Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jan 16;64(Pt 2):o443. doi: 10.1107/S1600536807066184

Ethyl 4-nitro­phenyl­acetate

Ji Li a, Jun Liu a, Hui-Qing Peng a,*
PMCID: PMC2960243  PMID: 21201470

Abstract

In the asymmetric unit of the title compound, C10H11NO4, there are two crystallographically independent mol­ecules, which are connected via a C—H⋯O hydrogen bond. The crystal structure is stabilized by this hydrogen bond together with an N—O⋯π contact [O⋯Cg 3.297 (5) Å; Cg is the centroid of one of the benzene rings].

Related literature

For related literature, see: Brown et al. (2006); Shokat et al. (1991); Sagamihara (1988).graphic file with name e-64-0o443-scheme1.jpg

Experimental

Crystal data

  • C10H11NO4

  • M r = 209.20

  • Orthorhombic, Inline graphic

  • a = 15.9132 (13) Å

  • b = 5.2298 (4) Å

  • c = 24.878 (2) Å

  • V = 2070.4 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 292 (2) K

  • 0.40 × 0.04 × 0.02 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001) T min = 0.959, T max = 0.998

  • 13522 measured reflections

  • 2318 independent reflections

  • 1422 reflections with I > 2σ(I)

  • R int = 0.065

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.122

  • S = 1.01

  • 2318 reflections

  • 273 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807066184/is2259sup1.cif

e-64-0o443-sup1.cif (20.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807066184/is2259Isup2.hkl

e-64-0o443-Isup2.hkl (113.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O5 0.93 2.47 3.186 (6) 134

Acknowledgments

The authors acknowledge the teachers of the College of Chemistry of Central China Normal University.

supplementary crystallographic information

Comment

Ethyl 4-nitrophenylacetate, (I), has been widely used as an intermediator of the anti-rheumatoid drugs (Kevan et al., 1991; Sagamihara, 1988). The similar compound, cyclodecyl 4-nitrophenylacetate, has been reported by Brown et al. (2006). Here we present the molecular structure of (I), as shown in Fig. 1. In the asymmetric unit of (I), there is a dimer via a C—H···O interaction (Table 1). The angles involving the acetate groups in the dimer are 126.7 (4), 124.0 (4), 126.1 (4) and 123.1 (4)°, and the average distances of C=O and C—O are 1.202 (5) and 2.792 (5) Å, respectively. The C—N bond lengths on the benzene ring range from 1.202 (5) to 1.219 (4) Å. The benzene ring planes of the two independent molecules are nearly directional parallel with the dihedral angle of 19.2 (2)°, but no significant π-π interaction. The molecular packing diagram of (I) is stabilized by N1—O2···π contact [O2···Cgi 3.297 (5) Å, N1—O2···Cgi 156.3 (3)°; Cg is the centroid of the benzene C11—C16 ring; symmetry code: (i) 1/2 + x, 1 - y, z] together with hydrogen bond, as shown in Fig. 2.

Experimental

Ethyl 4-nitrophenylacetate was obtained from the Jiachen Chemical Company Inc, ShangHai. The crystals were grown by vapour diffusion of 95% ethanol.

Refinement

After their location in a difference map, all H atoms were fixed geometrically at ideal positions (C–H = 0.93–0.96 Å) and allowed to ride on the parent C atoms, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). In the absence of significant anomalous scattering effects, Friedel pairs have been merged.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound with the atom numbering, showing displacement ellipsoids at the 50% probability level. The hydrogen bond is shown as a dashed line.

Fig. 2.

Fig. 2.

The molecular packing diagram of the title compound, with hydrogen bonds shown as dashed lines.

Crystal data

C10H11NO4 F000 = 880
Mr = 209.20 Dx = 1.342 Mg m3
Orthorhombic, Pca21 Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2c -2ac Cell parameters from 1377 reflections
a = 15.9132 (13) Å θ = 2.7–20.9º
b = 5.2298 (4) Å µ = 0.11 mm1
c = 24.878 (2) Å T = 292 (2) K
V = 2070.4 (3) Å3 Plate, colorless
Z = 8 0.40 × 0.04 × 0.02 mm

Data collection

Bruker SMART CCD area-detector diffractometer 2318 independent reflections
Radiation source: fine-focus sealed tube 1422 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.065
T = 292(2) K θmax = 27.0º
φ and ω scans θmin = 1.6º
Absorption correction: multi-scan(SADABS; Sheldrick, 2001) h = −15→20
Tmin = 0.959, Tmax = 0.998 k = −6→6
13522 measured reflections l = −31→31

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050 H-atom parameters constrained
wR(F2) = 0.122   w = 1/[σ2(Fo2) + (0.0579P)2] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max = 0.004
2318 reflections Δρmax = 0.13 e Å3
273 parameters Δρmin = −0.14 e Å3
1 restraint Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 1.1982 (2) 1.1755 (8) 0.18201 (15) 0.0473 (10)
C2 1.1806 (3) 1.3761 (8) 0.14828 (17) 0.0556 (11)
H2 1.2230 1.4856 0.1368 0.067*
C3 1.0991 (3) 1.4122 (8) 0.13180 (17) 0.0559 (11)
H3 1.0864 1.5479 0.1091 0.067*
C4 1.0354 (3) 1.2492 (8) 0.14854 (17) 0.0521 (10)
C5 1.0559 (3) 1.0479 (8) 0.1821 (2) 0.0578 (12)
H5 1.0139 0.9359 0.1930 0.069*
C6 1.1363 (3) 1.0091 (8) 0.1995 (2) 0.0579 (13)
H6 1.1492 0.8744 0.2225 0.069*
C7 0.9459 (3) 1.2913 (9) 0.13058 (18) 0.0629 (13)
H7A 0.9096 1.2882 0.1619 0.076*
H7B 0.9415 1.4598 0.1145 0.076*
C8 0.9148 (3) 1.0963 (9) 0.09078 (17) 0.0527 (11)
C9 0.7949 (3) 0.9750 (9) 0.0399 (2) 0.0682 (15)
H9A 0.7939 0.8004 0.0531 0.082*
H9B 0.8261 0.9790 0.0064 0.082*
C10 0.7077 (3) 1.0715 (12) 0.0316 (2) 0.0842 (17)
H10A 0.6768 1.0582 0.0646 0.126*
H10B 0.6805 0.9713 0.0043 0.126*
H10C 0.7097 1.2471 0.0204 0.126*
C11 0.9635 (2) 0.3428 (7) 0.32274 (15) 0.0467 (10)
C12 0.9473 (3) 0.1331 (8) 0.35509 (17) 0.0541 (11)
H12 0.9903 0.0220 0.3649 0.065*
C13 0.8662 (3) 0.0924 (8) 0.37249 (18) 0.0556 (11)
H13 0.8547 −0.0456 0.3949 0.067*
C14 0.8017 (2) 0.2530 (8) 0.35717 (15) 0.0469 (10)
C15 0.8203 (3) 0.4571 (9) 0.3234 (2) 0.0570 (12)
H15 0.7772 0.5645 0.3122 0.068*
C16 0.9012 (2) 0.5043 (8) 0.30617 (19) 0.0501 (12)
H16 0.9131 0.6424 0.2839 0.060*
C17 0.7135 (2) 0.2026 (8) 0.37470 (17) 0.0561 (11)
H17A 0.7108 0.0337 0.3908 0.067*
H17B 0.6774 0.2020 0.3433 0.067*
C18 0.6801 (3) 0.3948 (8) 0.41442 (17) 0.0494 (10)
C19 0.5597 (3) 0.5179 (9) 0.4642 (2) 0.0631 (14)
H19A 0.5581 0.6910 0.4503 0.076*
H19B 0.5909 0.5186 0.4977 0.076*
C20 0.4726 (3) 0.4214 (11) 0.4734 (2) 0.0776 (15)
H20A 0.4414 0.4300 0.4404 0.116*
H20B 0.4455 0.5249 0.5002 0.116*
H20C 0.4749 0.2474 0.4856 0.116*
N1 1.2850 (2) 1.1303 (8) 0.19950 (16) 0.0625 (10)
N2 1.0504 (2) 0.3938 (8) 0.30557 (16) 0.0594 (10)
O1 1.3401 (2) 1.2661 (7) 0.18162 (16) 0.0868 (11)
O2 1.2991 (2) 0.9635 (9) 0.23154 (18) 0.1051 (16)
O3 0.95456 (18) 0.9271 (7) 0.07121 (13) 0.0671 (10)
O4 0.83388 (17) 1.1435 (6) 0.07940 (12) 0.0630 (8)
O5 1.0631 (2) 0.5766 (7) 0.27657 (17) 0.0878 (12)
O6 1.1065 (2) 0.2546 (7) 0.32154 (15) 0.0766 (10)
O7 0.71909 (18) 0.5709 (6) 0.43392 (14) 0.0685 (9)
O8 0.59970 (17) 0.3485 (6) 0.42567 (12) 0.0607 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.049 (2) 0.048 (2) 0.045 (2) 0.0003 (19) 0.0007 (19) −0.0029 (18)
C2 0.064 (3) 0.048 (3) 0.055 (2) −0.012 (2) 0.006 (2) 0.002 (2)
C3 0.069 (3) 0.043 (2) 0.055 (3) 0.001 (2) −0.006 (2) 0.003 (2)
C4 0.061 (3) 0.041 (2) 0.054 (2) 0.003 (2) 0.003 (2) −0.008 (2)
C5 0.054 (3) 0.049 (3) 0.070 (3) −0.004 (2) 0.004 (2) 0.004 (2)
C6 0.055 (3) 0.051 (3) 0.068 (4) −0.003 (2) 0.008 (2) 0.005 (2)
C7 0.053 (3) 0.054 (3) 0.082 (4) 0.008 (2) −0.004 (2) −0.011 (2)
C8 0.053 (3) 0.055 (3) 0.050 (2) 0.008 (2) 0.003 (2) 0.001 (2)
C9 0.069 (3) 0.072 (4) 0.064 (4) −0.007 (3) −0.014 (3) −0.010 (2)
C10 0.065 (4) 0.104 (4) 0.083 (4) 0.001 (3) −0.020 (3) −0.006 (3)
C11 0.046 (2) 0.047 (2) 0.047 (2) 0.0012 (19) −0.0004 (18) −0.0049 (18)
C12 0.055 (3) 0.049 (3) 0.058 (2) 0.002 (2) −0.002 (2) 0.005 (2)
C13 0.064 (3) 0.046 (3) 0.057 (3) −0.001 (2) 0.010 (2) 0.007 (2)
C14 0.050 (3) 0.040 (2) 0.050 (2) −0.004 (2) 0.0009 (19) −0.0081 (19)
C15 0.047 (3) 0.058 (3) 0.066 (3) 0.004 (2) −0.002 (2) −0.002 (2)
C16 0.066 (3) 0.047 (3) 0.037 (2) −0.002 (2) 0.003 (2) 0.0023 (17)
C17 0.057 (3) 0.048 (3) 0.063 (3) −0.007 (2) 0.006 (2) −0.007 (2)
C18 0.048 (3) 0.044 (3) 0.056 (3) 0.003 (2) 0.004 (2) 0.001 (2)
C19 0.057 (3) 0.077 (4) 0.056 (3) 0.002 (2) 0.007 (2) −0.004 (2)
C20 0.066 (3) 0.096 (4) 0.071 (3) −0.001 (3) 0.013 (3) −0.001 (3)
N1 0.061 (3) 0.069 (3) 0.058 (2) −0.008 (2) −0.002 (2) 0.003 (2)
N2 0.052 (2) 0.065 (3) 0.061 (2) 0.001 (2) 0.0045 (19) 0.001 (2)
O1 0.059 (2) 0.094 (3) 0.107 (3) −0.0180 (19) −0.0037 (19) 0.018 (2)
O2 0.077 (3) 0.126 (3) 0.112 (4) −0.001 (2) −0.013 (2) 0.061 (3)
O3 0.059 (2) 0.067 (2) 0.076 (3) 0.0100 (17) −0.0050 (16) −0.023 (2)
O4 0.0493 (18) 0.066 (2) 0.074 (2) 0.0083 (15) −0.0097 (15) −0.0110 (16)
O5 0.072 (2) 0.087 (3) 0.104 (3) −0.0159 (19) 0.015 (2) 0.041 (2)
O6 0.055 (2) 0.081 (3) 0.094 (2) 0.0124 (17) 0.0080 (18) 0.007 (2)
O7 0.066 (2) 0.062 (2) 0.078 (2) −0.0127 (15) 0.0025 (16) −0.0180 (19)
O8 0.0560 (18) 0.065 (2) 0.0611 (17) −0.0103 (15) 0.0146 (15) −0.0113 (16)

Geometric parameters (Å, °)

C1—C2 1.372 (6) C11—N2 1.471 (5)
C1—C6 1.385 (5) C12—C13 1.378 (5)
C1—N1 1.468 (5) C12—H12 0.9300
C2—C3 1.373 (5) C13—C14 1.380 (5)
C2—H2 0.9300 C13—H13 0.9300
C3—C4 1.388 (6) C14—C15 1.390 (6)
C3—H3 0.9300 C14—C17 1.494 (5)
C4—C5 1.382 (6) C15—C16 1.380 (6)
C4—C7 1.510 (5) C15—H15 0.9300
C5—C6 1.366 (6) C16—H16 0.9300
C5—H5 0.9300 C17—C18 1.506 (6)
C6—H6 0.9300 C17—H17A 0.9700
C7—C8 1.505 (6) C17—H17B 0.9700
C7—H7A 0.9700 C18—O7 1.212 (5)
C7—H7B 0.9700 C18—O8 1.332 (5)
C8—O3 1.192 (5) C19—O8 1.452 (6)
C8—O4 1.341 (5) C19—C20 1.493 (6)
C9—O4 1.458 (5) C19—H19A 0.9700
C9—C10 1.491 (5) C19—H19B 0.9700
C9—H9A 0.9700 C20—H20A 0.9600
C9—H9B 0.9700 C20—H20B 0.9600
C10—H10A 0.9600 C20—H20C 0.9600
C10—H10B 0.9600 N1—O2 1.202 (5)
C10—H10C 0.9600 N1—O1 1.212 (4)
C11—C16 1.365 (5) N2—O5 1.215 (5)
C11—C12 1.385 (6) N2—O6 1.219 (4)
C2—C1—C6 121.8 (4) C11—C12—H12 120.7
C2—C1—N1 119.8 (4) C12—C13—C14 121.0 (4)
C6—C1—N1 118.4 (4) C12—C13—H13 119.5
C3—C2—C1 118.7 (4) C14—C13—H13 119.5
C3—C2—H2 120.6 C13—C14—C15 118.4 (4)
C1—C2—H2 120.6 C13—C14—C17 120.7 (4)
C2—C3—C4 121.0 (4) C15—C14—C17 120.8 (4)
C2—C3—H3 119.5 C16—C15—C14 121.6 (4)
C4—C3—H3 119.5 C16—C15—H15 119.2
C5—C4—C3 118.4 (4) C14—C15—H15 119.2
C5—C4—C7 120.8 (4) C11—C16—C15 118.2 (4)
C3—C4—C7 120.7 (4) C11—C16—H16 120.9
C6—C5—C4 121.7 (4) C15—C16—H16 120.9
C6—C5—H5 119.1 C14—C17—C18 113.9 (3)
C4—C5—H5 119.1 C14—C17—H17A 108.8
C5—C6—C1 118.2 (4) C18—C17—H17A 108.8
C5—C6—H6 120.9 C14—C17—H17B 108.8
C1—C6—H6 120.9 C18—C17—H17B 108.8
C8—C7—C4 114.0 (3) H17A—C17—H17B 107.7
C8—C7—H7A 108.8 O7—C18—O8 123.1 (4)
C4—C7—H7A 108.8 O7—C18—C17 126.1 (4)
C8—C7—H7B 108.8 O8—C18—C17 110.8 (4)
C4—C7—H7B 108.8 O8—C19—C20 107.6 (4)
H7A—C7—H7B 107.7 O8—C19—H19A 110.2
O3—C8—O4 124.0 (4) C20—C19—H19A 110.2
O3—C8—C7 126.7 (4) O8—C19—H19B 110.2
O4—C8—C7 109.3 (4) C20—C19—H19B 110.2
O4—C9—C10 106.5 (4) H19A—C19—H19B 108.5
O4—C9—H9A 110.4 C19—C20—H20A 109.5
C10—C9—H9A 110.4 C19—C20—H20B 109.5
O4—C9—H9B 110.4 H20A—C20—H20B 109.5
C10—C9—H9B 110.4 C19—C20—H20C 109.5
H9A—C9—H9B 108.6 H20A—C20—H20C 109.5
C9—C10—H10A 109.5 H20B—C20—H20C 109.5
C9—C10—H10B 109.5 O2—N1—O1 122.3 (4)
H10A—C10—H10B 109.5 O2—N1—C1 119.2 (4)
C9—C10—H10C 109.5 O1—N1—C1 118.5 (4)
H10A—C10—H10C 109.5 O5—N2—O6 122.8 (4)
H10B—C10—H10C 109.5 O5—N2—C11 118.1 (4)
C16—C11—C12 122.0 (4) O6—N2—C11 119.1 (4)
C16—C11—N2 118.8 (4) C8—O4—C9 116.1 (3)
C12—C11—N2 119.1 (4) N2—O5—H6 155.7
C13—C12—C11 118.6 (4) C18—O8—C19 116.7 (3)
C13—C12—H12 120.7
C6—C1—C2—C3 0.3 (6) N2—C11—C16—C15 −178.7 (4)
N1—C1—C2—C3 179.0 (3) C14—C15—C16—C11 0.6 (6)
C1—C2—C3—C4 −0.3 (6) C13—C14—C17—C18 110.9 (4)
C2—C3—C4—C5 −0.4 (6) C15—C14—C17—C18 −71.5 (5)
C2—C3—C4—C7 179.5 (4) C14—C17—C18—O7 −3.5 (6)
C3—C4—C5—C6 1.1 (7) C14—C17—C18—O8 176.0 (3)
C7—C4—C5—C6 −178.9 (4) C2—C1—N1—O2 175.6 (5)
C4—C5—C6—C1 −1.0 (7) C6—C1—N1—O2 −5.7 (6)
C2—C1—C6—C5 0.3 (7) C2—C1—N1—O1 −3.2 (6)
N1—C1—C6—C5 −178.4 (4) C6—C1—N1—O1 175.5 (4)
C5—C4—C7—C8 −71.4 (5) C16—C11—N2—O5 −1.0 (6)
C3—C4—C7—C8 108.6 (4) C12—C11—N2—O5 179.0 (4)
C4—C7—C8—O3 −3.9 (7) C16—C11—N2—O6 177.9 (4)
C4—C7—C8—O4 177.1 (4) C12—C11—N2—O6 −2.2 (6)
C16—C11—C12—C13 −2.3 (6) O3—C8—O4—C9 −0.9 (6)
N2—C11—C12—C13 177.7 (4) C7—C8—O4—C9 178.2 (4)
C11—C12—C13—C14 1.5 (6) C10—C9—O4—C8 −176.9 (4)
C12—C13—C14—C15 0.3 (6) O6—N2—O5—H6 0.9
C12—C13—C14—C17 177.9 (4) C11—N2—O5—H6 179.7
C13—C14—C15—C16 −1.4 (6) O7—C18—O8—C19 −1.4 (6)
C17—C14—C15—C16 −179.0 (4) C17—C18—O8—C19 179.1 (4)
C12—C11—C16—C15 1.3 (6) C20—C19—O8—C18 −176.3 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C6—H6···O5 0.93 2.47 3.186 (6) 134

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2259).

References

  1. Brown, J., Pawar, D. M., Fronczek, F. R. & Noe, E. A. (2006). Acta Cryst. C62, o628–o630. [DOI] [PubMed]
  2. Bruker (2001). SMART, SAINT and SHELXTL Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Sagamihara, H. M. (1988). US Patent 4 720 506.
  4. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  5. Sheldrick, G. M. (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Shokat, K. M., Ko, M. K., Scanlan, T. S., Kochersperger, L., Yonkovich, S., Thaisrivongs, S. & Schultz, P. G. (1991). Angew. Chem. Int. Ed. Engl.29, 1296–1303.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807066184/is2259sup1.cif

e-64-0o443-sup1.cif (20.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807066184/is2259Isup2.hkl

e-64-0o443-Isup2.hkl (113.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES