Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jan 11;64(Pt 2):o435. doi: 10.1107/S1600536808000111

1-Methyl-2-(4-methyl­phen­yl)-4-morpholinopyridazine-3,6(1H,2H)-dione

Andrzej Gzella a,*, Ewa Melzer a, Michał S Kaczmarek b, Zenon Woźniak b
PMCID: PMC2960232  PMID: 21201462

Abstract

The structure analysis of the title compound, C16H19N3O3, has been undertaken in order to facilitate the inter­pretation of 1H and 13C NMR data and to determine the position of the morpholine residue in this nucleophilic substitution product. The main result is that the morpholine group, with a chair conformation, is connected at the 4-position of the pyridazine ring. The benzene and pyridazine rings make a dihedral angle of 62.17 (5)°. Mol­ecules are linked into a two-dimensional network by non-classical C—H⋯O hydrogen bonds, in which O atoms serve as double or triple acceptors.

Related literature

For related literature, see: Allen et al. (1987); Bałoniak & Melzer (1979); Katrusiak et al. (2002).graphic file with name e-64-0o435-scheme1.jpg

Experimental

Crystal data

  • C16H19N3O3

  • M r = 301.34

  • Monoclinic, Inline graphic

  • a = 5.6246 (6) Å

  • b = 8.8923 (6) Å

  • c = 15.0842 (10) Å

  • β = 99.530 (7)°

  • V = 744.03 (11) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.78 mm−1

  • T = 293 (2) K

  • 0.38 × 0.35 × 0.30 mm

Data collection

  • Kuma Diffraction KM-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.716, T max = 0.794

  • 2796 measured reflections

  • 2705 independent reflections

  • 2646 reflections with I > 2σ(I)

  • R int = 0.025

  • 2 standard reflections every 100 reflections intensity decay: <2%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.082

  • S = 1.06

  • 2705 reflections

  • 202 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.13 e Å−3

  • Absolute structure: Flack (1983); 1249 Friedel pairs

  • Flack parameter: 0.07 (16)

Data collection: KM-4 Software (Kuma, 1996); cell refinement: KM-4 Software; data reduction: KM-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808000111/cf2177sup1.cif

e-64-0o435-sup1.cif (19.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808000111/cf2177Isup2.hkl

e-64-0o435-Isup2.hkl (130.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17A⋯O15 0.97 2.21 2.8636 (18) 124
C10—H10⋯O15i 0.93 2.53 3.3508 (19) 148
C14—H14C⋯O15i 0.96 2.53 3.419 (2) 155
C5—H5⋯O19ii 0.93 2.49 3.4124 (19) 174
C21—H21B⋯O19ii 0.97 2.52 3.3036 (18) 137

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

Treatment of 4-bromo-1-methyl-2-(4-methylphenyl)-3,6-pyridazinedione with morpholine in anhydrous ethanol gives a mixture of ipso and cine substitution products; one of them, labelled as (I), was found as a precipitate (Bałoniak & Melzer, 1979). The crystal structure determination of (I) was carried out in order to facilitate the interpretation of 1H and 13C NMR data, to determine the position of the morpholine residue on the pyridazinedione ring, and to study the nature of the hydrogen-bond formation in the crystalline state.

The X-ray analysis revealed the molecular structure of (I) and its conformation and distortions induced in the pyridazine ring by substituents.

The geometry of the molecule of (I) is illustrated in Fig. 1. The pyridazine ring is nearly planar with an r.m.s. deviation of 0.0211 Å. The methyl, p-methylphenyl and morpholine substituents are connected at N1, N2 and C4, respectively. The mean plane of the benzene ring is oriented at an angle of 62.17 (5)° to the mean plane of the pyridazine ring. The C4—C5 bond, 1.3500 (18) Å, belonging to the latter ring, is a double bond.

The ring bonds are conjugated, and the formally single bond C5—C6 is shorter by about 14 and the bond C3—C4 is longer by about 13σ than the normal (C?)Csp2—Csp2(?O) single bond [1.465 (1) Å; Allen et al., 1987]. The elongation of the latter is a result of the presence of the morpholine residue at C4. The last two observations are consistent with that reported for 2-methyl-4-morpholino-1-phenyl-3,6-pyridazinedione (Katrusiak et al., 2002).

The C3—N1 and C6—N1 distances are similar [1.3700 (18) and 1.3686 (17) Å, respectively] and are somewhat larger than a normal C—N tertiary amide distance [1.346 (5) Å; Allen et al., 1987]. The sums of valency angles around N1 and N2 atoms are 356.5 and 357.4°. Atom C7 of the methyl group has a mutual orientation of synperiplanar and synclinal with respect to the atom C8 of the benzene ring [torsion angle C7—N1—N2—C8 = -37.79 (18)°].

The molecules in the crystal structure of (I) are linked via non-classical C—H···O hydrogen bonds (Table 1), forming a two-dimensional hydrogen-bond network parallel to the (101) plane (Figs. 2 and 3).

Experimental

Compound (I) was synthesized according to a literature procedure of Bałoniak & Melzer (1979). Crystals suitable for single-crystal X-ray diffraction analysis were grown from ethanol by slow evaporation.

Refinement

All H atoms were placed in geometrically calculated positions and were refined with a riding model with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H. The methyl groups were refined as rigid groups, allowed to rotate. The crystal polarity of (I) was established by refinement of the Flack (1983) parameter. The relatively large s.u. of the Flack parameter is due to the small contribution of atoms with measurable anomalous dispersion effects.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing the atomic labelling scheme. Non-H atoms are drawn as 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Molecular packing and hydrogen bonds (dotted lines); symmetry codes: (i) 1 - x, 1/2 + y, 1 - z, (ii) 2 - x, 1/2 + y, -z. H atoms not involved in hydrogen bonds have been omitted for clarity.

Fig. 3.

Fig. 3.

Molecular packing and hydrogen bonds (dotted lines); symmetry codes: (i) 1 - x, 1/2 + y, 1 - z, (ii) 2 - x, 1/2 + y, -z. H atoms not involved in hydrogen bonds have been omitted for clarity.

Crystal data

C16H19N3O3 F(000) = 320
Mr = 301.34 Dx = 1.345 Mg m3
Monoclinic, P21 Melting point = 475–476 K
Hall symbol: P 2yb Cu Kα radiation, λ = 1.54178 Å
a = 5.6246 (6) Å Cell parameters from 53 reflections
b = 8.8923 (6) Å θ = 14.8–30.5°
c = 15.0842 (10) Å µ = 0.78 mm1
β = 99.530 (7)° T = 293 K
V = 744.03 (11) Å3 Block, colourless
Z = 2 0.38 × 0.35 × 0.30 mm

Data collection

Kuma Diffraction KM-4 diffractometer 2646 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.025
graphite θmax = 70.1°, θmin = 3.0°
ω–2θ scans h = −6→6
Absorption correction: ψ scan (North et al., 1968) k = −10→10
Tmin = 0.716, Tmax = 0.794 l = 0→18
2796 measured reflections 2 standard reflections every 100 reflections
2705 independent reflections intensity decay: <2%

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.0538P)2 + 0.0723P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.082 (Δ/σ)max = 0.001
S = 1.07 Δρmax = 0.15 e Å3
2705 reflections Δρmin = −0.13 e Å3
202 parameters Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraint Extinction coefficient: 0.0345 (18)
Primary atom site location: structure-invariant direct methods Absolute structure: Flack (1983); 1249 Fiedel pairs
Secondary atom site location: difference Fourier map Flack parameter: 0.07 (16)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.4950 (2) 0.30562 (12) 0.24834 (8) 0.0381 (3)
N2 0.4743 (2) 0.15882 (12) 0.28125 (7) 0.0339 (3)
C3 0.5939 (3) 0.03738 (15) 0.25416 (8) 0.0325 (3)
C4 0.7375 (2) 0.06485 (14) 0.18118 (8) 0.0300 (3)
C5 0.7609 (3) 0.20788 (15) 0.15387 (9) 0.0359 (3)
H5 0.8658 0.2264 0.1135 0.043*
C6 0.6334 (3) 0.33293 (15) 0.18353 (9) 0.0369 (3)
C7 0.3067 (3) 0.41229 (19) 0.25978 (12) 0.0516 (4)
H7A 0.3504 0.4642 0.3159 0.077*
H7B 0.1577 0.3595 0.2596 0.077*
H7C 0.2876 0.4837 0.2114 0.077*
C8 0.3819 (2) 0.14755 (15) 0.36480 (8) 0.0326 (3)
C9 0.4878 (3) 0.22780 (18) 0.43950 (9) 0.0426 (3)
H9 0.6209 0.2886 0.4367 0.051*
C10 0.3942 (3) 0.2170 (2) 0.51839 (10) 0.0450 (4)
H10 0.4645 0.2717 0.5684 0.054*
C11 0.1978 (3) 0.12600 (18) 0.52421 (9) 0.0408 (3)
C12 0.0964 (3) 0.04506 (18) 0.44820 (10) 0.0425 (3)
H12 −0.0346 −0.0175 0.4510 0.051*
C13 0.1868 (3) 0.05591 (17) 0.36881 (9) 0.0381 (3)
H13 0.1165 0.0018 0.3185 0.046*
C14 0.0953 (4) 0.1141 (2) 0.61008 (11) 0.0581 (5)
H14A 0.1592 0.0263 0.6427 0.087*
H14B −0.0771 0.1064 0.5961 0.087*
H14C 0.1385 0.2020 0.6461 0.087*
O15 0.5897 (2) −0.08309 (11) 0.29241 (7) 0.0475 (3)
N16 0.8655 (2) −0.05448 (13) 0.15642 (7) 0.0339 (3)
C17 0.7617 (3) −0.20541 (15) 0.13920 (9) 0.0369 (3)
H17A 0.6324 −0.2196 0.1737 0.044*
H17B 0.8843 −0.2807 0.1582 0.044*
C18 0.6651 (3) −0.22466 (16) 0.04052 (10) 0.0407 (3)
H18A 0.6047 −0.3264 0.0299 0.049*
H18B 0.5311 −0.1561 0.0234 0.049*
O19 0.8440 (2) −0.19668 (12) −0.01424 (7) 0.0444 (3)
C20 0.9381 (3) −0.04743 (17) 0.00089 (9) 0.0404 (3)
H20A 0.8098 0.0252 −0.0157 0.049*
H20B 1.0604 −0.0298 −0.0363 0.049*
C21 1.0461 (3) −0.02754 (16) 0.09851 (9) 0.0386 (3)
H21A 1.1792 −0.0972 0.1142 0.046*
H21B 1.1088 0.0738 0.1082 0.046*
O22 0.6396 (2) 0.46036 (12) 0.15195 (8) 0.0522 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0510 (7) 0.0290 (6) 0.0389 (6) 0.0038 (5) 0.0206 (5) 0.0022 (5)
N2 0.0453 (7) 0.0291 (5) 0.0311 (5) −0.0018 (5) 0.0176 (5) 0.0000 (4)
C3 0.0425 (7) 0.0313 (6) 0.0260 (5) −0.0011 (5) 0.0122 (5) −0.0013 (5)
C4 0.0367 (7) 0.0308 (6) 0.0236 (5) −0.0012 (5) 0.0083 (5) −0.0018 (4)
C5 0.0458 (8) 0.0327 (7) 0.0332 (6) −0.0023 (6) 0.0181 (5) 0.0008 (5)
C6 0.0489 (8) 0.0287 (7) 0.0362 (7) −0.0036 (6) 0.0157 (6) −0.0004 (5)
C7 0.0578 (10) 0.0419 (8) 0.0617 (9) 0.0102 (7) 0.0289 (8) 0.0014 (7)
C8 0.0383 (7) 0.0353 (7) 0.0268 (6) −0.0004 (5) 0.0131 (5) −0.0021 (5)
C9 0.0449 (9) 0.0472 (8) 0.0393 (7) −0.0128 (6) 0.0174 (6) −0.0094 (6)
C10 0.0507 (9) 0.0540 (8) 0.0324 (6) −0.0070 (7) 0.0131 (6) −0.0121 (6)
C11 0.0462 (8) 0.0462 (8) 0.0332 (7) 0.0025 (6) 0.0163 (6) 0.0023 (6)
C12 0.0399 (8) 0.0488 (8) 0.0418 (7) −0.0085 (6) 0.0153 (6) 0.0005 (6)
C13 0.0385 (7) 0.0445 (8) 0.0319 (6) −0.0063 (6) 0.0082 (5) −0.0042 (5)
C14 0.0687 (11) 0.0728 (12) 0.0394 (8) −0.0065 (9) 0.0278 (7) 0.0017 (8)
O15 0.0746 (7) 0.0334 (5) 0.0418 (5) 0.0051 (5) 0.0307 (5) 0.0098 (4)
N16 0.0431 (6) 0.0301 (6) 0.0311 (5) −0.0007 (5) 0.0140 (4) −0.0022 (4)
C17 0.0511 (8) 0.0264 (6) 0.0363 (7) −0.0004 (6) 0.0165 (6) −0.0002 (5)
C18 0.0489 (8) 0.0350 (7) 0.0415 (7) −0.0048 (6) 0.0173 (6) −0.0072 (6)
O19 0.0602 (7) 0.0384 (6) 0.0397 (5) −0.0032 (5) 0.0237 (5) −0.0100 (4)
C20 0.0514 (8) 0.0364 (7) 0.0389 (7) −0.0003 (6) 0.0234 (6) −0.0009 (6)
C21 0.0373 (7) 0.0382 (7) 0.0435 (7) 0.0015 (6) 0.0163 (5) −0.0039 (6)
O22 0.0788 (8) 0.0287 (5) 0.0565 (6) 0.0005 (5) 0.0326 (6) 0.0058 (5)

Geometric parameters (Å, °)

N1—C6 1.3686 (17) C11—C14 1.5062 (18)
N1—N2 1.4083 (15) C12—C13 1.3796 (18)
N1—C7 1.4530 (19) C12—H12 0.930
N2—C3 1.3700 (18) C13—H13 0.930
N2—C8 1.4440 (15) C14—H14A 0.960
C3—O15 1.2188 (17) C14—H14B 0.960
C3—C4 1.4897 (16) C14—H14C 0.960
C4—C5 1.3500 (18) N16—C21 1.4648 (15)
C4—N16 1.3685 (17) N16—C17 1.4696 (17)
C5—C6 1.4344 (19) C17—C18 1.507 (2)
C5—H5 0.930 C17—H17A 0.970
C6—O22 1.2319 (18) C17—H17B 0.970
C7—H7A 0.960 C18—O19 1.4256 (16)
C7—H7B 0.960 C18—H18A 0.970
C7—H7C 0.960 C18—H18B 0.970
C8—C13 1.376 (2) O19—C20 1.4330 (18)
C8—C9 1.3826 (19) C20—C21 1.507 (2)
C9—C10 1.3819 (18) C20—H20A 0.970
C9—H9 0.930 C20—H20B 0.970
C10—C11 1.384 (2) C21—H21A 0.970
C10—H10 0.930 C21—H21B 0.970
C11—C12 1.393 (2)
C6—N1—N2 120.42 (11) C11—C12—H12 119.4
C6—N1—C7 118.75 (12) C8—C13—C12 119.38 (12)
N2—N1—C7 117.31 (11) C8—C13—H13 120.3
C3—N2—N1 123.52 (11) C12—C13—H13 120.3
C3—N2—C8 118.10 (11) C11—C14—H14A 109.5
N1—N2—C8 115.76 (10) C11—C14—H14B 109.5
O15—C3—N2 120.18 (11) H14A—C14—H14B 109.5
O15—C3—C4 123.32 (12) C11—C14—H14C 109.5
N2—C3—C4 116.39 (11) H14A—C14—H14C 109.5
C5—C4—N16 124.41 (12) H14B—C14—H14C 109.5
C5—C4—C3 118.17 (11) C4—N16—C21 118.94 (11)
N16—C4—C3 116.66 (11) C4—N16—C17 123.00 (11)
C4—C5—C6 123.79 (12) C21—N16—C17 109.79 (10)
C4—C5—H5 118.1 N16—C17—C18 110.23 (11)
C6—C5—H5 118.1 N16—C17—H17A 109.6
O22—C6—N1 119.68 (12) C18—C17—H17A 109.6
O22—C6—C5 123.02 (12) N16—C17—H17B 109.6
N1—C6—C5 117.28 (11) C18—C17—H17B 109.6
N1—C7—H7A 109.5 H17A—C17—H17B 108.1
N1—C7—H7B 109.5 O19—C18—C17 112.26 (12)
H7A—C7—H7B 109.5 O19—C18—H18A 109.2
N1—C7—H7C 109.5 C17—C18—H18A 109.2
H7A—C7—H7C 109.5 O19—C18—H18B 109.2
H7B—C7—H7C 109.5 C17—C18—H18B 109.2
C13—C8—C9 120.59 (12) H18A—C18—H18B 107.9
C13—C8—N2 118.96 (11) C18—O19—C20 110.30 (10)
C9—C8—N2 120.45 (12) O19—C20—C21 110.04 (12)
C10—C9—C8 119.45 (14) O19—C20—H20A 109.7
C10—C9—H9 120.3 C21—C20—H20A 109.7
C8—C9—H9 120.3 O19—C20—H20B 109.7
C9—C10—C11 121.15 (14) C21—C20—H20B 109.7
C9—C10—H10 119.4 H20A—C20—H20B 108.2
C11—C10—H10 119.4 N16—C21—C20 110.87 (11)
C10—C11—C12 118.17 (12) N16—C21—H21A 109.5
C10—C11—C14 121.26 (14) C20—C21—H21A 109.5
C12—C11—C14 120.57 (15) N16—C21—H21B 109.5
C13—C12—C11 121.25 (13) C20—C21—H21B 109.5
C13—C12—H12 119.4 H21A—C21—H21B 108.1
C6—N1—N2—C3 2.4 (2) N1—N2—C8—C9 −53.57 (18)
C7—N1—N2—C3 160.94 (14) C13—C8—C9—C10 −0.8 (2)
C6—N1—N2—C8 163.62 (12) N2—C8—C9—C10 179.08 (14)
C7—N1—N2—C8 −37.79 (18) C8—C9—C10—C11 0.7 (3)
N1—N2—C3—O15 171.72 (13) C9—C10—C11—C12 0.1 (3)
C8—N2—C3—O15 10.9 (2) C9—C10—C11—C14 −179.93 (16)
N1—N2—C3—C4 −4.50 (19) C10—C11—C12—C13 −0.7 (2)
C8—N2—C3—C4 −165.37 (11) C14—C11—C12—C13 179.35 (15)
O15—C3—C4—C5 −169.22 (15) C9—C8—C13—C12 0.3 (2)
N2—C3—C4—C5 6.88 (19) N2—C8—C13—C12 −179.65 (13)
O15—C3—C4—N16 1.3 (2) C11—C12—C13—C8 0.5 (2)
N2—C3—C4—N16 177.35 (12) C5—C4—N16—C21 1.9 (2)
N16—C4—C5—C6 −177.11 (13) C3—C4—N16—C21 −167.96 (11)
C3—C4—C5—C6 −7.4 (2) C5—C4—N16—C17 −143.29 (14)
N2—N1—C6—O22 176.13 (14) C3—C4—N16—C17 46.90 (17)
C7—N1—C6—O22 17.8 (2) C4—N16—C17—C18 93.59 (14)
N2—N1—C6—C5 −2.2 (2) C21—N16—C17—C18 −54.29 (15)
C7—N1—C6—C5 −160.51 (14) N16—C17—C18—O19 55.96 (15)
C4—C5—C6—O22 −173.17 (15) C17—C18—O19—C20 −58.23 (16)
C4—C5—C6—N1 5.1 (2) C18—O19—C20—C21 58.88 (15)
C3—N2—C8—C13 −71.32 (17) C4—N16—C21—C20 −92.81 (14)
N1—N2—C8—C13 126.34 (14) C17—N16—C21—C20 56.56 (15)
C3—N2—C8—C9 108.77 (16) O19—C20—C21—N16 −58.94 (14)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C17—H17A···O15 0.97 2.21 2.8636 (18) 124
C10—H10···O15i 0.93 2.53 3.3508 (19) 148
C14—H14C···O15i 0.96 2.53 3.419 (2) 155
C5—H5···O19ii 0.93 2.49 3.4124 (19) 174
C21—H21B···O19ii 0.97 2.52 3.3036 (18) 137

Symmetry codes: (i) −x+1, y+1/2, −z+1; (ii) −x+2, y+1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CF2177).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bałoniak, S. & Melzer, E. (1979). Acta Pol. Pharm.36, 147–154.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  5. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  6. Katrusiak, A. A., Katrusiak, A., Bałoniak, S. & Zielińska, K. (2002). Pol. J. Chem.76, 45–56.
  7. Kuma (1996). KM-4 User’s Guide Version 8.0.1. Kuma Diffraction, Wrocław, Poland.
  8. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808000111/cf2177sup1.cif

e-64-0o435-sup1.cif (19.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808000111/cf2177Isup2.hkl

e-64-0o435-Isup2.hkl (130.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES