Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jan 16;64(Pt 2):m367–m368. doi: 10.1107/S1600536808001141

μ-1,2-Bis(diethyl­phosphino)ethane-κ2 P:P′-bis­{[1,2-bis­(diethyl­phosphino)ethane-κ2 P,P′]trichloridonitrosyl­tungsten(II)}

Nataša Avramović a, Olivier Blacque a,*, Helmut W Schmalle a, Heinz Berke a
PMCID: PMC2960239  PMID: 21201325

Abstract

The title binuclear compound, [W2Cl6(NO)2(C10H22P2)3], contains two W atoms which are bridged by a bis­(diethyl­phosphino)­ethane (depe) ligand. The seven-coord­inated tungsten(II) centres display distorted penta­gonal–bipyramidal geometries with trans nitrosyl and chloride ligands. The title mol­ecule lies on a crystallographic inversion centre. The ethane group of the non-bridging depe ligand is positionally disordered, with site-occupancy factors of 0.63 and 0.37. In the crystal structure, the binuclear mol­ecules are linked by weak inter­molecular C—H⋯O and C—H⋯Cl inter­actions. In addition, weak intra­molecular C—H⋯Cl inter­actions are also present.

Related literature

For related literature, see: Avramović et al. (2008); Bencze & Kohàn (1982); Campbell et al. (1985); Carmona et al. (1989); Desiraju & Steiner (1999); Han & Coucouvanis (2002); Hunter & Legzdins (1984); Landau et al. (1999); Zeng et al. (1994).graphic file with name e-64-0m367-scheme1.jpg

Experimental

Crystal data

  • [W2Cl6(NO)2(C10H22P2)3]

  • M r = 1259.10

  • Orthorhombic, Inline graphic

  • a = 12.6406 (14) Å

  • b = 17.6485 (14) Å

  • c = 20.5243 (17) Å

  • V = 4578.7 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.61 mm−1

  • T = 183 (2) K

  • 0.26 × 0.20 × 0.15 mm

Data collection

  • Stoe IPDS diffractometer

  • Absorption correction: numerical (Coppens et al., 1965) T min = 0.329, T max = 0.499

  • 52250 measured reflections

  • 3982 independent reflections

  • 3026 reflections with I > 2σ(I)

  • R int = 0.079

Refinement

  • R[F 2 > 2σ(F 2)] = 0.024

  • wR(F 2) = 0.056

  • S = 0.84

  • 3982 reflections

  • 224 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.04 e Å−3

  • Δρmin = −1.27 e Å−3

Data collection: IPDS Software (Stoe & Cie, 1999); cell refinement: IPDS Software; data reduction: X-RED (Stoe & Cie, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999), SHELXL97 and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808001141/su2041sup1.cif

e-64-0m367-sup1.cif (26.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808001141/su2041Isup2.hkl

e-64-0m367-Isup2.hkl (191.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

W1—P1 2.5598 (13)
W1—P2 2.5675 (14)
W1—P3 2.6051 (12)
W1—Cl1 2.4750 (12)
W1—Cl2 2.4703 (11)
W1—Cl3 2.4905 (11)
W1—N1 1.783 (4)
N1—W1—Cl1 98.06 (14)
N1—W1—Cl2 99.08 (13)
N1—W1—Cl3 177.72 (13)
Cl1—W1—Cl2 141.66 (4)
Cl2—W1—Cl3 82.27 (4)
Cl1—W1—Cl3 81.87 (4)
Cl1—W1—P2 71.30 (5)
Cl1—W1—P3 73.09 (4)
Cl2—W1—P1 70.77 (4)
Cl2—W1—P3 73.54 (4)
Cl3—W1—P1 90.21 (4)
P1—W1—P2 72.90 (5)

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5B⋯Cl2 0.97 2.81 3.196 (7) 105
C11—H11A⋯Cl1 0.97 2.71 3.129 (7) 107
C13—H13B⋯Cl1 0.97 2.75 3.132 (5) 104
C14—H14A⋯Cl2 0.97 2.76 3.150 (5) 105
C13—H13A⋯Cl1i 0.97 2.80 3.425 (5) 123
C10—H10A⋯Cl3ii 0.96 2.81 3.726 (7) 161
C2—H2A⋯O1iii 0.97 2.65 3.579 (10) 161
C4—H4B⋯O1iii 0.97 2.56 3.470 (15) 156

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank the University of Zürich and the Swiss National Science Foundation for financial support.

supplementary crystallographic information

Comment

The mononuclear compound [W(Cl)2(NO)(dmpe)2](Cl) was previously obtained by the reaction of [W(Cl)3(NO)(NCCH3)2] with 2.5 equivalents of dmpe [1,2-bis(dimethylphosphino)ethane] at room temperature in tetrahydrofuran (Avramović et al., 2008). The synthesis of the analogous compound [W(Cl)2(NO)(depe)2](Cl) was also attempted by the same procedure using the bidentate ligand depe [1,2-bis(diethylphosphino)ethane]. Presumably because of steric factors, only the binuclear compound [W(Cl)3(NO)(depe)]2(µ-depe) was formed instead of the expected mononuclear compound.

The title compound consists of two metal units bridged by a depe ligand (see: Campbell et al., 1985; Han & Coucouvanis, 2002; Zeng et al., 1994; Landau et al., 1999). Both tungsten centers are crystallographically equivalent since the molecule lies on a crystallographic inversion center (Fig. 1). The geometry at tungsten(II) is very similar to that in [W(Cl)2(NO)(dmpe)2](Cl) with a distorted pentagonal bipyramidal coordination. A second chloride ligand takes the place of one phosphorus in [W(Cl)2(NO)(dmpe)2](Cl) to complete the equatorial plane of the polyhedron (P1, P2, P3, Cl1 and Cl2). The five equatorial bond angles, in the range 70.8 - 73.5°, are close to the theoretically average angle of 72°. It is worth noting that the five equatorial atoms are not completely coplanar. Atoms Cl1 and Cl2 deviate from the P1—P2—P3 plane, toward the third chloride atom Cl3, by 0.303 (2) and 0.543 (2) Å, respectively. Nevertheless, this geometry is clearly different to that observed for the related compound Mo(Cl)3(NO)(PMe3)3, for which the coordination polyhedron is described as a capped-octahedron (Carmona et al., 1989).

All the chloride ligands are engaged in hydrogen bonding, with atoms Cl1 and Cl2 involved in ten intramolecular interactions with CH2 hydrogen atoms within the dimer, and atom Cl3 (trans to the nitrosyl group) in one weak intermolecular interaction with the methyl hydrogen atom H10A (Fig. 2, Table 1). The C10···Cl3 donor-acceptor distance of 3.726 (7) Å represents a rather weak interaction of this type (Desiraju & Steiner, 1999). In addition, the binuclear complexes are linked by two weak intermolecular C—H···O hydrogen bonds between the nitrosyl oxygen atom and the hydrogen atoms of the disordered ethane bridge.

Experimental

[W(Cl)3(NO)(depe)]2(µ-depe) was prepared from the complex [W(Cl)3(NO)(CH3CN)2]. The latter is easily synthesized by the reaction of W(Cl)6 with NO gas in dichloromethane in the presence of acetonitrile at room temperature, according to a literature procedure (Bencze & Kohàn, 1982; Hunter & Legzdins, 1984). 5.00 g (12.6 mmol) of WCl6 and 1.32 ml (25.2 mmol) of acetonitrile were dissolved in 180 ml of dichloromethane in a 500 ml three-necked flask. Nitric oxide was passed through the solution, which was stirred at room temperature until the dark purple colour of the solution turned to the light green precipitate after ca 1 h. The volume of the final mixture was reduced to 50 ml in vacuo and the mixture was then cooled to 0°C for 15 min. The precipitate was isolated by filtration and the collected solid was then washed first with cold dichloromethane (2 x 10 ml at 0°C) and then with hexane (4 x 20 ml) at room temperature. Final drying of the solid under vacuum for 18 h afforded the yellow-green [W(Cl)3(NO)(CH3CN)2] compound. 0.200 g (0.497 mmol) of [W(Cl)3(NO)(NCCH3)2] was dissolved in 20 ml of tetrahydrofurane in a Young tap Schlenk and the depe ligand (0.29 ml, 1.243 mmol) was syringed into the solution. The solution was stirred at room temperature for 24 h, then filtered and the solvent removed under vacuum. The resulting solid was crystallized from dichloromethane at room temperature and gave light-green crystals of the title compound.

Yield: 0.266 g (85%).

IR (cm-1, CH2Cl2): 1520 (NO).

1H NMR (200.0 MHz, CD2Cl2, 25°C): 2.69 (m, 4H, P(CH2)2P); 2.39 (m, 8H, PCH2CH3); 2.19 (16H, PCH2CH3), 2.06 (m, 8H, P(CH2)2P), 1.25 (m, 24H, PCH2CH3), 1.19 (m,12H, PCH2CH3).

31P{1H} NMR (80.9 MHz, CD2Cl2, 25°C): 46.8 (m, P(CH2)2P), 45.8 (m, P(CH2)2P) and 21.4 (m, P(CH2)2P), 2JPN = 15.6 Hz; 1JPW = 203 Hz.

13C{1H} NMR (50.3 MHz, CD2Cl2, 25°C): 8.8 (m, PCH2CH3), 9.2 (s, PCH2CH3), 15.7 (m, PCH2CH3), 18.5 (m, PCH2CH3), 20.0 (m, P(CH2)2P).

Anal. Calcd for C30H72Cl6N2O2P6W2: C, 28.60; H, 5.72; N, 2.22. Found: C, 28.87; H, 6.01; N, 1.98.

Refinement

The H atom were included in calculated positions and treated as riding atoms: C—H distances 0.96–0.99 Å and Uiso(H) = 1.2 or 1.5Ueq(C). The ethyl group of one depe ligand is positionally disordered; refined site occupancy factors 0.631 (8):0.369 (8).

Figures

Fig. 1.

Fig. 1.

View of the molecular structure of the title compound, showing the atom-labeling scheme and displacement ellipsoids drawn at the 30% probability level. The disordered atoms, C3 and C4, and the hydrogen atoms have been omitted for clarity. Symmetry transformation: -x + 2, -y + 1, -z + 1.

Fig. 2.

Fig. 2.

A view, along the b axis, of the crystal structure of the title compound. The intermolecular C—H···Cl and C—H···O hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

[W2Cl6(NO)2(C10H22P2)3] F000 = 2488
Mr = 1259.10 Dx = 1.827 Mg m3
Orthorhombic, Pbca Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 7997 reflections
a = 12.6406 (14) Å θ = 2.8–30.4º
b = 17.6485 (14) Å µ = 5.61 mm1
c = 20.5243 (17) Å T = 183 (2) K
V = 4578.7 (7) Å3 Block, yellow
Z = 4 0.26 × 0.20 × 0.15 mm

Data collection

Stoe IPDS diffractometer 3982 independent reflections
Radiation source: fine-focus sealed tube 3026 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.079
T = 183(2) K θmax = 25.0º
φ oscillation scan θmin = 2.8º
Absorption correction: numerical(Coppens et al., 1965) h = −15→15
Tmin = 0.329, Tmax = 0.499 k = −20→20
52250 measured reflections l = −24→24

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024 H-atom parameters constrained
wR(F2) = 0.056   w = 1/[σ^2^(Fo^2^) + (0.0357P)^2^] where P = (Fo^2^ + 2Fc^2^)/3
S = 0.85 (Δ/σ)max = 0.001
3982 reflections Δρmax = 1.04 e Å3
224 parameters Δρmin = −1.27 e Å3
1 restraint Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
W1 0.826046 (13) 0.388044 (11) 0.379416 (7) 0.01301 (6)
Cl1 0.77419 (9) 0.50925 (7) 0.43099 (5) 0.0229 (3)
Cl2 0.95733 (9) 0.33344 (8) 0.30362 (5) 0.0232 (3)
Cl3 0.76818 (10) 0.45607 (8) 0.27925 (5) 0.0261 (3)
P1 0.75410 (11) 0.26356 (8) 0.33323 (6) 0.0221 (3)
P2 0.62919 (11) 0.38137 (9) 0.40971 (8) 0.0319 (3)
P3 0.99811 (9) 0.46776 (7) 0.39288 (5) 0.0141 (3)
N1 0.8622 (3) 0.3381 (2) 0.45154 (17) 0.0180 (9)
O1 0.8860 (3) 0.3047 (2) 0.50083 (16) 0.0282 (9)
C1 0.6454 (7) 0.2268 (5) 0.3833 (5) 0.0341 (16) 0.631 (8)
H1A 0.6141 0.1827 0.3627 0.041* 0.631 (8)
H1B 0.6716 0.2120 0.4259 0.041* 0.631 (8)
C2 0.5642 (6) 0.2887 (5) 0.3901 (5) 0.0341 (16) 0.631 (8)
H2A 0.5147 0.2756 0.4244 0.041* 0.631 (8)
H2B 0.5248 0.2934 0.3497 0.041* 0.631 (8)
C3 0.6069 (13) 0.2531 (10) 0.3577 (7) 0.0341 (16) 0.369 (8)
H3A 0.5619 0.2840 0.3301 0.041* 0.369 (8)
H3B 0.5842 0.2007 0.3547 0.041* 0.369 (8)
C4 0.6042 (13) 0.2805 (9) 0.4274 (7) 0.0341 (16) 0.369 (8)
H4A 0.6597 0.2580 0.4538 0.041* 0.369 (8)
H4B 0.5360 0.2723 0.4478 0.041* 0.369 (8)
C5 0.8399 (6) 0.1786 (4) 0.3396 (3) 0.0505 (18)
H5A 0.7963 0.1345 0.3313 0.061*
H5B 0.8917 0.1813 0.3048 0.061*
C6 0.8966 (6) 0.1655 (4) 0.4000 (4) 0.072 (3)
H6A 0.9530 0.2016 0.4040 0.107*
H6B 0.9255 0.1152 0.3999 0.107*
H6C 0.8489 0.1709 0.4361 0.107*
C7 0.7194 (6) 0.2647 (3) 0.2484 (3) 0.0408 (15)
H7A 0.6749 0.3085 0.2405 0.049*
H7B 0.7837 0.2714 0.2232 0.049*
C8 0.6617 (5) 0.1942 (4) 0.2226 (3) 0.0484 (18)
H8A 0.7019 0.1497 0.2332 0.073*
H8B 0.6542 0.1980 0.1762 0.073*
H8C 0.5930 0.1909 0.2423 0.073*
C9 0.5410 (4) 0.4353 (5) 0.3574 (3) 0.051 (2)
H9A 0.5584 0.4886 0.3613 0.062*
H9B 0.5535 0.4205 0.3126 0.062*
C10 0.4233 (5) 0.4248 (7) 0.3728 (3) 0.099 (4)
H10A 0.3817 0.4455 0.3380 0.148*
H10B 0.4065 0.4504 0.4127 0.148*
H10C 0.4080 0.3718 0.3773 0.148*
C11 0.5917 (5) 0.4121 (4) 0.4913 (3) 0.0462 (19)
H11A 0.5940 0.4670 0.4927 0.055*
H11B 0.5192 0.3968 0.4992 0.055*
C12 0.6603 (6) 0.3814 (6) 0.5455 (3) 0.082 (3)
H12A 0.6658 0.3273 0.5415 0.123*
H12B 0.6291 0.3938 0.5868 0.123*
H12C 0.7295 0.4035 0.5428 0.123*
C13 1.0135 (4) 0.5223 (3) 0.46896 (19) 0.0157 (10)
H13A 1.0860 0.5398 0.4720 0.019*
H13B 0.9682 0.5666 0.4668 0.019*
C14 1.1275 (4) 0.4204 (3) 0.3871 (2) 0.0207 (10)
H14A 1.1397 0.4068 0.3419 0.025*
H14B 1.1818 0.4565 0.3994 0.025*
C15 1.1407 (4) 0.3499 (3) 0.4285 (3) 0.0306 (13)
H15A 1.1336 0.3630 0.4737 0.046*
H15B 1.2094 0.3285 0.4211 0.046*
H15C 1.0874 0.3135 0.4170 0.046*
C16 1.0053 (4) 0.5396 (3) 0.3298 (2) 0.0239 (12)
H16A 1.0112 0.5143 0.2880 0.029*
H16B 0.9390 0.5674 0.3297 0.029*
C17 1.0947 (4) 0.5963 (3) 0.3352 (3) 0.0340 (14)
H17A 1.0875 0.6246 0.3749 0.051*
H17B 1.0923 0.6305 0.2988 0.051*
H17C 1.1612 0.5700 0.3352 0.051*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
W1 0.01297 (9) 0.01534 (10) 0.01072 (9) 0.00073 (8) 0.00014 (7) 0.00121 (8)
Cl1 0.0221 (6) 0.0214 (7) 0.0251 (6) 0.0079 (5) −0.0026 (5) −0.0062 (5)
Cl2 0.0198 (6) 0.0291 (7) 0.0206 (6) 0.0006 (5) 0.0059 (5) −0.0074 (5)
Cl3 0.0311 (7) 0.0298 (8) 0.0174 (5) 0.0003 (6) −0.0063 (5) 0.0073 (5)
P1 0.0230 (7) 0.0242 (8) 0.0190 (6) −0.0073 (6) 0.0008 (5) −0.0066 (5)
P2 0.0183 (6) 0.0265 (8) 0.0510 (9) −0.0004 (7) 0.0133 (6) −0.0013 (7)
P3 0.0145 (6) 0.0166 (6) 0.0113 (5) −0.0011 (5) 0.0025 (4) 0.0009 (4)
N1 0.0156 (19) 0.025 (2) 0.0137 (18) −0.0019 (18) −0.0001 (15) 0.0010 (18)
O1 0.033 (2) 0.028 (2) 0.0232 (18) 0.0046 (17) −0.0024 (16) 0.0112 (16)
C1 0.022 (4) 0.026 (4) 0.055 (5) −0.006 (3) 0.011 (3) 0.000 (3)
C2 0.022 (4) 0.026 (4) 0.055 (5) −0.006 (3) 0.011 (3) 0.000 (3)
C3 0.022 (4) 0.026 (4) 0.055 (5) −0.006 (3) 0.011 (3) 0.000 (3)
C4 0.022 (4) 0.026 (4) 0.055 (5) −0.006 (3) 0.011 (3) 0.000 (3)
C5 0.073 (5) 0.026 (4) 0.052 (4) −0.012 (3) −0.027 (4) 0.003 (3)
C6 0.068 (5) 0.020 (4) 0.127 (7) 0.004 (4) −0.052 (5) 0.004 (4)
C7 0.065 (4) 0.026 (3) 0.032 (3) −0.002 (3) −0.029 (3) −0.005 (3)
C8 0.063 (4) 0.035 (4) 0.047 (3) 0.010 (3) −0.036 (3) −0.019 (3)
C9 0.023 (3) 0.089 (6) 0.042 (3) 0.013 (3) −0.013 (3) −0.030 (4)
C10 0.015 (3) 0.233 (13) 0.049 (4) 0.007 (5) −0.004 (3) −0.047 (6)
C11 0.026 (3) 0.076 (6) 0.037 (3) 0.017 (3) 0.017 (3) 0.019 (3)
C12 0.045 (4) 0.143 (9) 0.058 (4) 0.040 (5) 0.025 (4) 0.062 (5)
C13 0.019 (2) 0.017 (3) 0.011 (2) −0.006 (2) 0.0019 (18) 0.0006 (19)
C14 0.016 (2) 0.022 (3) 0.024 (2) 0.002 (2) 0.004 (2) −0.002 (2)
C15 0.028 (3) 0.030 (3) 0.034 (3) 0.013 (2) −0.001 (2) 0.000 (3)
C16 0.032 (3) 0.024 (3) 0.017 (2) −0.004 (2) 0.004 (2) 0.006 (2)
C17 0.034 (3) 0.032 (4) 0.036 (3) −0.008 (3) 0.003 (2) 0.017 (3)

Geometric parameters (Å, °)

W1—P1 2.5598 (13) C6—H6C 0.9600
W1—P2 2.5675 (14) C7—C8 1.536 (8)
W1—P3 2.6051 (12) C7—H7A 0.9700
W1—Cl1 2.4750 (12) C7—H7B 0.9700
W1—Cl2 2.4703 (11) C8—H8A 0.9600
W1—Cl3 2.4905 (11) C8—H8B 0.9600
W1—N1 1.783 (4) C8—H8C 0.9600
P1—C7 1.796 (5) C9—C10 1.531 (8)
P1—C1 1.834 (8) C9—H9A 0.9700
P1—C5 1.855 (7) C9—H9B 0.9700
P1—C3 1.936 (15) C10—H10A 0.9600
P2—C9 1.817 (7) C10—H10B 0.9600
P2—C11 1.822 (6) C10—H10C 0.9600
P2—C4 1.844 (16) C11—C12 1.512 (8)
P2—C2 1.874 (9) C11—H11A 0.9700
P3—C16 1.815 (5) C11—H11B 0.9700
P3—C14 1.840 (5) C12—H12A 0.9600
P3—C13 1.844 (4) C12—H12B 0.9600
N1—O1 1.208 (5) C12—H12C 0.9600
C1—C2 1.506 (10) C13—C13i 1.535 (8)
C1—H1A 0.9700 C13—H13A 0.9700
C1—H1B 0.9700 C13—H13B 0.9700
C2—H2A 0.9700 C14—C15 1.516 (7)
C2—H2B 0.9700 C14—H14A 0.9700
C3—C4 1.511 (10) C14—H14B 0.9700
C3—H3A 0.9700 C15—H15A 0.9600
C3—H3B 0.9700 C15—H15B 0.9600
C4—H4A 0.9700 C15—H15C 0.9600
C4—H4B 0.9700 C16—C17 1.514 (7)
C5—C6 1.450 (9) C16—H16A 0.9700
C5—H5A 0.9700 C16—H16B 0.9700
C5—H5B 0.9700 C17—H17A 0.9600
C6—H6A 0.9600 C17—H17B 0.9600
C6—H6B 0.9600 C17—H17C 0.9600
N1—W1—Cl1 98.06 (14) P1—C5—H5B 107.7
N1—W1—Cl2 99.08 (13) H5A—C5—H5B 107.1
N1—W1—Cl3 177.72 (13) C5—C6—H6A 109.5
Cl1—W1—Cl2 141.66 (4) C5—C6—H6B 109.5
Cl2—W1—Cl3 82.27 (4) H6A—C6—H6B 109.5
Cl1—W1—Cl3 81.87 (4) C5—C6—H6C 109.5
N1—W1—P1 88.51 (14) H6A—C6—H6C 109.5
Cl1—W1—P1 143.71 (4) H6B—C6—H6C 109.5
Cl1—W1—P2 71.30 (5) C8—C7—P1 116.2 (4)
Cl1—W1—P3 73.09 (4) C8—C7—H7A 108.2
Cl2—W1—P1 70.77 (4) P1—C7—H7A 108.2
Cl2—W1—P3 73.54 (4) C8—C7—H7B 108.2
Cl3—W1—P1 90.21 (4) P1—C7—H7B 108.2
N1—W1—P2 91.41 (13) H7A—C7—H7B 107.4
Cl2—W1—P2 141.78 (5) C7—C8—H8A 109.5
Cl3—W1—P2 86.41 (5) C7—C8—H8B 109.5
P1—W1—P2 72.90 (5) H8A—C8—H8B 109.5
N1—W1—P3 88.00 (13) C7—C8—H8C 109.5
Cl3—W1—P3 94.16 (4) H8A—C8—H8C 109.5
P1—W1—P3 143.07 (4) H8B—C8—H8C 109.5
P2—W1—P3 143.92 (4) C10—C9—P2 114.3 (6)
C7—P1—C1 111.4 (4) C10—C9—H9A 108.7
C7—P1—C5 102.7 (3) P2—C9—H9A 108.7
C1—P1—C5 96.5 (4) C10—C9—H9B 108.7
C7—P1—C3 91.0 (5) P2—C9—H9B 108.7
C5—P1—C3 117.8 (6) H9A—C9—H9B 107.6
C7—P1—W1 115.9 (2) C9—C10—H10A 109.5
C1—P1—W1 111.2 (3) C9—C10—H10B 109.5
C5—P1—W1 117.3 (2) H10A—C10—H10B 109.5
C3—P1—W1 109.1 (5) C9—C10—H10C 109.5
C9—P2—C11 103.1 (3) H10A—C10—H10C 109.5
C9—P2—C4 121.1 (6) H10B—C10—H10C 109.5
C11—P2—C4 93.5 (5) C12—C11—P2 114.9 (5)
C9—P2—C2 93.5 (4) C12—C11—H11A 108.5
C11—P2—C2 110.1 (4) P2—C11—H11A 108.5
C9—P2—W1 115.3 (2) C12—C11—H11B 108.5
C11—P2—W1 117.4 (2) P2—C11—H11B 108.5
C4—P2—W1 104.9 (5) H11A—C11—H11B 107.5
C2—P2—W1 114.4 (3) C11—C12—H12A 109.5
C16—P3—C14 103.1 (2) C11—C12—H12B 109.5
C16—P3—C13 103.6 (2) H12A—C12—H12B 109.5
C14—P3—C13 101.4 (2) C11—C12—H12C 109.5
C16—P3—W1 110.08 (17) H12A—C12—H12C 109.5
C14—P3—W1 119.35 (17) H12B—C12—H12C 109.5
C13—P3—W1 117.34 (15) C13i—C13—P3 114.4 (4)
O1—N1—W1 179.3 (4) C13i—C13—H13A 108.7
C2—C1—P1 107.8 (7) P3—C13—H13A 108.7
C2—C1—H1A 110.1 C13i—C13—H13B 108.7
P1—C1—H1A 110.1 P3—C13—H13B 108.7
C2—C1—H1B 110.1 H13A—C13—H13B 107.6
P1—C1—H1B 110.1 C15—C14—P3 115.7 (3)
H1A—C1—H1B 108.5 C15—C14—H14A 108.3
C1—C2—P2 110.7 (6) P3—C14—H14A 108.3
C1—C2—H2A 109.5 C15—C14—H14B 108.3
P2—C2—H2A 109.5 P3—C14—H14B 108.3
C1—C2—H2B 109.5 H14A—C14—H14B 107.4
P2—C2—H2B 109.5 C14—C15—H15A 109.5
H2A—C2—H2B 108.1 C14—C15—H15B 109.5
C4—C3—P1 103.7 (10) H15A—C15—H15B 109.5
C4—C3—H3A 111.0 C14—C15—H15C 109.5
P1—C3—H3A 111.0 H15A—C15—H15C 109.5
C4—C3—H3B 111.0 H15B—C15—H15C 109.5
P1—C3—H3B 111.0 C17—C16—P3 116.6 (4)
H3A—C3—H3B 109.0 C17—C16—H16A 108.2
C3—C4—P2 96.8 (11) P3—C16—H16A 108.2
C3—C4—H4A 112.4 C17—C16—H16B 108.2
P2—C4—H4A 112.4 P3—C16—H16B 108.2
C3—C4—H4B 112.4 H16A—C16—H16B 107.3
P2—C4—H4B 112.4 C16—C17—H17A 109.5
H4A—C4—H4B 110.0 C16—C17—H17B 109.5
C6—C5—P1 118.6 (5) H17A—C17—H17B 109.5
C6—C5—H5A 107.7 C16—C17—H17C 109.5
P1—C5—H5A 107.7 H17A—C17—H17C 109.5
C6—C5—H5B 107.7 H17B—C17—H17C 109.5
N1—W1—P1—C7 −169.6 (3) Cl2—W1—P3—C14 −36.06 (18)
Cl2—W1—P1—C7 −69.4 (3) Cl1—W1—P3—C14 163.07 (18)
Cl1—W1—P1—C7 88.8 (3) Cl3—W1—P3—C14 −116.74 (18)
Cl3—W1—P1—C7 12.3 (3) P1—W1—P3—C14 −20.84 (19)
P2—W1—P1—C7 98.5 (3) P2—W1—P3—C14 153.66 (18)
P3—W1—P1—C7 −84.9 (3) N1—W1—P3—C13 −59.1 (2)
N1—W1—P1—C1 61.9 (4) Cl2—W1—P3—C13 −159.16 (18)
Cl2—W1—P1—C1 162.1 (4) Cl1—W1—P3—C13 39.97 (17)
Cl1—W1—P1—C1 −39.7 (4) Cl3—W1—P3—C13 120.16 (18)
Cl3—W1—P1—C1 −116.2 (4) P1—W1—P3—C13 −143.94 (18)
P2—W1—P1—C1 −30.0 (4) P2—W1—P3—C13 30.6 (2)
P3—W1—P1—C1 146.6 (4) C7—P1—C1—C2 −77.2 (8)
N1—W1—P1—C5 −47.8 (3) C5—P1—C1—C2 176.4 (7)
Cl2—W1—P1—C5 52.4 (3) C3—P1—C1—C2 −36.6 (10)
Cl1—W1—P1—C5 −149.4 (3) W1—P1—C1—C2 53.7 (8)
Cl3—W1—P1—C5 134.1 (3) P1—C1—C2—P2 −45.4 (9)
P2—W1—P1—C5 −139.7 (3) C9—P2—C2—C1 140.7 (8)
P3—W1—P1—C5 36.9 (3) C11—P2—C2—C1 −113.9 (7)
N1—W1—P1—C3 89.5 (5) C4—P2—C2—C1 −55.6 (10)
Cl2—W1—P1—C3 −170.3 (5) W1—P2—C2—C1 20.8 (9)
Cl1—W1—P1—C3 −12.1 (5) C7—P1—C3—C4 −158.7 (11)
Cl3—W1—P1—C3 −88.6 (5) C1—P1—C3—C4 58.6 (11)
P2—W1—P1—C3 −2.4 (5) C5—P1—C3—C4 96.3 (12)
P3—W1—P1—C3 174.2 (5) W1—P1—C3—C4 −40.8 (13)
N1—W1—P2—C9 172.8 (3) P1—C3—C4—P2 69.6 (11)
Cl2—W1—P2—C9 −80.6 (3) C9—P2—C4—C3 58.9 (12)
Cl1—W1—P2—C9 74.7 (3) C11—P2—C4—C3 166.5 (10)
Cl3—W1—P2—C9 −7.9 (3) C2—P2—C4—C3 39.8 (8)
P1—W1—P2—C9 −99.2 (3) W1—P2—C4—C3 −73.8 (11)
P3—W1—P2—C9 84.2 (3) C7—P1—C5—C6 170.9 (6)
N1—W1—P2—C11 50.8 (3) C1—P1—C5—C6 −75.4 (7)
Cl2—W1—P2—C11 157.5 (3) C3—P1—C5—C6 −91.1 (8)
Cl1—W1—P2—C11 −47.2 (3) W1—P1—C5—C6 42.5 (7)
Cl3—W1—P2—C11 −129.8 (3) C1—P1—C7—C8 −43.2 (6)
P1—W1—P2—C11 138.8 (3) C5—P1—C7—C8 59.1 (6)
P3—W1—P2—C11 −37.7 (3) C3—P1—C7—C8 −59.7 (7)
N1—W1—P2—C4 −51.3 (5) W1—P1—C7—C8 −171.6 (4)
Cl2—W1—P2—C4 55.3 (5) C11—P2—C9—C10 −55.8 (6)
Cl1—W1—P2—C4 −149.4 (5) C4—P2—C9—C10 46.6 (8)
Cl3—W1—P2—C4 128.0 (5) C2—P2—C9—C10 55.7 (6)
P1—W1—P2—C4 36.7 (5) W1—P2—C9—C10 174.8 (5)
P3—W1—P2—C4 −139.9 (5) C9—P2—C11—C12 −174.5 (6)
N1—W1—P2—C2 −80.5 (4) C4—P2—C11—C12 62.4 (8)
Cl2—W1—P2—C2 26.2 (4) C2—P2—C11—C12 86.8 (7)
Cl1—W1—P2—C2 −178.5 (4) W1—P2—C11—C12 −46.4 (7)
Cl3—W1—P2—C2 98.9 (4) C16—P3—C13—C13i 167.4 (5)
P1—W1—P2—C2 7.5 (4) C14—P3—C13—C13i −85.9 (5)
P3—W1—P2—C2 −169.0 (4) W1—P3—C13—C13i 45.9 (5)
N1—W1—P3—C16 −177.1 (2) C16—P3—C14—C15 −172.3 (4)
Cl2—W1—P3—C16 82.81 (18) C13—P3—C14—C15 80.6 (4)
Cl1—W1—P3—C16 −78.06 (18) W1—P3—C14—C15 −50.0 (4)
Cl3—W1—P3—C16 2.13 (18) C14—P3—C16—C17 −58.1 (5)
P1—W1—P3—C16 98.03 (19) C13—P3—C16—C17 47.3 (5)
P2—W1—P3—C16 −87.5 (2) W1—P3—C16—C17 173.5 (4)
N1—W1—P3—C14 64.0 (2)

Symmetry codes: (i) −x+2, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C5—H5B···Cl2 0.97 2.81 3.196 (7) 105
C11—H11A···Cl1 0.97 2.71 3.129 (7) 107
C13—H13B···Cl1 0.97 2.75 3.132 (5) 104
C14—H14A···Cl2 0.97 2.76 3.150 (5) 105
C13—H13A···Cl1i 0.97 2.80 3.425 (5) 123
C10—H10A···Cl3ii 0.96 2.81 3.726 (7) 161
C2—H2A···O1iii 0.97 2.65 3.579 (10) 161
C4—H4B···O1iii 0.97 2.56 3.470 (15) 156

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) x−1/2, y, −z+1/2; (iii) x−1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2041).

References

  1. Avramović, N., Blacque, O., Schmalle, H. W. & Berke, H. (2008). Acta Cryst. E64, m245. [DOI] [PMC free article] [PubMed]
  2. Bencze, L. & Kohàn, J. (1982). Inorg. Chim. Acta, 65, L17–L19.
  3. Campbell, F. L. III, Cotton, F. A. & Powell, G. L. (1985). Inorg. Chem.24, 4384–4389.
  4. Carmona, E., Gutiérrez-Puebla, E., Monge, A., Pérez, P. J. & Sanchez, L. J. (1989). Inorg. Chem.28, 2120–2127.
  5. Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst.18, 1035–1038.
  6. Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond, pp. 215–221. Oxford University Press.
  7. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  8. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  9. Han, J. & Coucouvanis, D. (2002). Inorg. Chem.41, 2738–2746. [DOI] [PubMed]
  10. Hunter, A. D. & Legzdins, P. (1984). Inorg. Chem.23, 4198–4204.
  11. Landau, S. E., Morris, R. H. & Lough, A. J. (1999). Inorg. Chem.38, 6060–6068. [DOI] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  14. Stoe & Cie (1999). IPDS Software and X-RED Stoe & Cie, Darmstadt, Germany.
  15. Zeng, D., Hampden-Smith, M. J. & Larson, E. M. (1994). Acta Cryst. C50, 1000–1002.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808001141/su2041sup1.cif

e-64-0m367-sup1.cif (26.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808001141/su2041Isup2.hkl

e-64-0m367-Isup2.hkl (191.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES