Abstract
The title compound, C9H12N2O2S, is a useful precursor of a variety of modified sulfonamide molecules. Due to the importance of these molecules in biological systems (antibacterials, antidepressants and many other applications), there is a growing interest in the discovery of new biologically active compounds. In the title compound, the molecules are linked by N—H⋯O intermolecular hydrogen bonds involving the sulfonamide function to form an infinite two-dimensional network parallel to the (001) plane.
Related literature
For related literature, see: Berredjem et al. (2000 ▶); Lee & Lee (2002 ▶); Martinez et al. (2000 ▶); Xiao & Timberlake (2000 ▶); Esteve & Bidal (2002 ▶); Soledade et al. (2006 ▶).
Experimental
Crystal data
C9H12N2O2S
M r = 212.27
Monoclinic,
a = 5.275 (1) Å
b = 9.541 (1) Å
c = 10.229 (1) Å
β = 101.80 (5)°
V = 503.93 (15) Å3
Z = 2
Mo Kα radiation
μ = 0.30 mm−1
T = 293 (2) K
0.10 × 0.10 × 0.10 mm
Data collection
Nonius KappaCCD diffractometer
Absorption correction: none
8285 measured reflections
2210 independent reflections
2106 reflections with I > 2σ(I)
R int = 0.032
Refinement
R[F 2 > 2σ(F 2)] = 0.030
wR(F 2) = 0.087
S = 1.13
2210 reflections
127 parameters
1 restraint
H-atom parameters constrained
Δρmax = 0.25 e Å−3
Δρmin = −0.30 e Å−3
Absolute structure: Flack (1983 ▶), 979 Friedel pairs
Flack parameter: −0.01 (6)
Data collection: COLLECT (Hooft, 1998 ▶); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997 ▶); data reduction: COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 ▶); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 ▶) and PLATON (Spek, 2003 ▶); software used to prepare material for publication: SHELXL97 and CrystalBuilder (DECOMET Laboratory, 2007 ▶).
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807068158/dn2304sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536807068158/dn2304Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
---|---|---|---|---|
N2—H21⋯O1i | 0.91 | 2.03 | 2.928 (2) | 173 |
N2—H22⋯O2ii | 0.92 | 2.10 | 2.971 (2) | 159 |
Symmetry codes: (i) ; (ii)
.
Acknowledgments
The authors thank Dr Pascal Retailleau from the Service de Cristallochimie of the Institut de Chimie des Substances Naturelles, CNRS, for help with data collection and processing. The authors acknowledge Professor Marc Lecouvey for his advice. This study was supported by the University Paris-Nord and the University of Annaba.
supplementary crystallographic information
Comment
The sulfamide unit is an ubiquitous structural entity in many naturally occurring compounds and medicinal agents (i.e. anticonvulsant, antihypertensive, hypoglycemic agents, histamine H2-receptor antagonist, herbicide, human cytomegalovirus inibitors···) (Soledade et al., 2006; Esteve & Bidal, 2002; Xiao & Timberlake, 2000; Martinez et al., 2000; Berredjem et al., 2000; Lee et al., 2002) We report herein the synthesis and the crystal structure determination of the title compound (Fig. 1).
The crystal structure consists of layers of hydrophobic regions that enclose the bicyclic moiety and polar regions where the sulfamide atoms are involved in hydrogen bond network. Namely, the sulfamide group is involved in four hydrogen bonds (2 with sulfamide O atoms, 2 with nitrogen atom) with four different symmetry-related molecules, building a two dimensional network parallel to the (0 0 1) plane (Table 1, Fig. 2).
Experimental
A solution of dimethyl malate (2,27 g, 14.1 mmol) in anhydrous CH2Cl2 (10 ml) was added to a stirring solution of chlorosulfonyl isocyanate (1.23 ml, 14.1 mmol) in CH2Cl2 (10 ml) at 0°C dropwise over period of 10 min. The resulting solution was transferred to a mixture of 1, 2, 3, 4 tetrahydroquinoleine (1,87 g, 14,1 mmol) in CH2Cl2 (20 ml) in the presence of triethylamine (1.1 equiv.). The solution was stirred at 0°C for less than 1.5 h. The reaction mixture was washed with HCl 0.1 N and water, and the organic layer was dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. Two compounds were obtained after purification by silica gel chromatography (Fig. 3). Slow evaporation at room temperature of a concentrated dichloromethane / methanol (9/1) solution of the most polar product (sulfamide I) afforded yellow crystals suitable for diffraction.
Refinement
All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) or 0.97 Å (methylene) with Uiso(H) = 1.2Ueq(C). H atoms of amino group were located in difference Fourier maps and included in the subsequent refinement using restraints (N—H= 0.90 (1)Å and H···H= 1.66 (2) Å) with Uiso(H) = 1.2Ueq(N). In the last stage of refinement, they were treated as riding on their parent N atom.
Figures
Fig. 1.
Molecular View of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
Partial packing view showing the formation of the two dimensional network. H bonds are represented as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (i) x - 1, y, z; (ii) -x + 1, y + 1/2, -z + 1]
Fig. 3.
Chemical pathway of the formation of (I)
Crystal data
C9H12N2O2S | F000 = 224 |
Mr = 212.27 | Dx = 1.399 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation λ = 0.71070 Å |
Hall symbol: P 2yb | Cell parameters from 6025 reflections |
a = 5.275 (1) Å | θ = 2.0–27.5º |
b = 9.541 (1) Å | µ = 0.30 mm−1 |
c = 10.229 (1) Å | T = 293 (2) K |
β = 101.80 (5)º | Parallelepipedic, yellow |
V = 503.93 (15) Å3 | 0.10 × 0.10 × 0.10 mm |
Z = 2 |
Data collection
Nonius KappaCCD diffractometer | 2210 independent reflections |
Radiation source: fine-focus sealed tube | 2106 reflections with I > 2σ(I) |
Monochromator: graphite | Rint = 0.032 |
Detector resolution: 9 pixels mm-1 | θmax = 27.5º |
T = 293(2) K | θmin = 2.0º |
φ and ω scans | h = −6→6 |
Absorption correction: none | k = −12→11 |
8285 measured reflections | l = −13→13 |
Refinement
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.030 | w = 1/[σ2(Fo2) + (0.0575P)2 + 0.0148P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.087 | (Δ/σ)max < 0.001 |
S = 1.13 | Δρmax = 0.25 e Å−3 |
2210 reflections | Δρmin = −0.30 e Å−3 |
127 parameters | Extinction correction: none |
1 restraint | Absolute structure: Flack (1983), 979 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Flack parameter: −0.01 (6) |
Secondary atom site location: difference Fourier map |
Special details
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x | y | z | Uiso*/Ueq | ||
S1 | 0.56649 (7) | 0.52966 (4) | 0.42439 (3) | 0.03710 (13) | |
N1 | 0.4887 (3) | 0.60389 (14) | 0.27757 (14) | 0.0369 (3) | |
C3 | 0.5408 (4) | 0.7557 (2) | 0.2719 (2) | 0.0475 (5) | |
H3A | 0.6993 | 0.7792 | 0.3345 | 0.057* | |
H3B | 0.3998 | 0.8087 | 0.2956 | 0.057* | |
O2 | 0.8298 (3) | 0.5665 (2) | 0.47635 (14) | 0.0624 (5) | |
C6 | 0.1947 (4) | 0.6250 (2) | 0.06005 (17) | 0.0415 (4) | |
C7 | 0.2282 (4) | 0.5698 (2) | 0.20079 (17) | 0.0451 (4) | |
H7A | 0.0985 | 0.6112 | 0.2439 | 0.054* | |
H7B | 0.2038 | 0.4690 | 0.1987 | 0.054* | |
C8 | 0.3113 (5) | 0.7727 (3) | −0.1068 (2) | 0.0608 (6) | |
H8 | 0.4195 | 0.8406 | −0.1311 | 0.073* | |
C9 | 0.3522 (4) | 0.7280 (2) | 0.02630 (18) | 0.0442 (4) | |
C10 | 0.1146 (5) | 0.7182 (3) | −0.2021 (2) | 0.0631 (6) | |
H10 | 0.0888 | 0.7499 | −0.2898 | 0.076* | |
C11 | −0.0028 (5) | 0.5703 (3) | −0.0374 (2) | 0.0611 (6) | |
H11 | −0.1098 | 0.5009 | −0.0146 | 0.073* | |
C12 | −0.0432 (5) | 0.6172 (3) | −0.1677 (2) | 0.0669 (7) | |
H12 | −0.1773 | 0.5802 | −0.2317 | 0.080* | |
C13 | 0.5667 (4) | 0.7918 (2) | 0.1305 (2) | 0.0538 (5) | |
H13A | 0.5636 | 0.8929 | 0.1200 | 0.065* | |
H13B | 0.7325 | 0.7582 | 0.1162 | 0.065* | |
O1 | 0.4929 (3) | 0.38595 (15) | 0.40334 (14) | 0.0580 (4) | |
N2 | 0.4032 (3) | 0.59065 (17) | 0.52808 (16) | 0.0426 (3) | |
H21 | 0.4478 | 0.6796 | 0.5540 | 0.051* | |
H22 | 0.2355 | 0.5596 | 0.5109 | 0.051* |
Atomic displacement parameters (Å2)
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0370 (2) | 0.0412 (2) | 0.03170 (18) | 0.00882 (17) | 0.00373 (13) | 0.00083 (17) |
N1 | 0.0378 (8) | 0.0365 (8) | 0.0340 (6) | 0.0022 (6) | 0.0012 (5) | 0.0019 (6) |
C3 | 0.0564 (12) | 0.0391 (10) | 0.0451 (10) | −0.0060 (8) | 0.0055 (9) | 0.0004 (8) |
O2 | 0.0313 (7) | 0.1054 (14) | 0.0475 (7) | 0.0094 (7) | 0.0011 (5) | 0.0075 (8) |
C6 | 0.0424 (10) | 0.0444 (9) | 0.0356 (8) | 0.0066 (8) | 0.0029 (7) | 0.0031 (7) |
C7 | 0.0430 (9) | 0.0500 (11) | 0.0385 (8) | −0.0071 (8) | −0.0008 (7) | 0.0080 (7) |
C8 | 0.0667 (15) | 0.0737 (15) | 0.0458 (11) | 0.0099 (12) | 0.0204 (11) | 0.0167 (11) |
C9 | 0.0457 (9) | 0.0485 (10) | 0.0399 (8) | 0.0096 (8) | 0.0122 (8) | 0.0069 (8) |
C10 | 0.0767 (15) | 0.0790 (15) | 0.0340 (9) | 0.0256 (13) | 0.0121 (10) | 0.0077 (10) |
C11 | 0.0631 (13) | 0.0690 (14) | 0.0434 (10) | −0.0081 (11) | −0.0069 (9) | 0.0031 (9) |
C12 | 0.0745 (15) | 0.0789 (17) | 0.0395 (10) | 0.0129 (13) | −0.0066 (10) | −0.0040 (10) |
C13 | 0.0525 (12) | 0.0564 (13) | 0.0514 (11) | −0.0089 (10) | 0.0080 (9) | 0.0130 (10) |
O1 | 0.0933 (12) | 0.0335 (7) | 0.0448 (7) | 0.0131 (7) | 0.0087 (7) | 0.0030 (6) |
N2 | 0.0424 (8) | 0.0439 (8) | 0.0431 (8) | −0.0024 (6) | 0.0122 (6) | −0.0091 (7) |
Geometric parameters (Å, °)
S1—O2 | 1.4261 (16) | C8—C10 | 1.373 (4) |
S1—O1 | 1.4293 (16) | C8—C9 | 1.401 (3) |
S1—N2 | 1.6060 (16) | C8—H8 | 0.9300 |
S1—N1 | 1.6350 (14) | C9—C13 | 1.515 (3) |
N1—C7 | 1.473 (2) | C10—C12 | 1.366 (4) |
N1—C3 | 1.478 (2) | C10—H10 | 0.9300 |
C3—C13 | 1.520 (3) | C11—C12 | 1.380 (3) |
C3—H3A | 0.9700 | C11—H11 | 0.9300 |
C3—H3B | 0.9700 | C12—H12 | 0.9300 |
C6—C9 | 1.376 (3) | C13—H13A | 0.9700 |
C6—C11 | 1.388 (3) | C13—H13B | 0.9700 |
C6—C7 | 1.509 (2) | N2—H21 | 0.9059 |
C7—H7A | 0.9700 | N2—H22 | 0.9154 |
C7—H7B | 0.9700 | ||
O2—S1—O1 | 120.43 (11) | C10—C8—C9 | 121.3 (2) |
O2—S1—N2 | 106.12 (10) | C10—C8—H8 | 119.4 |
O1—S1—N2 | 106.34 (10) | C9—C8—H8 | 119.4 |
O2—S1—N1 | 106.13 (10) | C6—C9—C8 | 118.7 (2) |
O1—S1—N1 | 105.53 (8) | C6—C9—C13 | 120.86 (17) |
N2—S1—N1 | 112.45 (9) | C8—C9—C13 | 120.4 (2) |
C7—N1—C3 | 110.85 (15) | C12—C10—C8 | 119.7 (2) |
C7—N1—S1 | 115.19 (12) | C12—C10—H10 | 120.1 |
C3—N1—S1 | 116.54 (12) | C8—C10—H10 | 120.1 |
N1—C3—C13 | 108.23 (16) | C12—C11—C6 | 121.1 (2) |
N1—C3—H3A | 110.1 | C12—C11—H11 | 119.5 |
C13—C3—H3A | 110.1 | C6—C11—H11 | 119.5 |
N1—C3—H3B | 110.1 | C10—C12—C11 | 119.7 (2) |
C13—C3—H3B | 110.1 | C10—C12—H12 | 120.1 |
H3A—C3—H3B | 108.4 | C11—C12—H12 | 120.1 |
C9—C6—C11 | 119.43 (18) | C9—C13—C3 | 112.27 (17) |
C9—C6—C7 | 122.01 (17) | C9—C13—H13A | 109.1 |
C11—C6—C7 | 118.57 (18) | C3—C13—H13A | 109.1 |
N1—C7—C6 | 110.24 (15) | C9—C13—H13B | 109.1 |
N1—C7—H7A | 109.6 | C3—C13—H13B | 109.1 |
C6—C7—H7A | 109.6 | H13A—C13—H13B | 107.9 |
N1—C7—H7B | 109.6 | S1—N2—H21 | 113.0 |
C6—C7—H7B | 109.6 | S1—N2—H22 | 112.6 |
H7A—C7—H7B | 108.1 | H21—N2—H22 | 122.9 |
Hydrogen-bond geometry (Å, °)
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H21···O1i | 0.91 | 2.03 | 2.928 (2) | 173 |
N2—H22···O2ii | 0.92 | 2.10 | 2.971 (2) | 159 |
Symmetry codes: (i) −x+1, y+1/2, −z+1; (ii) x−1, y, z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2304).
References
- Berredjem, M., Régainia, Z., Djahoudi, A., Aouf, N. E., Dewinter, G. & Montero, J. L. (2000). Phosphorus Sulfur Silicon Relat. Elem.165, 249–264.
- DECOMET Laboratory (2007). CrystalBuilder DECOMET Laboratory, Louis Pasteur University, Strasbourg, France.
- Esteve, C. & Bidal, B. (2002). Tetrahedron Lett.43, 1019–1021.
- Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
- Flack, H. D. (1983). Acta Cryst. A39, 876–881.
- Hooft, R. W. W. (1998). COLLECT Nonius BV, Delft, The Netherlands.
- Lee, J. S. & Lee, C. H. (2002). Bull. Korean Chem. Soc.23, 167–169.
- Martinez, A., Gil, C., Perez, C., Castro, A., Prieto, C., Otero, J., Andrei, G., Snoeck, R., Balzarini, J. & De Clercp, E. (2000). J. Med. Chem.43, 3267–3273. [DOI] [PubMed]
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
- Soledade, M., Pedras, C. & Jha, M. (2006). Bioorg. Med. Chem.14, 4958–4979. [DOI] [PubMed]
- Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
- Xiao, Z. & Timberlake, J. W. (2000). J. Heterocycl. Chem.37, 773–777.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807068158/dn2304sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536807068158/dn2304Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report