Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jan 9;64(Pt 2):o383. doi: 10.1107/S1600536807068821

2-Methyl-N-phenyl­benzamide

B Thimme Gowda a,*, Sabine Foro b, B P Sowmya a, Hartmut Fuess b
PMCID: PMC2960230  PMID: 21201413

Abstract

In the structure of the title compound (NP2MBA), C14H13NO, the conformation of the C—O bond is syn to the ortho-methyl substituent in the benzoyl phenyl ring, while the N—H bond is anti to the ortho-methyl substituent. The structure of NP2MBA closely resembles that of 2-chloro-N-phenyl­benzamide, with similar bond parameters. The dihedral angle between the phenyl and benzoyl rings is 88.05 (5)°. Mol­ecules are linked into a chain through N—H⋯O hydrogen bonding.

Related literature

For related literature, see: Gowda et al. (2003, 2007, 2008).graphic file with name e-64-0o383-scheme1.jpg

Experimental

Crystal data

  • C14H13NO

  • M r = 211.25

  • Orthorhombic, Inline graphic

  • a = 14.404 (1) Å

  • b = 8.6824 (6) Å

  • c = 18.710 (1) Å

  • V = 2339.9 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 (2) K

  • 0.40 × 0.20 × 0.16 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector

  • Absorption correction: multi-scan (SCALE3 ABSPACK; Oxford Diffraction, 2007) T min = 0.970, T max = 0.981

  • 11005 measured reflections

  • 2387 independent reflections

  • 1686 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.115

  • S = 1.05

  • 2387 reflections

  • 149 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2004); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXS97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807068821/dn2308sup1.cif

e-64-0o383-sup1.cif (16.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807068821/dn2308Isup2.hkl

e-64-0o383-Isup2.hkl (117.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.878 (17) 2.012 (18) 2.8751 (16) 167.7 (15)

Symmetry code: (i) Inline graphic.

Acknowledgments

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

supplementary crystallographic information

Comment

As part of a study of the substituent effects on the structures of benzanilides, in the present work, the structure of 2-methyl-N-(phenyl)benzamide (NP2MBA) has been determined (Gowda, et al., 2003; 2007; 2008). In the structure of NP2MBA,(Fig. 1), the conformation of the C—O bond is syn to the ortho-methyl substituent in the benzoyl phenyl ring, while the N—H bond is anti to the ortho-methyl substituent. The bond parameters in NP2MBA are similar to those in 2-chloro-N-(phenyl)-benzamide (Gowda, et al.,2003), 2-chloro-N-(2-chlorophenyl)-benzamide (Gowda, et al.,2007), N-(4-methylphenyl)-benzamide (Gowda, et al.,2008) and other benzanilides. The dihedral angle between the phenyl and benzoyl rings in NP2MBA is 88.05 (5)°. The packing diagram of NP2MBA molecules showing the hydrogen bonds N1—H1N···O1 (Table 1) involved in the formation of molecular chain is shown in Fig. 2.

Experimental

The title compound was prepared according to the literature method (Gowda et al., 2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement

The NH atom was located in difference map with N—H = 0.88 (2) %A. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.95–0.98 Å A l l H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom labeling scheme. The displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Molecular packing of the title compound with hydrogen bonding shown as dashed lines.H atoms not involved in hydrogen bondings have been omitted for clarity. [Symmetry code: (i) 3/2 - x, 1/2 + y, z]

Crystal data

C14H13NO F000 = 896
Mr = 211.25 Dx = 1.199 Mg m3
Orthorhombic, Pbca Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 3291 reflections
a = 14.404 (1) Å θ = 1.5–26.9º
b = 8.6824 (6) Å µ = 0.08 mm1
c = 18.710 (1) Å T = 100 (2) K
V = 2339.9 (3) Å3 Rod, colourless
Z = 8 0.40 × 0.20 × 0.16 mm

Data collection

Oxford Diffraction Xcalibur diffractometer with Sapphire CCD Detector 2387 independent reflections
Radiation source: fine-focus sealed tube 1686 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.029
T = 100(2) K θmax = 26.4º
Rotation method data acquisition using ω and φ scans. θmin = 2.6º
Absorption correction: multi-scan(SCALE3 ABSPACK; Oxford Diffraction, 2007) h = −17→17
Tmin = 0.970, Tmax = 0.981 k = −10→10
11005 measured reflections l = −23→23

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.115   w = 1/[σ2(Fo2) + (0.0589P)2 + 0.6762P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.007
2387 reflections Δρmax = 0.24 e Å3
149 parameters Δρmin = −0.21 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.69394 (10) 0.28490 (16) 0.53783 (8) 0.0226 (3)
C2 0.60165 (11) 0.32710 (18) 0.52773 (9) 0.0298 (4)
H2 0.5740 0.4029 0.5575 0.036*
C3 0.55046 (12) 0.2578 (2) 0.47398 (10) 0.0395 (5)
H3 0.4876 0.2869 0.4667 0.047*
C4 0.59039 (14) 0.1463 (2) 0.43075 (10) 0.0421 (5)
H4 0.5544 0.0966 0.3950 0.051*
C5 0.68238 (13) 0.1079 (2) 0.43987 (9) 0.0360 (4)
H5 0.7102 0.0334 0.4094 0.043*
C6 0.73475 (11) 0.17696 (18) 0.49311 (8) 0.0276 (4)
H6 0.7983 0.1505 0.4990 0.033*
C7 0.80898 (9) 0.28653 (16) 0.63583 (7) 0.0197 (3)
C8 0.85208 (9) 0.38985 (16) 0.69023 (8) 0.0203 (3)
C9 0.85849 (9) 0.34624 (16) 0.76232 (8) 0.0231 (3)
C10 0.90322 (10) 0.44704 (19) 0.80890 (9) 0.0284 (4)
H10 0.9075 0.4210 0.8581 0.034*
C11 0.94171 (11) 0.58472 (19) 0.78533 (9) 0.0323 (4)
H11 0.9735 0.6498 0.8180 0.039*
C12 0.93373 (11) 0.62687 (18) 0.71470 (9) 0.0310 (4)
H12 0.9590 0.7218 0.6986 0.037*
C13 0.88876 (10) 0.53029 (16) 0.66721 (9) 0.0248 (4)
H13 0.8828 0.5597 0.6185 0.030*
C14 0.81853 (11) 0.19677 (19) 0.78942 (8) 0.0311 (4)
H14A 0.8571 0.1108 0.7730 0.037*
H14B 0.7552 0.1842 0.7711 0.037*
H14C 0.8172 0.1981 0.8418 0.037*
N1 0.74373 (8) 0.35464 (14) 0.59463 (7) 0.0220 (3)
H1N 0.7283 (11) 0.448 (2) 0.6078 (9) 0.026*
O1 0.83366 (7) 0.15084 (11) 0.62885 (6) 0.0245 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0295 (8) 0.0138 (7) 0.0244 (7) −0.0039 (6) −0.0054 (6) 0.0032 (6)
C2 0.0308 (8) 0.0223 (8) 0.0362 (9) −0.0009 (7) −0.0051 (7) 0.0040 (7)
C3 0.0335 (9) 0.0373 (10) 0.0477 (10) −0.0048 (8) −0.0176 (8) 0.0095 (9)
C4 0.0563 (12) 0.0291 (9) 0.0410 (10) −0.0117 (9) −0.0223 (9) 0.0006 (9)
C5 0.0541 (11) 0.0221 (8) 0.0316 (9) −0.0039 (8) −0.0079 (8) −0.0018 (8)
C6 0.0348 (8) 0.0204 (8) 0.0276 (8) −0.0022 (7) −0.0039 (7) 0.0007 (7)
C7 0.0189 (7) 0.0154 (7) 0.0248 (7) −0.0018 (5) 0.0013 (6) 0.0015 (6)
C8 0.0172 (7) 0.0154 (7) 0.0284 (8) 0.0023 (5) −0.0008 (6) −0.0020 (6)
C9 0.0183 (7) 0.0217 (7) 0.0294 (8) 0.0040 (6) −0.0005 (6) −0.0019 (7)
C10 0.0249 (8) 0.0316 (9) 0.0287 (8) 0.0065 (7) −0.0055 (7) −0.0063 (8)
C11 0.0246 (8) 0.0273 (8) 0.0452 (10) 0.0000 (7) −0.0082 (7) −0.0151 (8)
C12 0.0263 (8) 0.0190 (8) 0.0478 (10) −0.0038 (6) −0.0030 (7) −0.0031 (8)
C13 0.0235 (7) 0.0176 (7) 0.0333 (8) 0.0001 (6) −0.0013 (6) 0.0009 (7)
C14 0.0336 (9) 0.0299 (9) 0.0298 (8) −0.0022 (7) −0.0004 (7) 0.0052 (8)
N1 0.0261 (6) 0.0126 (6) 0.0273 (7) 0.0019 (5) −0.0033 (6) −0.0017 (6)
O1 0.0274 (5) 0.0124 (5) 0.0336 (6) 0.0014 (4) −0.0033 (5) −0.0018 (5)

Geometric parameters (Å, °)

C1—C6 1.387 (2) C8—C13 1.397 (2)
C1—C2 1.392 (2) C8—C9 1.404 (2)
C1—N1 1.4180 (18) C9—C10 1.393 (2)
C2—C3 1.385 (2) C9—C14 1.507 (2)
C2—H2 0.9500 C10—C11 1.390 (2)
C3—C4 1.387 (3) C10—H10 0.9500
C3—H3 0.9500 C11—C12 1.376 (2)
C4—C5 1.377 (3) C11—H11 0.9500
C4—H4 0.9500 C12—C13 1.383 (2)
C5—C6 1.386 (2) C12—H12 0.9500
C5—H5 0.9500 C13—H13 0.9500
C6—H6 0.9500 C14—H14A 0.9800
C7—O1 1.2375 (17) C14—H14B 0.9800
C7—N1 1.3516 (18) C14—H14C 0.9800
C7—C8 1.492 (2) N1—H1N 0.878 (17)
C6—C1—C2 120.05 (14) C10—C9—C8 117.51 (14)
C6—C1—N1 121.76 (13) C10—C9—C14 120.47 (14)
C2—C1—N1 118.19 (13) C8—C9—C14 122.01 (13)
C3—C2—C1 119.53 (16) C11—C10—C9 121.78 (15)
C3—C2—H2 120.2 C11—C10—H10 119.1
C1—C2—H2 120.2 C9—C10—H10 119.1
C2—C3—C4 120.41 (16) C12—C11—C10 120.01 (15)
C2—C3—H3 119.8 C12—C11—H11 120.0
C4—C3—H3 119.8 C10—C11—H11 120.0
C5—C4—C3 119.73 (16) C11—C12—C13 119.66 (15)
C5—C4—H4 120.1 C11—C12—H12 120.2
C3—C4—H4 120.1 C13—C12—H12 120.2
C4—C5—C6 120.53 (17) C12—C13—C8 120.56 (15)
C4—C5—H5 119.7 C12—C13—H13 119.7
C6—C5—H5 119.7 C8—C13—H13 119.7
C5—C6—C1 119.69 (15) C9—C14—H14A 109.5
C5—C6—H6 120.2 C9—C14—H14B 109.5
C1—C6—H6 120.2 H14A—C14—H14B 109.5
O1—C7—N1 123.79 (13) C9—C14—H14C 109.5
O1—C7—C8 121.65 (12) H14A—C14—H14C 109.5
N1—C7—C8 114.53 (12) H14B—C14—H14C 109.5
C13—C8—C9 120.44 (14) C7—N1—C1 126.32 (12)
C13—C8—C7 118.16 (13) C7—N1—H1N 114.9 (11)
C9—C8—C7 121.37 (13) C1—N1—H1N 118.5 (11)
C6—C1—C2—C3 1.6 (2) C13—C8—C9—C14 179.07 (13)
N1—C1—C2—C3 −178.20 (14) C7—C8—C9—C14 −2.9 (2)
C1—C2—C3—C4 0.5 (3) C8—C9—C10—C11 −1.1 (2)
C2—C3—C4—C5 −2.1 (3) C14—C9—C10—C11 179.21 (14)
C3—C4—C5—C6 1.7 (3) C9—C10—C11—C12 2.0 (2)
C4—C5—C6—C1 0.4 (2) C10—C11—C12—C13 −1.2 (2)
C2—C1—C6—C5 −2.0 (2) C11—C12—C13—C8 −0.5 (2)
N1—C1—C6—C5 177.73 (14) C9—C8—C13—C12 1.5 (2)
O1—C7—C8—C13 126.10 (15) C7—C8—C13—C12 −176.65 (13)
N1—C7—C8—C13 −52.29 (17) O1—C7—N1—C1 −0.2 (2)
O1—C7—C8—C9 −51.99 (19) C8—C7—N1—C1 178.11 (13)
N1—C7—C8—C9 129.62 (14) C6—C1—N1—C7 −35.5 (2)
C13—C8—C9—C10 −0.7 (2) C2—C1—N1—C7 144.32 (15)
C7—C8—C9—C10 177.40 (13)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1i 0.878 (17) 2.012 (18) 2.8751 (16) 167.7 (15)

Symmetry codes: (i) −x+3/2, y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2308).

References

  1. Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2007). Acta Cryst. E63, o3789.
  2. Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.
  3. Gowda, B. T., Tokarčík, M., Kožíšek, J. & Sowmya, B. P. (2008). Acta Cryst. E64, o83. [DOI] [PMC free article] [PubMed]
  4. Oxford Diffraction (2004). CrysAlis CCD Version 1.171.26. Oxford Diffraction Ltd. Abingdon, Oxfordshire, England.
  5. Oxford Diffraction (2007). CrysAlis RED Version 1.171.32.5. Oxford Diffraction Ltd. Abingdon, Oxfordshire, England.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2003). PLATON J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807068821/dn2308sup1.cif

e-64-0o383-sup1.cif (16.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807068821/dn2308Isup2.hkl

e-64-0o383-Isup2.hkl (117.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES