Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jan 23;64(Pt 2):o494–o495. doi: 10.1107/S1600536808001025

N-(1-Acetyl-r-7,c-9-diphenyl-4,8-dithia-1,2-diaza­spiro­[5.4]dec-2-en-3-yl)acet­amide

D Gayathri a, D Velmurugan a,*, S Umamatheswari b, S Kabilan b, K Ravikumar c
PMCID: PMC2960219  PMID: 21201517

Abstract

In the title compound, C22H23N3O2S2, the five-membered ring is planar and the C5S ring adopts a chair conformation. The crystal packing is stabilized by inter­molecular N—H⋯O and C—H⋯O inter­actions, generating a chain and a centrosymmetric dimer, respectively.

Related literature

For related literature, see: Allen et al. (1987); Isaac et al. (2003); Pan et al. (2003); Jung et al. (2004); Foroumadi et al. (2002); Jalilian et al. (2002); Leung-Toung et al. (2003); Schmidt et al. (1970); Cremer & Pople (1975); Nardelli (1983); Singh et al. (2003).graphic file with name e-64-0o494-scheme1.jpg

Experimental

Crystal data

  • C22H23N3O2S2

  • M r = 425.55

  • Monoclinic, Inline graphic

  • a = 12.3310 (7) Å

  • b = 16.0218 (9) Å

  • c = 12.3852 (7) Å

  • β = 116.714 (1)°

  • V = 2185.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 293 (2) K

  • 0.25 × 0.24 × 0.22 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: none

  • 24434 measured reflections

  • 5139 independent reflections

  • 4587 reflections with I > 2σ(I)

  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.116

  • S = 0.97

  • 5139 reflections

  • 264 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808001025/at2527sup1.cif

e-64-0o494-sup1.cif (21.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808001025/at2527Isup2.hkl

e-64-0o494-Isup2.hkl (246.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1i 0.86 1.94 2.786 (2) 166
C5—H5⋯O2ii 0.98 2.49 3.446 (2) 163

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

DG thanks CSIR, India, for the award of a Senior Research Fellowship. DV thanks DST, India, for a major research project, and acknowledges the Department of Science and Technology (DST-FIST) and the University Grants Commission (UGC), Government of India, for the provision of research facilities.

supplementary crystallographic information

Comment

Tetrahydrothiopyrans play major roles in the field of medicinal chemistry (Isaac et al., 2003). 1,3,4-Thiadiazoline nucleus, a biologically active heterocyclic ring, is also associated with a wide range of pharmacological activities (Pan et al., 2003; Jung et al., 2004; Foroumadi et al., 2002; Jalilian et al., 2002; Leung-Toung et al., 2003). An essential component of the search for new leads in a drug-design programme is the synthesis of molecules, which is novel and resembles known biologically active molecules by virtue of the presence of certain pharmocophoric groups. Certain small heterocyclic molecules act as highly functionalized scaffolds and are pharmacophores of a number of biologically active and medicinally useful molecules. As the title compound (I) is of much biological importance, we have undertaken the crystal structure determination by X-ray diffraction.

The bond lengths and bond angles in (I) are comparable with those in the literature (Allen et al., 1987). The sum of the bond angles around N1 atom [360.0 (3)°] indicates the sp2 hybridization. The torsion angles C19—C18—N1—N2 [-0.1 (2)°) and C19—C18—N1—C3 [-179.3 (1)°] indicate that atoms C18 and C19 lie in the plane of the five membered ring (N1/N2/C20/S2/C3). Also the torsion angles C22—C21—N3—C20 [-177.3 (2)°], O2—C21—N3—C20 [2.4 (3)°], C21—N3—C20—S2 [2.3 (2)°] and C21—N3—C20—N2 [-178.1 (2)°] indicate that the substituted moiety at C20 lie in the plane of the ring to which it is attached. The dihedral angle between the two phenyl rings in the structure is about 77.6 (1)° which clearly indicates that the two phenyl rings are nearly perpendicular to each other.

The six membered ring C1—C5/S1 adopts chair conformation with the puckering parameters (Cremer & Pople, 1975) and the smallest displacement asymmetry parameters (Nardelli, 1983) being q2 = 0.117 (1) Å, q3 = 0.651 (1) Å; QT = 0.661 (1)Å and θ = 10.2 (1)°.

The crystal packing is stabilized N—H···O and C—H···O intermolecular interaction generating a chain of C(7) and a centrosymmetric dimer of R22(18) ring, respectively.

Experimental

2,6-Diphenyltetrahydrothiopyran-4-one thiosemicarbazone (0.025 mol) was treated with freshly distilled acetic anhydride and the mixture was refluxed for 8 h on a water bath (363–373 K). The removal of solvent from the cooled reaction mixture in vaccuo afforded 4-acetyl-2-acetylamino-5-spiro-((r)-2,(c)6-diphenyltetrahydrothiopyran-4-yl)- 4,5-dihydro-[1,3,4]thiadiazole which was purified in neutral alumina column using n-hexane-ethyl acetate (4:1) as eluent. The pure compound was recrystallized from ethanol [m.p.: 399 K].

Refinement

All H-atoms were refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C) for aromatic, 0.98 Å, Uiso = 1.2Ueq (C) for CH, 0.97 Å, Uiso = 1.2Ueq (C) for CH2, 0.96 Å, Uiso = 1.5Ueq (C) for CH3 atoms and 0.86 Å, Uiso = 1.2Ueq (N) for the NH group.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The packing of (I), viewed down the a axis, showing N—H···O and C—H···O intermolecular interactions. H atoms not involved in hydrogen bonding have been omitted.

Crystal data

C22H23N3O2S2 F000 = 896
Mr = 425.55 Dx = 1.293 Mg m3
Monoclinic, P21/n Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 2504 reflections
a = 12.3310 (7) Å θ = 1.9–28.0º
b = 16.0218 (9) Å µ = 0.27 mm1
c = 12.3852 (7) Å T = 293 (2) K
β = 116.714 (1)º Block, colourless
V = 2185.7 (2) Å3 0.25 × 0.24 × 0.22 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer 4587 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.020
Monochromator: graphite θmax = 28.0º
T = 293(2) K θmin = 1.9º
ω scans h = −15→15
Absorption correction: none k = −21→21
24434 measured reflections l = −16→16
5139 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038 H-atom parameters constrained
wR(F2) = 0.116   w = 1/[σ2(Fo2) + (0.0759P)2 + 0.4937P] where P = (Fo2 + 2Fc2)/3
S = 0.97 (Δ/σ)max = 0.031
5139 reflections Δρmax = 0.31 e Å3
264 parameters Δρmin = −0.17 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.81098 (11) 0.05407 (8) 0.11215 (12) 0.0408 (3)
H1 0.8386 0.0188 0.1844 0.049*
C2 0.91557 (11) 0.11046 (8) 0.12512 (12) 0.0409 (3)
H2A 0.8872 0.1490 0.0575 0.049*
H2B 0.9794 0.0766 0.1221 0.049*
C3 0.96801 (10) 0.16028 (8) 0.24349 (11) 0.0377 (3)
C4 0.87477 (11) 0.21761 (8) 0.25620 (12) 0.0405 (3)
H4A 0.9135 0.2456 0.3338 0.049*
H4B 0.8499 0.2601 0.1938 0.049*
C5 0.76159 (11) 0.17236 (8) 0.24675 (12) 0.0403 (3)
H5 0.7863 0.1315 0.3124 0.048*
C6 0.67241 (12) 0.23270 (8) 0.25743 (12) 0.0418 (3)
C7 0.64638 (16) 0.22878 (12) 0.35475 (15) 0.0586 (4)
H7 0.6834 0.1886 0.4143 0.070*
C8 0.5648 (2) 0.28496 (14) 0.36371 (19) 0.0752 (5)
H8 0.5471 0.2818 0.4291 0.090*
C9 0.51035 (17) 0.34484 (12) 0.2773 (2) 0.0690 (5)
H9 0.4571 0.3827 0.2850 0.083*
C10 0.53404 (16) 0.34912 (11) 0.17975 (19) 0.0632 (4)
H10 0.4963 0.3893 0.1203 0.076*
C11 0.61498 (15) 0.29289 (10) 0.17013 (16) 0.0538 (4)
H11 0.6309 0.2958 0.1036 0.065*
C12 0.76348 (11) −0.00201 (8) 0.00198 (13) 0.0448 (3)
C13 0.68438 (16) −0.06649 (11) −0.00790 (18) 0.0625 (4)
H13 0.6616 −0.0749 0.0534 0.075*
C14 0.63888 (17) −0.11863 (11) −0.1084 (2) 0.0719 (5)
H14 0.5863 −0.1617 −0.1135 0.086*
C15 0.67076 (16) −0.10715 (11) −0.19984 (19) 0.0681 (5)
H15 0.6392 −0.1416 −0.2675 0.082*
C16 0.74988 (18) −0.04419 (12) −0.19032 (18) 0.0693 (5)
H16 0.7728 −0.0364 −0.2516 0.083*
C17 0.79604 (16) 0.00785 (10) −0.09063 (15) 0.0578 (4)
H17 0.8498 0.0501 −0.0857 0.069*
C18 1.07172 (12) 0.27042 (8) 0.17789 (12) 0.0411 (3)
C19 1.18800 (14) 0.31368 (11) 0.20301 (17) 0.0606 (4)
H19A 1.2396 0.2764 0.1865 0.091*
H19B 1.2279 0.3303 0.2863 0.091*
H19C 1.1711 0.3621 0.1524 0.091*
C20 1.17574 (11) 0.13205 (8) 0.41606 (11) 0.0382 (3)
C21 1.28104 (14) 0.04085 (11) 0.58940 (16) 0.0602 (4)
C22 1.40213 (17) 0.02732 (16) 0.6959 (2) 0.0910 (8)
H22A 1.3910 0.0001 0.7593 0.137*
H22B 1.4412 0.0802 0.7244 0.137*
H22C 1.4517 −0.0070 0.6723 0.137*
N1 1.07548 (9) 0.21007 (7) 0.25605 (9) 0.0385 (2)
N2 1.18656 (9) 0.19210 (7) 0.35415 (10) 0.0391 (2)
N3 1.27755 (10) 0.10526 (8) 0.51668 (10) 0.0459 (3)
H3 1.3443 0.1316 0.5348 0.055*
S1 0.68373 (3) 0.11763 (2) 0.10259 (3) 0.04552 (11)
S2 1.03376 (3) 0.08660 (2) 0.37248 (3) 0.04760 (12)
O1 0.97614 (9) 0.28782 (7) 0.08854 (9) 0.0496 (2)
O2 1.19260 (12) −0.00139 (10) 0.56887 (15) 0.0911 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0315 (6) 0.0393 (6) 0.0463 (6) −0.0006 (5) 0.0128 (5) −0.0023 (5)
C2 0.0295 (6) 0.0440 (7) 0.0462 (7) −0.0014 (5) 0.0144 (5) −0.0066 (5)
C3 0.0275 (5) 0.0391 (6) 0.0415 (6) −0.0027 (4) 0.0111 (5) −0.0001 (5)
C4 0.0334 (6) 0.0417 (6) 0.0454 (6) −0.0017 (5) 0.0169 (5) −0.0033 (5)
C5 0.0356 (6) 0.0420 (6) 0.0441 (6) −0.0007 (5) 0.0187 (5) 0.0010 (5)
C6 0.0362 (6) 0.0436 (6) 0.0495 (7) −0.0049 (5) 0.0228 (5) −0.0037 (5)
C7 0.0614 (9) 0.0688 (10) 0.0551 (8) −0.0016 (8) 0.0347 (8) −0.0018 (7)
C8 0.0779 (12) 0.0931 (14) 0.0782 (12) −0.0035 (11) 0.0560 (11) −0.0175 (11)
C9 0.0560 (9) 0.0644 (10) 0.1010 (14) −0.0014 (8) 0.0481 (10) −0.0211 (10)
C10 0.0539 (9) 0.0514 (9) 0.0889 (12) 0.0088 (7) 0.0362 (9) 0.0020 (8)
C11 0.0528 (8) 0.0531 (8) 0.0657 (9) 0.0082 (6) 0.0358 (7) 0.0066 (7)
C12 0.0320 (6) 0.0397 (6) 0.0537 (7) 0.0014 (5) 0.0113 (5) −0.0061 (5)
C13 0.0533 (9) 0.0579 (9) 0.0740 (10) −0.0153 (7) 0.0267 (8) −0.0141 (8)
C14 0.0498 (9) 0.0556 (10) 0.0958 (14) −0.0159 (7) 0.0200 (9) −0.0223 (9)
C15 0.0498 (9) 0.0622 (10) 0.0776 (11) 0.0029 (7) 0.0156 (8) −0.0305 (9)
C16 0.0708 (11) 0.0702 (11) 0.0666 (10) −0.0030 (9) 0.0305 (9) −0.0223 (9)
C17 0.0576 (9) 0.0522 (8) 0.0635 (9) −0.0072 (7) 0.0272 (8) −0.0143 (7)
C18 0.0370 (6) 0.0392 (6) 0.0463 (6) 0.0018 (5) 0.0180 (5) 0.0003 (5)
C19 0.0461 (8) 0.0560 (9) 0.0721 (10) −0.0088 (7) 0.0198 (7) 0.0140 (7)
C20 0.0289 (5) 0.0389 (6) 0.0415 (6) −0.0018 (4) 0.0111 (5) −0.0034 (5)
C21 0.0413 (7) 0.0576 (9) 0.0678 (10) 0.0010 (6) 0.0121 (7) 0.0199 (7)
C22 0.0484 (9) 0.1010 (16) 0.0918 (14) −0.0008 (10) 0.0032 (9) 0.0505 (13)
N1 0.0269 (5) 0.0415 (5) 0.0417 (5) −0.0022 (4) 0.0107 (4) 0.0011 (4)
N2 0.0278 (5) 0.0422 (5) 0.0402 (5) −0.0023 (4) 0.0089 (4) −0.0015 (4)
N3 0.0308 (5) 0.0494 (6) 0.0463 (6) −0.0035 (4) 0.0073 (4) 0.0060 (5)
S1 0.02991 (17) 0.0501 (2) 0.0527 (2) −0.00154 (12) 0.01512 (14) −0.00724 (14)
S2 0.03201 (17) 0.0476 (2) 0.0523 (2) −0.00652 (12) 0.00926 (14) 0.00873 (14)
O1 0.0386 (5) 0.0543 (6) 0.0509 (5) 0.0070 (4) 0.0156 (4) 0.0104 (4)
O2 0.0511 (7) 0.0829 (9) 0.1081 (11) −0.0123 (6) 0.0081 (7) 0.0488 (8)

Geometric parameters (Å, °)

C1—C12 1.5145 (18) C12—C13 1.388 (2)
C1—C2 1.5228 (17) C13—C14 1.391 (3)
C1—S1 1.8292 (13) C13—H13 0.9300
C1—H1 0.9800 C14—C15 1.368 (3)
C2—C3 1.5337 (17) C14—H14 0.9300
C2—H2A 0.9700 C15—C16 1.371 (3)
C2—H2B 0.9700 C15—H15 0.9300
C3—N1 1.4937 (15) C16—C17 1.383 (2)
C3—C4 1.5341 (17) C16—H16 0.9300
C3—S2 1.8543 (13) C17—H17 0.9300
C4—C5 1.5297 (17) C18—O1 1.2324 (16)
C4—H4A 0.9700 C18—N1 1.3541 (17)
C4—H4B 0.9700 C18—C19 1.4941 (19)
C5—C6 1.5140 (18) C19—H19A 0.9600
C5—S1 1.8268 (13) C19—H19B 0.9600
C5—H5 0.9800 C19—H19C 0.9600
C6—C11 1.383 (2) C20—N2 1.2742 (17)
C6—C7 1.3811 (19) C20—N3 1.3808 (16)
C7—C8 1.391 (3) C20—S2 1.7427 (12)
C7—H7 0.9300 C21—O2 1.209 (2)
C8—C9 1.368 (3) C21—N3 1.3577 (19)
C8—H8 0.9300 C21—C22 1.499 (2)
C9—C10 1.366 (3) C22—H22A 0.9600
C9—H9 0.9300 C22—H22B 0.9600
C10—C11 1.389 (2) C22—H22C 0.9600
C10—H10 0.9300 N1—N2 1.3924 (14)
C11—H11 0.9300 N3—H3 0.8600
C12—C17 1.384 (2)
C12—C1—C2 114.40 (11) C17—C12—C13 117.78 (14)
C12—C1—S1 107.39 (8) C17—C12—C1 122.70 (12)
C2—C1—S1 109.74 (9) C13—C12—C1 119.52 (14)
C12—C1—H1 108.4 C12—C13—C14 120.71 (17)
C2—C1—H1 108.4 C12—C13—H13 119.6
S1—C1—H1 108.4 C14—C13—H13 119.6
C1—C2—C3 112.51 (11) C15—C14—C13 120.66 (16)
C1—C2—H2A 109.1 C15—C14—H14 119.7
C3—C2—H2A 109.1 C13—C14—H14 119.7
C1—C2—H2B 109.1 C14—C15—C16 119.07 (16)
C3—C2—H2B 109.1 C14—C15—H15 120.5
H2A—C2—H2B 107.8 C16—C15—H15 120.5
N1—C3—C4 109.89 (10) C15—C16—C17 120.78 (18)
N1—C3—C2 110.53 (10) C15—C16—H16 119.6
C4—C3—C2 113.35 (10) C17—C16—H16 119.6
N1—C3—S2 103.09 (8) C16—C17—C12 120.99 (16)
C4—C3—S2 110.51 (9) C16—C17—H17 119.5
C2—C3—S2 108.99 (9) C12—C17—H17 119.5
C5—C4—C3 114.11 (10) O1—C18—N1 121.01 (12)
C5—C4—H4A 108.7 O1—C18—C19 121.52 (13)
C3—C4—H4A 108.7 N1—C18—C19 117.46 (12)
C5—C4—H4B 108.7 C18—C19—H19A 109.5
C3—C4—H4B 108.7 C18—C19—H19B 109.5
H4A—C4—H4B 107.6 H19A—C19—H19B 109.5
C6—C5—C4 111.36 (11) C18—C19—H19C 109.5
C6—C5—S1 107.98 (9) H19A—C19—H19C 109.5
C4—C5—S1 111.28 (9) H19B—C19—H19C 109.5
C6—C5—H5 108.7 N2—C20—N3 118.63 (11)
C4—C5—H5 108.7 N2—C20—S2 119.44 (9)
S1—C5—H5 108.7 N3—C20—S2 121.93 (10)
C11—C6—C7 118.41 (14) O2—C21—N3 121.95 (14)
C11—C6—C5 120.91 (12) O2—C21—C22 123.48 (16)
C7—C6—C5 120.67 (13) N3—C21—C22 114.57 (14)
C6—C7—C8 120.03 (17) C21—C22—H22A 109.5
C6—C7—H7 120.0 C21—C22—H22B 109.5
C8—C7—H7 120.0 H22A—C22—H22B 109.5
C9—C8—C7 120.65 (16) C21—C22—H22C 109.5
C9—C8—H8 119.7 H22A—C22—H22C 109.5
C7—C8—H8 119.7 H22B—C22—H22C 109.5
C8—C9—C10 120.14 (16) C18—N1—N2 118.39 (10)
C8—C9—H9 119.9 C18—N1—C3 124.27 (10)
C10—C9—H9 119.9 N2—N1—C3 117.33 (10)
C9—C10—C11 119.39 (17) C20—N2—N1 110.68 (10)
C9—C10—H10 120.3 C21—N3—C20 125.43 (12)
C11—C10—H10 120.3 C21—N3—H3 117.3
C6—C11—C10 121.36 (15) C20—N3—H3 117.3
C6—C11—H11 119.3 C5—S1—C1 98.36 (6)
C10—C11—H11 119.3 C20—S2—C3 89.43 (6)
C12—C1—C2—C3 −174.88 (10) C15—C16—C17—C12 −0.2 (3)
S1—C1—C2—C3 64.36 (12) C13—C12—C17—C16 0.9 (2)
C1—C2—C3—N1 176.11 (10) C1—C12—C17—C16 −179.42 (15)
C1—C2—C3—C4 −60.01 (14) O1—C18—N1—N2 178.81 (12)
C1—C2—C3—S2 63.50 (12) C19—C18—N1—N2 −0.07 (18)
N1—C3—C4—C5 −179.06 (10) O1—C18—N1—C3 −0.5 (2)
C2—C3—C4—C5 56.72 (14) C19—C18—N1—C3 −179.34 (13)
S2—C3—C4—C5 −65.95 (12) C4—C3—N1—C18 −64.69 (15)
C3—C4—C5—C6 −178.82 (11) C2—C3—N1—C18 61.15 (15)
C3—C4—C5—S1 −58.29 (13) S2—C3—N1—C18 177.50 (10)
C4—C5—C6—C11 65.69 (17) C4—C3—N1—N2 116.04 (12)
S1—C5—C6—C11 −56.76 (15) C2—C3—N1—N2 −118.12 (11)
C4—C5—C6—C7 −114.40 (15) S2—C3—N1—N2 −1.78 (12)
S1—C5—C6—C7 123.16 (13) N3—C20—N2—N1 179.47 (11)
C11—C6—C7—C8 −0.5 (2) S2—C20—N2—N1 −0.92 (15)
C5—C6—C7—C8 179.61 (16) C18—N1—N2—C20 −177.50 (11)
C6—C7—C8—C9 −0.5 (3) C3—N1—N2—C20 1.82 (15)
C7—C8—C9—C10 1.2 (3) O2—C21—N3—C20 2.4 (3)
C8—C9—C10—C11 −0.8 (3) C22—C21—N3—C20 −177.33 (18)
C7—C6—C11—C10 0.8 (2) N2—C20—N3—C21 −178.11 (15)
C5—C6—C11—C10 −179.28 (14) S2—C20—N3—C21 2.3 (2)
C9—C10—C11—C6 −0.2 (3) C6—C5—S1—C1 178.14 (9)
C2—C1—C12—C17 −11.55 (19) C4—C5—S1—C1 55.64 (10)
S1—C1—C12—C17 110.50 (14) C12—C1—S1—C5 176.47 (9)
C2—C1—C12—C13 168.17 (13) C2—C1—S1—C5 −58.62 (10)
S1—C1—C12—C13 −69.78 (15) N2—C20—S2—C3 −0.11 (11)
C17—C12—C13—C14 −0.6 (2) N3—C20—S2—C3 179.49 (11)
C1—C12—C13—C14 179.65 (15) N1—C3—S2—C20 0.98 (8)
C12—C13—C14—C15 −0.3 (3) C4—C3—S2—C20 −116.40 (9)
C13—C14—C15—C16 1.0 (3) C2—C3—S2—C20 118.42 (9)
C14—C15—C16—C17 −0.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H3···O1i 0.86 1.94 2.786 (2) 166
C5—H5···O2ii 0.98 2.49 3.446 (2) 163

Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) −x+2, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2527).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  4. Foroumadi, A., Asadipour, A., Mirzaei, M., Karimi, J. & Emami, S. (2002). II Farmaco, 57, 765–769. [DOI] [PubMed]
  5. Isaac, M., Slassi, M., Xin, T., Arora, J., O’Brien, A., Edwards, L., MacLean, N., Wilson, J., Demschyshyn, L., Labrie, P., Naismith, A., Maddaford, S. P., Papac, D., Harrison, S., Wang, H., Draper, S. & Tehim, A. (2003). Bioorg. Med. Chem. Lett.13, 4409–4413. [DOI] [PubMed]
  6. Jalilian, A. R., Sattari, S., Bineshmarvasti, M., Daneshtalab, M. & Shafiee, A. (2002). II Farmaco, 58, 63–68. [DOI] [PubMed]
  7. Jung, K. Y., Kim, S. K., Gao, Z. G., Gross, A. S., Melman, N., Jacobson, K. A. & Kim, Y. C. (2004). Bioorg. Med. Chem.12, 613–623. [DOI] [PMC free article] [PubMed]
  8. Leung-Toung, R., Odzinska, J., Li, W., Lowrie, J., Kukreja, R., Desilets, D., Karimian, K. & Tam, T. F. (2003). Bioorg. Med. Chem.11, 5529–5537. [DOI] [PubMed]
  9. Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  10. Nardelli, M. (1995). J. Appl. Cryst.28, 659.
  11. Pan, K., Scott, M. K., Lee, D. H. S., Fitzpatric, L. J., Crooke, J. J., Rivero, R. A., Rosenthal, D. I., Vaidya, A. H., Zhao, B. & Reiz, A. B. (2003). Bioorg. Med. Chem.11, 185–192. [DOI] [PubMed]
  12. Schmidt, P., Eichenberger, K. & Schwiezer, E. (1970). Chem. Abstr.72, 318377u.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Singh, U., Raju, B., Lam, S., Zhou, J., Gadwood, R. C., Ford, C. W., Zurenko, G. E., Schaadt, R. D., Morin, S. E., Adams, W. J., Friis, J. M., Courtney, M., Palandra, J., Hackbarth, C. J., Lopez, S. et al. (2003). Bioorg. Med. Chem. Lett.13, 4209–4212. [DOI] [PubMed]
  15. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808001025/at2527sup1.cif

e-64-0o494-sup1.cif (21.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808001025/at2527Isup2.hkl

e-64-0o494-Isup2.hkl (246.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES