Abstract
We explored the effects of two components of ischemia, hypoxia and glucose deprivation, on the beta-adrenergic receptor (beta AR)-adenylate cyclase system in a model of hypoxic injury in cultured neonatal rat ventricular myocytes. After 2 h of hypoxia in the presence of 5 mM glucose, cell surface beta AR density (3H-CGP-12177) decreased from 54.8 +/- 8.4 to 39 +/- 6.3 (SE) fmol/mg protein (n = 10, P less than 0.025), while cytosolic beta AR density (125I-iodocyanopindolol [ICYP]) increased by 74% (n = 5, P less than 0.05). Upon reexposure to oxygen cell surface beta AR density returned toward control levels. Cells exposed to hypoxia and reoxygenation without glucose exhibited similar alterations in beta AR density. In hypoxic cells incubated with 5 mM glucose, the addition of 1 microM (-)-norepinephrine (NE) increased cAMP generation from 29.3 +/- 10.6 to 54.2 +/- 16.1 pmol/35 mm plate (n = 5, P less than 0.025); upon reoxygenation cAMP levels remained elevated above control (n = 5, P less than 0.05). In contrast, NE-stimulated cAMP content in glucose-deprived hypoxic myocytes fell by 31% (n = 5, P less than 0.05) and did not return to control levels with reoxygenation. beta AR-agonist affinity assessed by (-)-isoproterenol displacement curves was unaltered after 2 h of hypoxia irrespective of glucose content. Addition of forskolin (100 microM) to glucose-supplemented hypoxic cells increased cAMP generation by 60% (n = 5; P less than 0.05), but in the absence of glucose this effect was not seen. In cells incubated in glucose-containing medium, the decline in intracellular ATP levels was attenuated after 2 h of hypoxia (21 vs. 40%, P less than 0.05). Similarly, glucose supplementation prevented LDH release in hypoxic myocytes. We conclude that (a) oxygen and glucose independently regulate beta AR density and agonist-stimulated cAMP accumulation; (b) hypoxia has no effect on beta AR-agonist or antagonist affinity; (c) 5 mM glucose attenuates the rate of decline in cellular ATP levels during both hypoxia and reoxygenation; and (d) glucose prevents hypoxia-induced LDH release, a marker of cell injury.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Braunwald E., Kloner R. A. The stunned myocardium: prolonged, postischemic ventricular dysfunction. Circulation. 1982 Dec;66(6):1146–1149. doi: 10.1161/01.cir.66.6.1146. [DOI] [PubMed] [Google Scholar]
- Bricknell O. L., Daries P. S., Opie L. H. A relationship between adenosine triphosphate, glycolysis and ischaemic contracture in the isolated rat heart. J Mol Cell Cardiol. 1981 Oct;13(10):941–945. doi: 10.1016/0022-2828(81)90292-3. [DOI] [PubMed] [Google Scholar]
- Bricknell O. L., Opie L. H. Effects of substrates on tissue metabolic changes in the isolated rat heart during underperfusion and on release of lactate dehydrogenase and arrhythmias during reperfusion. Circ Res. 1978 Jul;43(1):102–115. doi: 10.1161/01.res.43.1.102. [DOI] [PubMed] [Google Scholar]
- Buja L. M., Muntz K. H., Rosenbaum T., Haghani Z., Buja D. K., Sen A., Chien K. R., Willerson J. T. Characterization of a potentially reversible increase in beta-adrenergic receptors in isolated, neonatal rat cardiac myocytes with impaired energy metabolism. Circ Res. 1985 Oct;57(4):640–645. doi: 10.1161/01.res.57.4.640. [DOI] [PubMed] [Google Scholar]
- Cobbe S. M., Poole-Wilson P. A. The time of onset and severity of acidosis in myocardial ischaemia. J Mol Cell Cardiol. 1980 Aug;12(8):745–760. doi: 10.1016/0022-2828(80)90077-2. [DOI] [PubMed] [Google Scholar]
- Corr P. B., Shayman J. A., Kramer J. B., Kipnis R. J. Increased alpha-adrenergic receptors in ischemic cat myocardium. A potential mediator of electrophysiological derangements. J Clin Invest. 1981 Apr;67(4):1232–1236. doi: 10.1172/JCI110139. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Darfler F. J., Mahan L. C., Koachman A. M., Insel P. A. Stimulation of forskolin of intact S49 lymphoma cells involves the nucleotide regulatory protein of adenylate cyclase. J Biol Chem. 1982 Oct 25;257(20):11901–11907. [PubMed] [Google Scholar]
- Dennis S. C., Hearse D. J., Coltart D. J. Metabolic effects of substrates on the isolated guinea-pig heart in relation to arrhythmias during reperfusion. Cardiovasc Res. 1982 Apr;16(4):209–219. doi: 10.1093/cvr/16.4.209. [DOI] [PubMed] [Google Scholar]
- Devos C., Robberecht P., Nokin P., Waelbroeck M., Clinet M., Camus J. C., Beaufort P., Schoenfeld P., Christophe J. Uncoupling between beta-adrenoceptors and adenylate cyclase in dog ischemic myocardium. Naunyn Schmiedebergs Arch Pharmacol. 1985 Oct;331(1):71–75. doi: 10.1007/BF00498853. [DOI] [PubMed] [Google Scholar]
- Doorey A. J., Barry W. H. The effects of inhibition of oxidative phosphorylation and glycolysis on contractility and high-energy phosphate content in cultured chick heart cells. Circ Res. 1983 Aug;53(2):192–201. doi: 10.1161/01.res.53.2.192. [DOI] [PubMed] [Google Scholar]
- Freissmuth M., Schütz W., Weindlmayer-Göttel M., Zimpfer M., Spiss C. K. Effects of ischemia on the canine myocardial beta-adrenoceptor-linked adenylate cyclase system. J Cardiovasc Pharmacol. 1987 Nov;10(5):568–574. doi: 10.1097/00005344-198711000-00012. [DOI] [PubMed] [Google Scholar]
- Freyss-Beguin M., Millanvoye-van Brussel E., Duval D. Effect of oxygen deprivation on metabolism of arachidonic acid by cultures of rat heart cells. Am J Physiol. 1989 Aug;257(2 Pt 2):H444–H451. doi: 10.1152/ajpheart.1989.257.2.H444. [DOI] [PubMed] [Google Scholar]
- Hasin Y., Barry W. H. Myocardial metabolic inhibition and membrane potential, contraction, and potassium uptake. Am J Physiol. 1984 Aug;247(2 Pt 2):H322–H329. doi: 10.1152/ajpheart.1984.247.2.H322. [DOI] [PubMed] [Google Scholar]
- Hearse D. J., Chain E. B. The role of glucose in the survival and 'recovery' of the anoxic isolated perfused rat heart. Biochem J. 1972 Aug;128(5):1125–1133. doi: 10.1042/bj1281125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hertel C., Müller P., Portenier M., Staehelin M. Determination of the desensitization of beta-adrenergic receptors by [3H]CGP-12177. Biochem J. 1983 Dec 15;216(3):669–674. doi: 10.1042/bj2160669. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoekenga D. E., Brainard J. R., Hutson J. Y. Rates of glycolysis and glycogenolysis during ischemia in glucose-insulin-potassium-treated perfused hearts: A 13C, 31P nuclear magnetic resonance study. Circ Res. 1988 Jun;62(6):1065–1074. doi: 10.1161/01.res.62.6.1065. [DOI] [PubMed] [Google Scholar]
- Hoyer D., Engel G., Berthold R. Binding characteristics of (+)-, (+/-)- and (-)-[125iodo] cyanopindolol to guinea-pig left ventricle membranes. Naunyn Schmiedebergs Arch Pharmacol. 1982 Mar;318(4):319–329. doi: 10.1007/BF00501172. [DOI] [PubMed] [Google Scholar]
- Jennings R. B., Steenbergen C., Jr Nucleotide metabolism and cellular damage in myocardial ischemia. Annu Rev Physiol. 1985;47:727–749. doi: 10.1146/annurev.ph.47.030185.003455. [DOI] [PubMed] [Google Scholar]
- Karliner J. S., Simpson P. C., Honbo N., Woloszyn W. Mechanisms and time course of beta 1 adrenoceptor desensitisation in mammalian cardiac myocytes. Cardiovasc Res. 1986 Mar;20(3):221–228. doi: 10.1093/cvr/20.3.221. [DOI] [PubMed] [Google Scholar]
- Karliner J. S., Simpson P. C., Taylor J. E., Honbo N., Woloszyn W. Adrenergic receptor characteristics of cardiac myocytes cultured in serum-free medium: comparison with serum-supplemented medium. Biochem Biophys Res Commun. 1985 Apr 16;128(1):376–382. doi: 10.1016/0006-291x(85)91689-4. [DOI] [PubMed] [Google Scholar]
- Karliner J. S., Stevens M. B., Honbo N., Hoffman J. I. Effects of acute ischemia in the dog on myocardial blood flow, beta receptors, and adenylate cyclase activity with and without chronic beta blockade. J Clin Invest. 1989 Feb;83(2):474–481. doi: 10.1172/JCI113906. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kidwai A. M., Radcliffe M. A., Duchon G., Daniel E. E. Isolation of plasma membrane from cardiac muscle. Biochem Biophys Res Commun. 1971 Nov;45(4):901–910. doi: 10.1016/0006-291x(71)90423-2. [DOI] [PubMed] [Google Scholar]
- Kobayashi A., Kamiya J., Yamashita T., Ishizaka K., Hayashi H., Kamikawa T., Yamazaki N. Effects of glucose-insulin-potassium solution on free fatty acid metabolism in ischemic myocardium. Jpn Circ J. 1984 Jun;48(6):591–595. doi: 10.1253/jcj.48.591. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Langer G. A., Weiss J. N., Schelbert H. R. Cardiac ischemia. Part I--Metabolic and physiologic responses. West J Med. 1987 Jun;146(6):713–723. [PMC free article] [PubMed] [Google Scholar]
- Lau Y. H., Robinson R. B., Rosen M. R., Bilezikian J. P. Subclassification of beta-adrenergic receptors in cultured rat cardiac myoblasts and fibroblasts. Circ Res. 1980 Jul;47(1):41–48. doi: 10.1161/01.res.47.1.41. [DOI] [PubMed] [Google Scholar]
- Lipasti J. A., Nevalainen T. J., Alanen K. A., Tolvanen M. A. Anaerobic glycolysis and the development of ischaemic contracture in isolated rat heart. Cardiovasc Res. 1984 Mar;18(3):145–148. doi: 10.1093/cvr/18.3.145. [DOI] [PubMed] [Google Scholar]
- Lynch R. M., Paul R. J. Compartmentation of glycolytic and glycogenolytic metabolism in vascular smooth muscle. Science. 1983 Dec 23;222(4630):1344–1346. doi: 10.1126/science.6658455. [DOI] [PubMed] [Google Scholar]
- Mahan L. C., Motulsky H. J., Insel P. A. Do agonists promote rapid internalization of beta-adrenergic receptors? Proc Natl Acad Sci U S A. 1985 Oct;82(19):6566–6570. doi: 10.1073/pnas.82.19.6566. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maisel A. S., Motulsky H. J., Insel P. A. Externalization of beta-adrenergic receptors promoted by myocardial ischemia. Science. 1985 Oct 11;230(4722):183–186. doi: 10.1126/science.2994229. [DOI] [PubMed] [Google Scholar]
- Maisel A. S., Motulsky H. J., Insel P. A. Life cycles of cardiac alpha 1- and beta-adrenergic receptors. Biochem Pharmacol. 1987 Jan 1;36(1):1–6. doi: 10.1016/0006-2952(87)90375-3. [DOI] [PubMed] [Google Scholar]
- Mantle J. A., Rogers W. J., Smith L. R., McDaniel H. G., Papapietro S. E., Russell R. O., Jr, Rackley C. E. Clinical effects of glucose-insulin-potassium on left ventricular function in acute myocardial infarction: results from a randomized clinical trial. Am Heart J. 1981 Sep;102(3 Pt 1):313–324. doi: 10.1016/0002-8703(81)90303-3. [DOI] [PubMed] [Google Scholar]
- Marsh J. D., Sweeney K. A. Beta-adrenergic receptor regulation during hypoxia in intact cultured heart cells. Am J Physiol. 1989 Jan;256(1 Pt 2):H275–H281. doi: 10.1152/ajpheart.1989.256.1.H275. [DOI] [PubMed] [Google Scholar]
- Martinez E. E., Telles J. S., Martinez T. L., Portugal O. P., Guimaraes R. F., Herrmann J. L., Lamounier E. N., Caio A. A., Auriemo R. C., Ambrose J. A. The effects of glucose on myocardial substrate utilization in acute myocardial infarction or angina pectoris. Am J Cardiol. 1987 Nov 1;60(13):947–951. doi: 10.1016/0002-9149(87)90330-4. [DOI] [PubMed] [Google Scholar]
- Moréna H., Janse M. J., Fiolet J. W., Krieger W. J., Crijns H., Durrer D. Comparison of the effects of regional ischemia, hypoxia, hyperkalemia, and acidosis on intracellular and extracellular potentials and metabolism in the isolated porcine heart. Circ Res. 1980 May;46(5):634–646. doi: 10.1161/01.res.46.5.634. [DOI] [PubMed] [Google Scholar]
- Mukherjee A., Bush L. R., McCoy K. E., Duke R. J., Hagler H., Buja L. M., Willerson J. T. Relationship between beta-adrenergic receptor numbers and physiological responses during experimental canine myocardial ischemia. Circ Res. 1982 May;50(5):735–741. doi: 10.1161/01.res.50.5.735. [DOI] [PubMed] [Google Scholar]
- Mukherjee A., Wong T. M., Buja L. M., Lefkowitz R. J., Willerson J. T. Beta adrenergic and muscarinic cholinergic receptors in canine myocardium. Effects of ischemia. J Clin Invest. 1979 Nov;64(5):1423–1428. doi: 10.1172/JCI109600. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakamura S., Kiyosue T., Arita M. Glucose reverses 2,4-dinitrophenol induced changes in action potentials and membrane currents of guinea pig ventricular cells via enhanced glycolysis. Cardiovasc Res. 1989 Apr;23(4):286–294. doi: 10.1093/cvr/23.4.286. [DOI] [PubMed] [Google Scholar]
- O'Riordan J. B., Flaherty J. T., Khuri S. F., Brawley R. K., Pitt B., Gott V. L. Effects of atrial pacing on regional myocardial gas tensions with critical coronary stenosis. Am J Physiol. 1977 Jan;232(1):H49–H53. doi: 10.1152/ajpheart.1977.232.1.H49. [DOI] [PubMed] [Google Scholar]
- Reithmann C., Werdan K. Noradrenaline-induced desensitization in cultured heart cells as a model for the defects of the adenylate cyclase system in severe heart failure. Naunyn Schmiedebergs Arch Pharmacol. 1989 Jan-Feb;339(1-2):138–144. doi: 10.1007/BF00165135. [DOI] [PubMed] [Google Scholar]
- Rogers W. J., Segall P. H., McDaniel H. G., Mantle J. A., Russell R. O., Jr, Rackley C. E. Prospective randomized trial of glucose-insulin-potassium in acute myocardial infarction. Effects on myocardial hemodynamics, substrates and rhythm. Am J Cardiol. 1979 Apr;43(4):801–809. doi: 10.1016/0002-9149(79)90081-x. [DOI] [PubMed] [Google Scholar]
- Rogers W. J., Stanley A. W., Jr, Breinig J. B., Prather J. W., McDaniel H. G., Moraski R. E., Mantle J. A., Russell R. O., Jr, Rackley C. E. Reduction of hospital mortality rate of acute myocardial infarction with glucose-insulin-potassium infusion. Am Heart J. 1976 Oct;92(4):441–454. doi: 10.1016/s0002-8703(76)80043-9. [DOI] [PubMed] [Google Scholar]
- Runnman E. M., Lamp S. T., Weiss J. N. Enhanced utilization of exogenous glucose improves cardiac function in hypoxic rabbit ventricle without increasing total glycolytic flux. J Clin Invest. 1990 Oct;86(4):1222–1233. doi: 10.1172/JCI114828. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SODI-PALLARES D., TESTELLI M. R., FISHLEDER B. L., BISTENI A., MEDRANO G. A., FRIEDLAND C., DE MICHELI A. Effects of an intravenous infusion of a potassium-glucose-insulin solution on the electrocardiographic signs of myocardial infarction. A preliminary clinical report. Am J Cardiol. 1962 Feb;9:166–181. doi: 10.1016/0002-9149(62)90035-8. [DOI] [PubMed] [Google Scholar]
- Sako E. Y., Kingsley-Hickman P. B., From A. H., Foker J. E., Ugurbil K. ATP synthesis kinetics and mitochondrial function in the postischemic myocardium as studied by 31P NMR. J Biol Chem. 1988 Aug 5;263(22):10600–10607. [PubMed] [Google Scholar]
- Seamon K., Daly J. W. Activation of adenylate cyclase by the diterpene forskolin does not require the guanine nucleotide regulatory protein. J Biol Chem. 1981 Oct 10;256(19):9799–9801. [PubMed] [Google Scholar]
- Simpson P., McGrath A., Savion S. Myocyte hypertrophy in neonatal rat heart cultures and its regulation by serum and by catecholamines. Circ Res. 1982 Dec;51(6):787–801. doi: 10.1161/01.res.51.6.787. [DOI] [PubMed] [Google Scholar]
- Staehelin M., Simons P., Jaeggi K., Wigger N. CGP-12177. A hydrophilic beta-adrenergic receptor radioligand reveals high affinity binding of agonists to intact cells. J Biol Chem. 1983 Mar 25;258(6):3496–3502. [PubMed] [Google Scholar]
- Steiner A. L., Parker C. W., Kipnis D. M. Radioimmunoassay for cyclic nucleotides. I. Preparation of antibodies and iodinated cyclic nucleotides. J Biol Chem. 1972 Feb 25;247(4):1106–1113. [PubMed] [Google Scholar]
- Thandroyen F. T., Muntz K., Rosenbaum T., Ziman B., Willerson J. T., Buja L. M. Beta-receptor-adenylate cyclase coupling in hypoxic neonatal rat ventricular myocytes. Am J Physiol. 1989 Apr;256(4 Pt 2):H1209–H1217. doi: 10.1152/ajpheart.1989.256.4.H1209. [DOI] [PubMed] [Google Scholar]
- Vatner D. E., Knight D. R., Shen Y. T., Thomas J. X., Jr, Homcy C. J., Vatner S. F. One hour of myocardial ischemia in conscious dogs increases beta-adrenergic receptors, but decreases adenylate cyclase activity. J Mol Cell Cardiol. 1988 Jan;20(1):75–82. doi: 10.1016/s0022-2828(88)80180-9. [DOI] [PubMed] [Google Scholar]
- Waldo G. L., Northup J. K., Perkins J. P., Harden T. K. Characterization of an altered membrane form of the beta-adrenergic receptor produced during agonist-induced desensitization. J Biol Chem. 1983 Nov 25;258(22):13900–13908. [PubMed] [Google Scholar]
- Weiss J. N., Lamp S. T. Glycolysis preferentially inhibits ATP-sensitive K+ channels in isolated guinea pig cardiac myocytes. Science. 1987 Oct 2;238(4823):67–69. doi: 10.1126/science.2443972. [DOI] [PubMed] [Google Scholar]
- Weiss J., Hiltbrand B. Functional compartmentation of glycolytic versus oxidative metabolism in isolated rabbit heart. J Clin Invest. 1985 Feb;75(2):436–447. doi: 10.1172/JCI111718. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weissler A. M., Kruger F. A., Baba N., Scarpelli D. G., Leighton R. F., Gallimore J. K. Role of anaerobic metabolism in the preservation of functional capacity and structure of anoxic myocardium. J Clin Invest. 1968 Feb;47(2):403–416. doi: 10.1172/JCI105737. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolff A. A., Hines D. K., Karliner J. S. Refined membrane preparations mask ischemic fall in myocardial beta-receptor density. Am J Physiol. 1989 Sep;257(3 Pt 2):H1032–H1036. doi: 10.1152/ajpheart.1989.257.3.H1032. [DOI] [PubMed] [Google Scholar]