Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jan 9;64(Pt 2):o384. doi: 10.1107/S1600536807068171

Dimethyl [1-(1-allyl-5-iodo-1H-indol-3-yl)-3-hydroxy­prop­yl]phospho­nate

Ying-Cen Guo a, Xu-Fan Wang a, Yu Ding a,*
PMCID: PMC2960229  PMID: 21201414

Abstract

In the title compound, C16H21INO4P, the mol­ecular structure is stabilized by a weak intra­molecular C—H⋯O hydrogen-bond inter­action. The crystal packing is stabilized by strong inter­molecular O—H ⋯ O hydogen-bonding inter­actions to form a zigzag packing arrangement.

Related literature

For asymmetric synthesis of phospho­rus compounds, see: Carlone et al. (2007); Yang, et al. (2007); Ibrahem et al. (2007). For related structures, see: Sonar et al. (2006); Chen et al. (2007); Butcher et al. (2007). For related literature, see: Allen et al. (1989); Horiguchi & Kandatsu (1959).graphic file with name e-64-0o384-scheme1.jpg

Experimental

Crystal data

  • C16H21INO4P

  • M r = 449.21

  • Orthorhombic, Inline graphic

  • a = 7.9983 (4) Å

  • b = 10.1295 (6) Å

  • c = 22.3722 (12) Å

  • V = 1812.57 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.87 mm−1

  • T = 294 (2) K

  • 0.20 × 0.10 × 0.10 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997) T min = 0.706, T max = 0.835

  • 10836 measured reflections

  • 3564 independent reflections

  • 3314 reflections with I > 2σ(I)

  • R int = 0.051

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.102

  • S = 1.04

  • 3564 reflections

  • 211 parameters

  • H-atom parameters constrained

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.30 e Å−3

  • Absolute structure: Flack (1983), 1503 Freidel pairs

  • Flack parameter: 0.00 (1)

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807068171/at2520sup1.cif

e-64-0o384-sup1.cif (19.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807068171/at2520Isup2.hkl

e-64-0o384-Isup2.hkl (174.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O1 0.98 2.47 2.873 (7) 104
O1—H1⋯O4i 0.82 1.92 2.733 (6) 174

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors acknowledge financial support from the Natural Science Foundation of Hubei Province of China (No. 2006ABA175) and the Natural Science Foundation of Central China Normal University, and are indebted to Dr Guangmin Yao of Shijiazhuang Pharmaceutical Group, Zhongqi (sjz) Pharmaceutical Technology Co. Ltd, and Professor Wenjing Xiao and Dr Xianggao Meng of Central China Normal University, for their advice and support.

supplementary crystallographic information

Comment

Phosphorus has been recognized as an essential structural constituent of many biomolecules and a crucial element in many biological transformations (Horiguchi & Kandatsu,1959; Allen et al. 1989). With the advances in the development of chiral catalysts, asymmetric synthesis of some phosphorus compounds has been well documented in literatures (Carlone et al., 2007; Yang, et al., 2007; Ibrahem et al., 2007). As part of our ongoing project on enantioselective organocatalysis, a series of α-indolyl phosphonates have been highly enantioselectively synthesized via Friedel-Crafts alkylation of substituted indoles with (E)-dialkyl 3-oxoprop-1-enylphosphonate using MacMillan's imidazolidinone catalysts. The title compound (I) was synthesized and its crystal structure is presented here.

As seen in Fig. 1, the pyrrole plane (C1/C6—C8/N1) and the phenyl ring (C1—C6) are coplanar with each other with a dihedral angle between their mean planes of 2.2 (24)° in the molecule of the title compound (I), and the molecular structure is stablized by a week C12—H12 ··· O1 intramolecular hydrogen bonding interaction (Table 1).

The crystal packing (Fig. 2) is stabilized by strong intermolecular O—H ··· O hydogen bonds interaction (Table 1) to form a zigzag packing arrangement. Dipole–dipole and van der Waals interactions are also effective in the molecular packing in the crystal structure.

Experimental

The MacMillan's imidazolidinone catalysts (Fig 3) (0.02 mmol) and TFA (0.02 mmol) were stirred in 1 ml dichloromethane for 5 min at 195 K, then (E)-dialkyl 3-oxoprop-1-enylphosphonate 2 (0.1 mmol) was added and stirred for 15 min. And then 1-allyl-5-iodo-1H-indole 1 (0.11 mmol) was added. After the mixture was stirred for 48 h, the solvent (dichloromethane) was removed under reduced pressure at room temperature, and then the residue was added to a stirring solution of sodium borohydride (18.6 mg, 0.5 mmol, 5 equiv) in methanol (3.0 ml). After 15 min, the reaction was quenched with saturated aqueous NaHCO3 and extracted with CH2Cl2. The combined organic layer was washed with saturated solutions of NaHCO3 and NaCl and then dried over with Na2SO4. The combined organic layer was concentrated in vacuo and the product was purified by flash column chromatography on silica gel (ethyl acetate, Rf = 0.4), (14.3 mg, 48% yield). Compound 5 m: yellow solid; tr (minor) = 53.8 min, tr (major) = 59.5 min (Chiralcel AD—H, λ = 254 nm, 5% i-PrOH / hexanes, flow rate = 1.0 ml/min). 1H NMR (400 MHz, CDCl3) δ 2.10–2.18 (m, 1H), 2.28–2.35 (m, 1H), 2.59 (br, 1H), 3.49 (d, J = 10.8 Hz, 3H), 3.73 (d, J = 10.8 Hz, 3H), 3.50–3.75 (m, 3H), 4.67 (d, J = 5.2 Hz, 2H), 5.00 (d, J = 16.8 Hz, 1H), 5.19 (d, J = 10.4 Hz, 1H), 5.90–6.02 (m, 1H), 7.05–7.47 (m, 3H), 7.98 (s, 1H). 13C NMR (100 MHz, CDCl3) δ 29.9, 31.3, 33.3, 48.9, 52.67, 52.75, 53.4, 53.5, 59.7, 59.8, 83.0, 107.9, 111.8, 117.5, 127.9, 128.5, 129.5, 130.2, 132.8, 135.2.; MS (EI) m/z 449 (M+), 450 (M++1), 451 (M++2). Elemental Analysis calculated for C16H21INO4P: C 42.78, H 4.71, N 3.12%. Found: C 42.58, H 4.94, N 3.99%. [α]23D = -22.62 (C=2.35, CHCl3) (after recrystallization). Single crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of a CHCl3 solution.

Refinement

All H atoms were positioned geometrically and treated as riding on their parent atoms, with CH(methyl) = 0.96 Å, CH(methylene) = 0.97 Å, C—H(methine) = 0.98 Å, C—H(aromatic) = 0.93 Å and O—H = 0.82 Å, and with Uiso(H) =1.5Ueq(Cmethyl,O) and 1.2Ueq(Caromatic,Cmethylene,Cmethineylene).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing the atom-labelling scheme and 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The packing view of the title compound (I) along a axis, showing intermolecular hydrogen bonds as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity..

Fig. 3.

Fig. 3.

The reaction scheme.

Crystal data

C16H21INO4P F000 = 896
Mr = 449.21 Dx = 1.646 Mg m3
Orthorhombic, P212121 Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 5073 reflections
a = 7.9983 (4) Å θ = 2.2–25.6º
b = 10.1295 (6) Å µ = 1.87 mm1
c = 22.3722 (12) Å T = 294 (2) K
V = 1812.57 (17) Å3 Block, colourless
Z = 4 0.20 × 0.10 × 0.10 mm

Data collection

Bruker SMART CCD area-detector diffractometer 3314 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.051
T = 294(2) K θmax = 26.0º
phi and ω scans θmin = 1.8º
Absorption correction: multi-scan(SADABS; Sheldrick, 1997) h = −7→9
Tmin = 0.706, Tmax = 0.835 k = −11→12
10836 measured reflections l = −27→27
3564 independent reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.042   w = 1/[σ2(Fo2) + (0.0573P)2 + 0.6855P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.102 (Δ/σ)max < 0.001
S = 1.04 Δρmax = 0.69 e Å3
3564 reflections Δρmin = −0.30 e Å3
211 parameters Extinction correction: none
Primary atom site location: structure-invariant direct methods Absolute structure: Flack (1983), 1503 Freidel pairs
Secondary atom site location: difference Fourier map Flack parameter: 0.00 (1)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
I1 −0.17244 (5) −0.23507 (4) 1.053601 (16) 0.06002 (15)
C1 −0.1488 (6) 0.1982 (4) 0.96323 (18) 0.0340 (9)
C2 −0.2151 (6) 0.1860 (5) 1.0201 (2) 0.0408 (11)
H2 −0.2575 0.2587 1.0404 0.049*
C3 −0.2158 (7) 0.0611 (6) 1.0455 (2) 0.0460 (12)
H3 −0.2580 0.0495 1.0838 0.055*
C4 −0.1542 (7) −0.0467 (5) 1.0142 (2) 0.0414 (11)
C5 −0.0842 (6) −0.0348 (5) 0.95801 (19) 0.0364 (10)
H5 −0.0414 −0.1081 0.9382 0.044*
C6 −0.0794 (5) 0.0896 (4) 0.93175 (17) 0.0299 (9)
C7 −0.0233 (5) 0.1394 (4) 0.87529 (18) 0.0303 (9)
C8 −0.0615 (5) 0.2707 (5) 0.87450 (19) 0.0365 (10)
H8 −0.0395 0.3272 0.8427 0.044*
C9 −0.1972 (10) 0.4394 (5) 0.9422 (2) 0.0627 (17)
H9A −0.2818 0.4309 0.9731 0.075*
H9B −0.1050 0.4893 0.9591 0.075*
C10 −0.2659 (14) 0.5131 (9) 0.8942 (4) 0.105 (3)
H10 −0.3574 0.4747 0.8753 0.126*
C11 −0.2201 (13) 0.6240 (7) 0.8734 (3) 0.089 (3)
H11A −0.1294 0.6679 0.8902 0.107*
H11B −0.2772 0.6613 0.8414 0.107*
C12 0.0602 (6) 0.0611 (5) 0.82594 (19) 0.0324 (9)
H12 0.0481 −0.0329 0.8355 0.039*
C13 −0.0169 (6) 0.0843 (5) 0.76336 (19) 0.0414 (11)
H13A −0.0210 0.1785 0.7555 0.050*
H13B 0.0547 0.0443 0.7334 0.050*
C14 −0.1891 (8) 0.0284 (6) 0.7576 (2) 0.0541 (14)
H14A −0.2652 0.0777 0.7829 0.065*
H14B −0.2268 0.0374 0.7166 0.065*
C15 0.5194 (7) 0.0595 (7) 0.9005 (3) 0.0577 (15)
H15A 0.5880 0.0042 0.8757 0.087*
H15B 0.5363 0.0367 0.9417 0.087*
H15C 0.5494 0.1503 0.8943 0.087*
C16 0.3565 (9) −0.1289 (6) 0.7724 (3) 0.0686 (18)
H16A 0.4059 −0.1626 0.8084 0.103*
H16B 0.4166 −0.1620 0.7384 0.103*
H16C 0.2419 −0.1566 0.7701 0.103*
N1 −0.1369 (5) 0.3078 (4) 0.92702 (16) 0.0379 (9)
O1 −0.1922 (9) −0.1050 (5) 0.7740 (3) 0.112 (2)
H1 −0.2269 −0.1492 0.7459 0.168*
O2 0.3445 (4) 0.0404 (3) 0.88494 (12) 0.0386 (7)
O3 0.3641 (4) 0.0129 (4) 0.77276 (15) 0.0494 (9)
O4 0.3217 (5) 0.2376 (3) 0.81376 (16) 0.0521 (8)
P1 0.28050 (14) 0.09837 (13) 0.82350 (5) 0.0338 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
I1 0.0725 (3) 0.0485 (2) 0.0591 (2) −0.00777 (18) 0.00460 (18) 0.01635 (16)
C1 0.032 (2) 0.034 (2) 0.036 (2) 0.0011 (18) −0.0051 (17) −0.0074 (16)
C2 0.037 (2) 0.050 (3) 0.036 (2) 0.006 (2) 0.0039 (19) −0.006 (2)
C3 0.047 (3) 0.058 (3) 0.032 (2) 0.000 (2) 0.008 (2) 0.001 (2)
C4 0.041 (3) 0.045 (3) 0.038 (2) −0.003 (2) −0.003 (2) 0.0070 (19)
C5 0.032 (2) 0.037 (2) 0.040 (3) −0.0025 (19) 0.0006 (19) −0.0012 (19)
C6 0.024 (2) 0.038 (2) 0.028 (2) 0.0039 (18) −0.0029 (16) −0.0024 (17)
C7 0.023 (2) 0.038 (2) 0.030 (2) 0.0002 (18) −0.0002 (16) −0.0048 (17)
C8 0.037 (2) 0.038 (2) 0.035 (2) −0.003 (2) 0.0003 (18) −0.0033 (19)
C9 0.104 (5) 0.039 (3) 0.045 (3) 0.022 (3) 0.005 (4) −0.002 (2)
C10 0.141 (8) 0.083 (6) 0.090 (6) 0.057 (6) 0.025 (5) 0.008 (5)
C11 0.157 (8) 0.053 (4) 0.058 (4) 0.043 (5) 0.035 (4) 0.010 (3)
C12 0.034 (2) 0.032 (2) 0.031 (2) 0.0014 (19) 0.0026 (18) −0.0003 (18)
C13 0.042 (3) 0.054 (3) 0.028 (2) 0.002 (2) −0.0016 (19) −0.007 (2)
C14 0.056 (3) 0.051 (3) 0.055 (3) 0.000 (3) −0.026 (3) −0.006 (2)
C15 0.038 (3) 0.080 (4) 0.056 (3) −0.006 (3) −0.013 (2) 0.014 (3)
C16 0.060 (4) 0.062 (4) 0.083 (4) 0.011 (3) 0.004 (3) −0.029 (3)
N1 0.042 (2) 0.035 (2) 0.0367 (19) 0.0083 (17) 0.0030 (16) −0.0041 (15)
O1 0.153 (6) 0.054 (3) 0.129 (5) −0.034 (4) −0.088 (4) 0.005 (3)
O2 0.0300 (16) 0.0523 (19) 0.0334 (15) −0.0042 (16) −0.0025 (14) 0.0044 (13)
O3 0.035 (2) 0.071 (3) 0.0416 (18) 0.0069 (17) 0.0066 (15) −0.0039 (17)
O4 0.0469 (19) 0.047 (2) 0.062 (2) −0.007 (2) −0.0022 (16) 0.0139 (16)
P1 0.0292 (6) 0.0419 (7) 0.0304 (5) 0.0007 (5) 0.0017 (4) 0.0023 (5)

Geometric parameters (Å, °)

I1—C4 2.107 (5) C11—H11B 0.9300
C1—N1 1.378 (6) C12—C13 1.548 (6)
C1—C2 1.383 (6) C12—P1 1.803 (4)
C1—C6 1.419 (6) C12—H12 0.9800
C2—C3 1.387 (7) C13—C14 1.495 (8)
C2—H2 0.9300 C13—H13A 0.9700
C3—C4 1.387 (7) C13—H13B 0.9700
C3—H3 0.9300 C14—O1 1.400 (7)
C4—C5 1.382 (6) C14—H14A 0.9700
C5—C6 1.391 (7) C14—H14B 0.9700
C5—H5 0.9300 C15—O2 1.455 (6)
C6—C7 1.432 (6) C15—H15A 0.9600
C7—C8 1.365 (7) C15—H15B 0.9600
C7—C12 1.514 (6) C15—H15C 0.9600
C8—N1 1.374 (5) C16—O3 1.438 (7)
C8—H8 0.9300 C16—H16A 0.9600
C9—C10 1.419 (10) C16—H16B 0.9600
C9—N1 1.458 (6) C16—H16C 0.9600
C9—H9A 0.9700 O1—H1 0.8200
C9—H9B 0.9700 O2—P1 1.580 (3)
C10—C11 1.270 (12) O3—P1 1.576 (4)
C10—H10 0.9300 O4—P1 1.464 (4)
C11—H11A 0.9300
N1—C1—C2 129.7 (4) C7—C12—H12 107.8
N1—C1—C6 107.8 (4) C13—C12—H12 107.8
C2—C1—C6 122.5 (4) P1—C12—H12 107.8
C1—C2—C3 117.3 (4) C14—C13—C12 112.8 (4)
C1—C2—H2 121.3 C14—C13—H13A 109.0
C3—C2—H2 121.3 C12—C13—H13A 109.0
C4—C3—C2 120.7 (4) C14—C13—H13B 109.0
C4—C3—H3 119.7 C12—C13—H13B 109.0
C2—C3—H3 119.7 H13A—C13—H13B 107.8
C5—C4—C3 122.2 (4) O1—C14—C13 111.1 (5)
C5—C4—I1 119.2 (4) O1—C14—H14A 109.4
C3—C4—I1 118.5 (3) C13—C14—H14A 109.4
C4—C5—C6 118.4 (4) O1—C14—H14B 109.4
C4—C5—H5 120.8 C13—C14—H14B 109.4
C6—C5—H5 120.8 H14A—C14—H14B 108.0
C5—C6—C1 118.8 (4) O2—C15—H15A 109.5
C5—C6—C7 134.4 (4) O2—C15—H15B 109.5
C1—C6—C7 106.7 (4) H15A—C15—H15B 109.5
C8—C7—C6 106.5 (4) O2—C15—H15C 109.5
C8—C7—C12 126.8 (4) H15A—C15—H15C 109.5
C6—C7—C12 126.7 (4) H15B—C15—H15C 109.5
C7—C8—N1 110.8 (4) O3—C16—H16A 109.5
C7—C8—H8 124.6 O3—C16—H16B 109.5
N1—C8—H8 124.6 H16A—C16—H16B 109.5
C10—C9—N1 115.6 (5) O3—C16—H16C 109.5
C10—C9—H9A 108.4 H16A—C16—H16C 109.5
N1—C9—H9A 108.4 H16B—C16—H16C 109.5
C10—C9—H9B 108.4 C8—N1—C1 108.2 (4)
N1—C9—H9B 108.4 C8—N1—C9 126.6 (4)
H9A—C9—H9B 107.4 C1—N1—C9 125.2 (4)
C11—C10—C9 129.1 (11) C14—O1—H1 109.5
C11—C10—H10 115.5 C15—O2—P1 118.1 (3)
C9—C10—H10 115.5 C16—O3—P1 122.4 (4)
C10—C11—H11A 120.0 O4—P1—O3 109.0 (2)
C10—C11—H11B 120.0 O4—P1—O2 114.5 (2)
H11A—C11—H11B 120.0 O3—P1—O2 106.55 (19)
C7—C12—C13 113.8 (4) O4—P1—C12 115.2 (2)
C7—C12—P1 110.1 (3) O3—P1—C12 108.7 (2)
C13—C12—P1 109.3 (3) O2—P1—C12 102.26 (19)
N1—C1—C2—C3 177.8 (5) C7—C12—C13—C14 −69.1 (6)
C6—C1—C2—C3 −1.6 (7) P1—C12—C13—C14 167.4 (4)
C1—C2—C3—C4 −0.9 (7) C12—C13—C14—O1 −53.2 (7)
C2—C3—C4—C5 2.5 (8) C7—C8—N1—C1 −0.1 (5)
C2—C3—C4—I1 −176.4 (4) C7—C8—N1—C9 −179.2 (5)
C3—C4—C5—C6 −1.5 (7) C2—C1—N1—C8 −179.9 (5)
I1—C4—C5—C6 177.4 (3) C6—C1—N1—C8 −0.5 (5)
C4—C5—C6—C1 −1.0 (6) C2—C1—N1—C9 −0.8 (8)
C4—C5—C6—C7 −177.9 (5) C6—C1—N1—C9 178.7 (5)
N1—C1—C6—C5 −176.9 (4) C10—C9—N1—C8 35.3 (10)
C2—C1—C6—C5 2.6 (6) C10—C9—N1—C1 −143.6 (7)
N1—C1—C6—C7 0.8 (5) C16—O3—P1—O4 175.5 (4)
C2—C1—C6—C7 −179.7 (4) C16—O3—P1—O2 51.4 (5)
C5—C6—C7—C8 176.3 (5) C16—O3—P1—C12 −58.1 (5)
C1—C6—C7—C8 −0.8 (5) C15—O2—P1—O4 −51.1 (5)
C5—C6—C7—C12 −3.0 (8) C15—O2—P1—O3 69.5 (4)
C1—C6—C7—C12 179.9 (4) C15—O2—P1—C12 −176.4 (4)
C6—C7—C8—N1 0.6 (5) C7—C12—P1—O4 −58.6 (4)
C12—C7—C8—N1 179.9 (4) C13—C12—P1—O4 67.1 (4)
N1—C9—C10—C11 −120.5 (9) C7—C12—P1—O3 178.7 (3)
C8—C7—C12—C13 −47.8 (6) C13—C12—P1—O3 −55.6 (4)
C6—C7—C12—C13 131.4 (5) C7—C12—P1—O2 66.3 (3)
C8—C7—C12—P1 75.3 (5) C13—C12—P1—O2 −168.0 (3)
C6—C7—C12—P1 −105.6 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C12—H12···O1 0.98 2.47 2.873 (7) 104
O1—H1···O4i 0.82 1.92 2.733 (6) 174

Symmetry codes: (i) −x, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2520).

References

  1. Allen, M. C., Fuhrer, W. & Tuck, B. (1989). J. Med. Chem.32, 1652–1661. [DOI] [PubMed]
  2. Bruker (2001). SMART (Version 5.628), SAINT (Version 6.45) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Butcher, R. J., Jasinski, J. P., Yathirajan, H. S., Ashalatha, B. V. & Narayana, B. (2007). Acta Cryst. E63, o3505.
  4. Carlone, A., Bartoli, G. & Bosco, M. (2007). Angew. Chem. Int. Ed.46, 4504–4506. [DOI] [PubMed]
  5. Chen, A., Zou, J.-W. & Zhao, W.-N. (2007). Acta Cryst. E63, o3229.
  6. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  7. Horiguchi, M. & Kandatsu, M. (1959). Nature (London), 184, 901. [DOI] [PubMed]
  8. Ibrahem, I., Rios, R. & Vesely, J. (2007). Angew. Chem. Int. Ed.46, 4507–4510. [DOI] [PubMed]
  9. Sheldrick, G. M. (1997). SADABS and SHELXL97 University of Göttingen, Germany.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Sonar, V. N., Parkin, S. & Crooks, P. A. (2006). Acta Cryst. E62, o3328–o3330. [DOI] [PubMed]
  12. Yang, H., Hong, Y.-T. & Kim, S. (2007). Org. Lett.9, 2281–2284. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807068171/at2520sup1.cif

e-64-0o384-sup1.cif (19.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807068171/at2520Isup2.hkl

e-64-0o384-Isup2.hkl (174.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES