinic, Inline graphic

  • a = 9.311 (3) Å

  • b = 10.138 (3) Å

  • c = 10.562 (3) Å

  • α = 86.82 (2)°

  • β = 86.44 (2)°

  • γ = 73.61 (2)°

  • V = 953.9 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 296 (2) K

  • 0.28 × 0.25 × 0.18 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 3558 measured reflections

  • 3522 independent reflections

  • 2238 reflections with I > 2σ(I)

  • R int = 0.006

  • 3 standard reflections every 300 reflections intensity decay: 4.6%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.075

  • wR(F 2) = 0.223

  • S = 1.15

  • 3522 reflections

  • 299 parameters

  • 81 restraints

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: DIFRAC (Gabe & White, 1993); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807067086/ci2536sup1.cif

e-64-0o434-sup1.cif (21.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807067086/ci2536Isup2.hkl

e-64-0o434-Isup2.hkl (172.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C3–C8 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2BCg1i 0.97 3.00 3.813 (5) 143

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors are grateful to the National Natural Science Foundation of China (grant No. 20574046) for financial support.

supplementary crystallographic information

Comment

Benzocyclobutenes (BCBs) are important building blocks for new polymers and advanced materials (Nemeto & Fukumoto, 1998; Michellys et al., 2001). Most of the reported benzocyclobutene monomers in the literature are bis-BCB-functionalized compounds owing to their highly crosslinked structure and their excellent properties such as the insolubility, low solvent pickup and good thermal stability (Farona, 1996; Zhang et al., 2006; Kirchhoff & Bruza, 1993). We report here the crystal structure of the title compound, a novel bisbenzocyclobutene-terminated imidazolium which was obtained by an anion metathesis between 1-(4-benzocyclobutenyl)-3-(4-benzocyclobutenylmethyl) imidazolium choloride and hexafluorophosphate ammonium.

The two benzocyclobutene units are essentially planar. The plane of the C1—C8 and C13—C20 benzocyclobutene units form dihedral angles of 38.0 (2) and 72.7 (2)°, respectively, with the central imidazolium ring.

A combination of intermolecular π-π and C—H···π interactions provide packing forces in the crystal structure of the title compound. A π-π interaction between C13—C15/C18—C20 benzene ring and its symmetry- related counterpart at (-x, 1 - y, -z), with their centroids separated by 3.742 (2) Å, plays an important part in the connection of two adjacent molecules. In addition, a weak C—H···π interaction between C2—H2B group and C3—C8 benzene ring at (1 - x, -1 - y, 1 - z) contributes to the crystal packing (Table 1).

Experimental

4-(N-imidazolyl)benzocyclobutene (5 mmol, 850 mg) and 4-cholomethylbenzocyclobutene (5 mmol, 760 mg) were placed in a two-necked round-bottomed flask under a nitrogen atmosphere, and the mixture was heated at 353 K for 3 h. After the reaction was completed, the resulting 1-(4-benzocyclobutenyl)-3-(4-benzocyclobutenylmethyl)imidazolium chloride, [BBMI][Cl-], was obtained in 85% yield (1.381 g). [BBMI][Cl-] was dissolved in deioned water, and NH4PF6 was added to replace Cl- ions by PF6- ions, to obtain the title compound as a white solid (yield 1.331 g). Colourless crystals of the title compound were obtained by recrystallization of the solid from acetone and ethanol (1:1 v/v). 1 H NMR (400 MHz, CDCl3,): δ 8.84 (s, 1H), 7.41 (t, 1H), 7.31 (m, 2H), 7.27 (2 d, 1H), 7.22 (d, 1H), 7.18 (d, J = 8.0 Hz, 1H), 7.15 (s, 1H), 7.09 (d, J = 7.6 Hz, 1H), 5.37 (s, 2H), 3.21 (s, 4H), 3.17 (s, 4H); 13C NMR (100 MHz, CDCl3,): δ 148.58, 148.04, 7.65, 147.21, 133.71, 133.42, 130.78, 128.20, 124.45, 123.53, 122.77, 121.88, 121.46, 117.09, 54.52, 29.47, 29.32 p.p.m.

Refinement

H atoms were positioned geometrically and refined in the riding model approximation with C—H = 0.93 or 0.97 Å and Uiso(H) = 1.2Ueq(C). Four F atoms of the PF6- ion are disordered over two positions (F3,F4,F5,F6/F3A,F4A,F5A,F6A) with refined occupancies of 0.869 (9) and 0.131 (9). The disordered F atoms were restrained to be coplanar, with the F···F distances restrained to be equal. The displacement parameters of disordered F atoms were restrained to be approximately isotropic.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atomic numbering.

Crystal data

C20H19N2+·F6P Z = 2
Mr = 432.34 F000 = 444
Triclinic, P1 Dx = 1.505 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 9.311 (3) Å Cell parameters from 20 reflections
b = 10.138 (3) Å θ = 4.9–9.1º
c = 10.562 (3) Å µ = 0.21 mm1
α = 86.82 (2)º T = 296 (2) K
β = 86.44 (2)º Block, colourless
γ = 73.61 (2)º 0.28 × 0.25 × 0.18 mm
V = 953.9 (5) Å3

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.006
Radiation source: fine-focus sealed tube θmax = 25.5º
Monochromator: graphite θmin = 1.9º
T = 296(2) K h = −10→11
ω/2θ scans k = −2→12
Absorption correction: none l = −12→12
3558 measured reflections 3 standard reflections
3522 independent reflections every 300 reflections
2238 reflections with I > 2σ(I) intensity decay: 4.6%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.075 H-atom parameters constrained
wR(F2) = 0.223   w = 1/[σ2(Fo2) + (0.1349P)2] where P = (Fo2 + 2Fc2)/3
S = 1.15 (Δ/σ)max = 0.001
3522 reflections Δρmax = 0.64 e Å3
299 parameters Δρmin = −0.41 e Å3
81 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
N1 0.3258 (3) −0.0608 (3) 0.3056 (3) 0.0388 (7)
N2 0.1779 (3) 0.1062 (3) 0.1997 (3) 0.0412 (7)
C1 0.7078 (6) −0.4108 (5) 0.5742 (4) 0.0654 (13)
H1A 0.6556 −0.4310 0.6520 0.078*
H1B 0.7911 −0.3758 0.5917 0.078*
C2 0.7481 (5) −0.5286 (5) 0.4784 (4) 0.0658 (13)
H2A 0.8522 −0.5547 0.4476 0.079*
H2B 0.7152 −0.6086 0.5066 0.079*
C3 0.6426 (4) −0.4283 (4) 0.3899 (4) 0.0486 (10)
C4 0.5802 (5) −0.4138 (4) 0.2742 (4) 0.0534 (11)
H4 0.6062 −0.4838 0.2166 0.064*
C5 0.4756 (4) −0.2881 (4) 0.2472 (3) 0.0477 (10)
H5 0.4297 −0.2731 0.1700 0.057*
C6 0.4397 (4) −0.1854 (4) 0.3348 (3) 0.0385 (8)
C7 0.5044 (4) −0.2001 (4) 0.4520 (3) 0.0452 (9)
H7 0.4809 −0.1304 0.5099 0.054*
C8 0.6057 (5) −0.3256 (4) 0.4753 (3) 0.0474 (9)
C9 0.2990 (4) 0.0017 (3) 0.1915 (3) 0.0381 (8)
H9 0.3572 −0.0247 0.1175 0.046*
C10 0.1233 (5) 0.1122 (4) 0.3233 (4) 0.0583 (12)
H10 0.0378 0.1759 0.3552 0.070*
C11 0.2151 (5) 0.0095 (4) 0.3902 (4) 0.0525 (10)
H11 0.2059 −0.0104 0.4768 0.063*
C12 0.1133 (4) 0.2028 (4) 0.0937 (3) 0.0457 (9)
H12A 0.0101 0.2026 0.0854 0.055*
H12B 0.1688 0.1715 0.0150 0.055*
C13 0.1181 (4) 0.3462 (4) 0.1145 (3) 0.0394 (8)
C14 −0.0027 (4) 0.4358 (4) 0.1797 (3) 0.0414 (9)
H14 −0.0882 0.4103 0.2072 0.050*
C15 0.0126 (4) 0.5639 (4) 0.2006 (3) 0.0446 (9)
C16 −0.0632 (5) 0.7005 (4) 0.2603 (5) 0.0611 (12)
H16A −0.0769 0.6945 0.3520 0.073*
H16B −0.1550 0.7522 0.2215 0.073*
C17 0.0771 (5) 0.7460 (4) 0.2122 (4) 0.0613 (12)
H17A 0.0569 0.8218 0.1496 0.074*
H17B 0.1360 0.7622 0.2793 0.074*
C18 0.1361 (4) 0.6058 (4) 0.1564 (3) 0.0448 (9)
C19 0.2544 (4) 0.5185 (4) 0.0891 (4) 0.0494 (10)
H19 0.3375 0.5464 0.0583 0.059*
C20 0.2429 (4) 0.3886 (4) 0.0702 (3) 0.0465 (10)
H20 0.3209 0.3271 0.0264 0.056*
P1 0.67915 (11) 0.11989 (10) 0.17994 (9) 0.0466 (4)
F1 0.5204 (3) 0.1791 (4) 0.2485 (3) 0.0890 (10)
F2 0.8367 (3) 0.0567 (3) 0.1101 (3) 0.0964 (11)
F3 0.6267 (4) 0.0006 (4) 0.1205 (3) 0.0908 (17) 0.869 (9)
F4 0.7321 (5) 0.0220 (4) 0.2990 (3) 0.109 (2) 0.869 (9)
F5 0.7340 (4) 0.2334 (4) 0.2388 (5) 0.112 (2) 0.869 (9)
F6 0.6275 (5) 0.2124 (5) 0.0586 (4) 0.120 (2) 0.869 (9)
F3A 0.6793 (7) −0.018 (2) 0.2185 (12) 0.127 (14) 0.131 (9)
F4A 0.7527 (10) 0.1314 (12) 0.3022 (15) 0.090 (10) 0.131 (9)
F5A 0.6805 (7) 0.260 (2) 0.1369 (12) 0.103 (11) 0.131 (9)
F6A 0.6104 (10) 0.1040 (12) 0.0613 (16) 0.093 (10) 0.131 (9)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0443 (17) 0.0364 (15) 0.0320 (15) −0.0048 (13) −0.0036 (12) −0.0025 (12)
N2 0.0480 (18) 0.0395 (16) 0.0332 (15) −0.0068 (14) −0.0038 (13) −0.0028 (12)
C1 0.075 (3) 0.066 (3) 0.047 (2) −0.005 (2) −0.023 (2) 0.011 (2)
C2 0.064 (3) 0.065 (3) 0.056 (3) 0.002 (2) −0.013 (2) 0.012 (2)
C3 0.046 (2) 0.051 (2) 0.042 (2) −0.0017 (18) −0.0069 (16) 0.0010 (17)
C4 0.050 (2) 0.055 (2) 0.046 (2) 0.0046 (18) −0.0117 (17) −0.0145 (18)
C5 0.049 (2) 0.055 (2) 0.0348 (19) −0.0043 (18) −0.0110 (16) −0.0087 (17)
C6 0.0361 (18) 0.0414 (19) 0.0340 (17) −0.0041 (15) −0.0050 (14) 0.0004 (14)
C7 0.057 (2) 0.048 (2) 0.0287 (17) −0.0099 (18) −0.0066 (16) −0.0024 (15)
C8 0.055 (2) 0.050 (2) 0.0331 (18) −0.0094 (18) −0.0107 (16) 0.0070 (16)
C9 0.044 (2) 0.0407 (19) 0.0286 (16) −0.0088 (16) −0.0053 (14) −0.0017 (14)
C10 0.068 (3) 0.049 (2) 0.042 (2) 0.008 (2) 0.0080 (19) −0.0024 (18)
C11 0.061 (3) 0.050 (2) 0.0356 (19) 0.0015 (19) 0.0081 (18) −0.0034 (16)
C12 0.052 (2) 0.046 (2) 0.0351 (18) −0.0040 (17) −0.0135 (16) −0.0021 (16)
C13 0.0406 (19) 0.0434 (19) 0.0305 (17) −0.0041 (15) −0.0117 (14) 0.0019 (14)
C14 0.0363 (19) 0.043 (2) 0.0417 (19) −0.0050 (15) −0.0094 (15) 0.0040 (15)
C15 0.041 (2) 0.043 (2) 0.044 (2) −0.0004 (16) −0.0123 (16) 0.0019 (16)
C16 0.058 (3) 0.043 (2) 0.075 (3) −0.0011 (19) −0.008 (2) −0.008 (2)
C17 0.063 (3) 0.050 (2) 0.071 (3) −0.015 (2) −0.014 (2) −0.002 (2)
C18 0.045 (2) 0.047 (2) 0.0414 (19) −0.0100 (17) −0.0131 (16) 0.0077 (16)
C19 0.042 (2) 0.064 (3) 0.044 (2) −0.0179 (19) −0.0051 (17) 0.0037 (18)
C20 0.040 (2) 0.056 (2) 0.0373 (19) −0.0024 (17) −0.0069 (16) −0.0042 (17)
P1 0.0469 (6) 0.0481 (6) 0.0409 (6) −0.0061 (5) −0.0024 (4) −0.0045 (4)
F1 0.0595 (17) 0.125 (2) 0.0650 (17) 0.0038 (16) 0.0102 (13) −0.0246 (17)
F2 0.0592 (18) 0.098 (2) 0.127 (3) −0.0126 (16) 0.0273 (18) −0.042 (2)
F3 0.093 (3) 0.122 (4) 0.078 (3) −0.060 (3) 0.027 (2) −0.048 (3)
F4 0.165 (4) 0.074 (3) 0.054 (2) 0.023 (3) −0.021 (2) 0.0058 (18)
F5 0.105 (3) 0.082 (3) 0.158 (5) −0.031 (2) 0.003 (3) −0.061 (3)
F6 0.151 (4) 0.106 (4) 0.060 (2) 0.024 (3) 0.002 (2) 0.034 (2)
F3A 0.122 (19) 0.094 (16) 0.18 (2) −0.059 (14) −0.017 (16) 0.033 (16)
F4A 0.077 (13) 0.105 (19) 0.079 (13) −0.006 (12) −0.049 (11) 0.013 (12)
F5A 0.140 (19) 0.086 (15) 0.091 (17) −0.050 (13) 0.001 (14) 0.004 (13)
F6A 0.145 (18) 0.095 (17) 0.052 (12) −0.048 (14) −0.024 (11) −0.012 (12)

Geometric parameters (Å, °)

N1—C9 1.334 (4) C12—H12B 0.97
N1—C11 1.382 (4) C13—C20 1.395 (5)
N1—C6 1.435 (4) C13—C14 1.400 (5)
N2—C9 1.313 (4) C14—C15 1.378 (5)
N2—C10 1.370 (5) C14—H14 0.93
N2—C12 1.484 (4) C15—C18 1.381 (6)
C1—C8 1.517 (5) C15—C16 1.518 (5)
C1—C2 1.558 (6) C16—C17 1.552 (7)
C1—H1A 0.97 C16—H16A 0.97
C1—H1B 0.97 C16—H16B 0.97
C2—C3 1.522 (5) C17—C18 1.510 (5)
C2—H2A 0.97 C17—H17A 0.97
C2—H2B 0.97 C17—H17B 0.97
C3—C4 1.368 (5) C18—C19 1.387 (5)
C3—C8 1.371 (5) C19—C20 1.378 (5)
C4—C5 1.395 (5) C19—H19 0.93
C4—H4 0.93 C20—H20 0.93
C5—C6 1.386 (5) P1—F3A 1.43 (3)
C5—H5 0.93 P1—F5A 1.47 (2)
C6—C7 1.393 (5) P1—F6A 1.48 (2)
C7—C8 1.373 (5) P1—F4A 1.524 (18)
C7—H7 0.93 P1—F5 1.556 (4)
C9—H9 0.93 P1—F6 1.563 (4)
C10—C11 1.343 (5) P1—F4 1.572 (4)
C10—H10 0.93 P1—F1 1.576 (3)
C11—H11 0.93 P1—F2 1.579 (3)
C12—C13 1.497 (5) P1—F3 1.597 (4)
C12—H12A 0.97
C9—N1—C11 107.5 (3) C15—C14—H14 122.0
C9—N1—C6 126.8 (3) C13—C14—H14 122.0
C11—N1—C6 125.4 (3) C14—C15—C18 123.0 (3)
C9—N2—C10 108.2 (3) C14—C15—C16 144.1 (4)
C9—N2—C12 125.8 (3) C18—C15—C16 93.0 (3)
C10—N2—C12 125.9 (3) C15—C16—C17 86.7 (3)
C8—C1—C2 86.7 (3) C15—C16—H16A 114.2
C8—C1—H1A 114.2 C17—C16—H16A 114.2
C2—C1—H1A 114.2 C15—C16—H16B 114.2
C8—C1—H1B 114.2 C17—C16—H16B 114.2
C2—C1—H1B 114.2 H16A—C16—H16B 111.4
H1A—C1—H1B 111.4 C18—C17—C16 86.8 (3)
C3—C2—C1 86.3 (3) C18—C17—H17A 114.2
C3—C2—H2A 114.3 C16—C17—H17A 114.2
C1—C2—H2A 114.3 C18—C17—H17B 114.2
C3—C2—H2B 114.3 C16—C17—H17B 114.2
C1—C2—H2B 114.3 H17A—C17—H17B 111.3
H2A—C2—H2B 111.4 C15—C18—C19 121.1 (4)
C4—C3—C8 122.4 (3) C15—C18—C17 93.5 (3)
C4—C3—C2 144.0 (4) C19—C18—C17 145.3 (4)
C8—C3—C2 93.5 (3) C20—C19—C18 116.7 (4)
C3—C4—C5 116.3 (3) C20—C19—H19 121.6
C3—C4—H4 121.8 C18—C19—H19 121.6
C5—C4—H4 121.8 C19—C20—C13 122.2 (3)
C6—C5—C4 120.5 (3) C19—C20—H20 118.9
C6—C5—H5 119.8 C13—C20—H20 118.9
C4—C5—H5 119.8 F3A—P1—F5A 178.4 (5)
C5—C6—C7 123.0 (3) F3A—P1—F6A 88.8 (6)
C5—C6—N1 118.5 (3) F5A—P1—F6A 90.0 (6)
C7—C6—N1 118.5 (3) F3A—P1—F4A 89.6 (6)
C8—C7—C6 114.7 (3) F5A—P1—F4A 91.5 (6)
C8—C7—H7 122.7 F6A—P1—F4A 178.2 (6)
C6—C7—H7 122.7 F5—P1—F6 92.2 (3)
C3—C8—C7 123.1 (3) F5—P1—F4 89.7 (3)
C3—C8—C1 93.5 (3) F6—P1—F4 177.9 (2)
C7—C8—C1 143.4 (3) F3A—P1—F1 91.1 (2)
N2—C9—N1 109.6 (3) F5A—P1—F1 90.1 (2)
N2—C9—H9 125.2 F6A—P1—F1 91.5 (2)
N1—C9—H9 125.2 F4A—P1—F1 89.5 (2)
C11—C10—N2 107.8 (3) F5—P1—F1 89.43 (19)
C11—C10—H10 126.1 F6—P1—F1 90.82 (19)
N2—C10—H10 126.1 F4—P1—F1 90.17 (19)
C10—C11—N1 106.8 (3) F3A—P1—F2 87.5 (2)
C10—C11—H11 126.6 F5A—P1—F2 91.3 (2)
N1—C11—H11 126.6 F6A—P1—F2 87.4 (2)
N2—C12—C13 111.8 (3) F4A—P1—F2 91.5 (2)
N2—C12—H12A 109.3 F5—P1—F2 92.30 (19)
C13—C12—H12A 109.3 F6—P1—F2 89.4 (2)
N2—C12—H12B 109.3 F4—P1—F2 89.5 (2)
C13—C12—H12B 109.3 F1—P1—F2 178.25 (18)
H12A—C12—H12B 107.9 F5—P1—F3 178.5 (2)
C20—C13—C14 120.9 (3) F6—P1—F3 88.8 (3)
C20—C13—C12 119.8 (3) F4—P1—F3 89.3 (2)
C14—C13—C12 119.3 (3) F1—P1—F3 91.61 (18)
C15—C14—C13 116.0 (4) F2—P1—F3 86.66 (17)
C8—C1—C2—C3 0.8 (3) C12—N2—C10—C11 −178.3 (4)
C1—C2—C3—C4 −177.7 (7) N2—C10—C11—N1 −0.8 (5)
C1—C2—C3—C8 −0.9 (4) C9—N1—C11—C10 0.7 (5)
C8—C3—C4—C5 −0.3 (7) C6—N1—C11—C10 −174.1 (4)
C2—C3—C4—C5 176.0 (6) C9—N2—C12—C13 −115.5 (4)
C3—C4—C5—C6 0.3 (7) C10—N2—C12—C13 63.2 (5)
C4—C5—C6—C7 0.4 (7) N2—C12—C13—C20 89.8 (4)
C4—C5—C6—N1 −176.8 (4) N2—C12—C13—C14 −89.5 (4)
C9—N1—C6—C5 −35.6 (6) C20—C13—C14—C15 −2.4 (5)
C11—N1—C6—C5 138.2 (4) C12—C13—C14—C15 177.0 (3)
C9—N1—C6—C7 147.2 (4) C13—C14—C15—C18 2.5 (5)
C11—N1—C6—C7 −39.0 (5) C13—C14—C15—C16 −178.8 (5)
C5—C6—C7—C8 −0.9 (6) C14—C15—C16—C17 −179.7 (5)
N1—C6—C7—C8 176.2 (3) C18—C15—C16—C17 −0.8 (3)
C4—C3—C8—C7 −0.3 (7) C15—C16—C17—C18 0.8 (3)
C2—C3—C8—C7 −178.1 (4) C14—C15—C18—C19 −1.0 (6)
C4—C3—C8—C1 178.7 (4) C16—C15—C18—C19 179.7 (3)
C2—C3—C8—C1 0.9 (4) C14—C15—C18—C17 −179.9 (3)
C6—C7—C8—C3 0.9 (6) C16—C15—C18—C17 0.9 (3)
C6—C7—C8—C1 −177.5 (6) C16—C17—C18—C15 −0.9 (3)
C2—C1—C8—C3 −0.9 (4) C16—C17—C18—C19 −179.2 (6)
C2—C1—C8—C7 177.7 (6) C15—C18—C19—C20 −0.7 (5)
C10—N2—C9—N1 −0.2 (4) C17—C18—C19—C20 177.3 (5)
C12—N2—C9—N1 178.7 (3) C18—C19—C20—C13 0.8 (5)
C11—N1—C9—N2 −0.3 (4) C14—C13—C20—C19 0.8 (5)
C6—N1—C9—N2 174.4 (3) C12—C13—C20—C19 −178.6 (3)
C9—N2—C10—C11 0.6 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C2—H2B···Cg1i 0.97 3.00 3.813 (5) 143

Symmetry codes: (i) −x+1, −y−1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2536).

References

  1. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  2. Farona, M. F. (1996). Prog. Polym. Sci.21, 505–555.
  3. Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst.22, 384–387.
  4. Gabe, E. J. & White, P. S. (1993). DIFRAC American Crystallographic Association, Pittsburgh Meeting. Abstract PA104.
  5. Kirchhoff, R. A. & Bruza, K. J. (1993). Prog. Polym. Sci.18, 85–185.
  6. Michellys, P., Maurin, P., Toupet, L., Pellissier, H. & Santelli, M. (2001). J. Org. Chem.66, 115–122. [DOI] [PubMed]
  7. Nemeto, H. & Fukumoto, K. (1998). Tetrahedron, 54, 5425–5464.
  8. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  9. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  10. Zhang, Y., Gao, J., Shen, X. & Huang, F. (2006). J. Appl. Polym. Sci.99, 1705–1719.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807067086/ci2536sup1.cif

e-64-0o434-sup1.cif (21.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807067086/ci2536Isup2.hkl

e-64-0o434-Isup2.hkl (172.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES