Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jan 30;64(Pt 2):o533. doi: 10.1107/S1600536808002468

N-Hydr­oxy-N-o-tolyl­acetamide

Yu-Hao Li a, Rui Liu a, Xiang-Ning Zhang b, Hong-Jun Zhu a,*
PMCID: PMC2960255  PMID: 21201552

Abstract

In the mol­ecule of the title compound, C9H11NO2, the methyl C atom bonded to the ring and the N atom lie in the benzene ring plane. An intra­molecular O—H⋯O hydrogen bond results in the formation of a five-membered planar ring, which is oriented at a dihedral angle of 81.37 (3)° with respect to the benzene ring. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds link the mol­ecules stacked along the b axis. There are also π–π inter­actions between benzene rings with a face-to-face stacking distance of 3.434 Å.

Related literature

For related literature, see: Fu et al. (2000). For bond-length data, see: Allen et al. (1987).graphic file with name e-64-0o533-scheme1.jpg

Experimental

Crystal data

  • C9H11NO2

  • M r = 165.19

  • Monoclinic, Inline graphic

  • a = 7.7890 (16) Å

  • b = 7.1570 (14) Å

  • c = 15.613 (3) Å

  • β = 96.86 (3)°

  • V = 864.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 294 (2) K

  • 0.40 × 0.30 × 0.30 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.965, T max = 0.973

  • 1821 measured reflections

  • 1695 independent reflections

  • 1187 reflections with I > 2σ(I)

  • R int = 0.054

  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.067

  • wR(F 2) = 0.182

  • S = 1.05

  • 1695 reflections

  • 109 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808002468/hk2420sup1.cif

e-64-0o533-sup1.cif (14.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808002468/hk2420Isup2.hkl

e-64-0o533-Isup2.hkl (83.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O2 0.82 2.19 2.608 (3) 112
O1—H1A⋯O2i 0.82 1.97 2.719 (3) 152

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Comment

The title compound, (I), contains hydroxy and formyl groups, which can react with different groups to prepare various function organic compounds. It is a kind of aromatic organic intermediate that can be used for many fields such as pesticide, paper making etc. (Fu et al., 2000). We report herein its crystal structure.

In the molecule of (I), (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. The atoms N and C1 lie in the benzene ring plane. The intramolecular O—H···O hydrogen bond (Table 1) results in the formation of a five-membered planar ring A (O1/H1A/O2/N/C8). The dihedral angle between five- and six-membered rings is 81.37 (3)°.

In the crystal structure, intermolecular O—H···O hydrogen bonds (Table 1) link the molecules stacked along the b axis (Fig. 2), in which they may be effective in the stabilization of the structure.

There are also the π-π interactions of benzene rings with a face-to-face stacking distance of 3.434 Å.

Experimental

The title compound, (I), was prepared by the literature method (Fu et al., 2000). Crystals suitable for X-ray analysis were obtained by dissolving (I) (0.5 g) in petroleum ether (20 ml) and evaporating the solvent slowly at room temperature for about 7 d.

Refinement

H atoms were positioned geometrically, with O—H = 0.82 Å (for OH) and C—H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,O), where x = 1.2 for aromatic H, and x = 1.5 for all other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A packing diagram of (I). Hydrogen bonds are shown as dashed lines.

Crystal data

C9H11NO2 F000 = 352
Mr = 165.19 Dx = 1.270 Mg m3
Monoclinic, P21/c Melting point: 350 K
Hall symbol: -P 2ybc Mo Kα radiation λ = 0.71073 Å
a = 7.7890 (16) Å Cell parameters from 25 reflections
b = 7.1570 (14) Å θ = 10–13º
c = 15.613 (3) Å µ = 0.09 mm1
β = 96.86 (3)º T = 294 (2) K
V = 864.1 (3) Å3 Block, colorless
Z = 4 0.40 × 0.30 × 0.30 mm

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.054
Radiation source: fine-focus sealed tube θmax = 26.0º
Monochromator: graphite θmin = 2.6º
T = 294(2) K h = −9→9
ω/2θ scans k = 0→8
Absorption correction: ψ scan(North et al., 1968) l = 0→19
Tmin = 0.965, Tmax = 0.973 3 standard reflections
1821 measured reflections every 120 min
1695 independent reflections intensity decay: none
1187 reflections with I > 2σ(I)

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067 H-atom parameters constrained
wR(F2) = 0.182   w = 1/[σ2(Fo2) + (0.05P)2 + 1.5P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
1695 reflections Δρmax = 0.31 e Å3
109 parameters Δρmin = −0.35 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N 0.7518 (4) 0.1297 (4) 0.08788 (17) 0.0451 (7)
O1 0.8117 (3) −0.0536 (3) 0.08895 (15) 0.0554 (7)
H1A 0.8888 −0.0624 0.0577 0.083*
O2 0.9365 (3) 0.2046 (3) −0.00399 (16) 0.0573 (7)
C1 0.8476 (4) 0.1834 (6) 0.2703 (2) 0.0593 (10)
H1B 0.8527 0.2003 0.3316 0.089*
H1C 0.9065 0.2848 0.2461 0.089*
H1D 0.9022 0.0675 0.2585 0.089*
C2 0.6626 (4) 0.1799 (4) 0.23108 (19) 0.0406 (7)
C3 0.5278 (5) 0.2025 (5) 0.2806 (2) 0.0508 (9)
H3A 0.5533 0.2200 0.3398 0.061*
C4 0.3579 (5) 0.1999 (5) 0.2453 (2) 0.0536 (9)
H4A 0.2706 0.2150 0.2805 0.064*
C5 0.3164 (4) 0.1750 (5) 0.1577 (2) 0.0572 (9)
H5A 0.2013 0.1721 0.1337 0.069*
C6 0.4465 (4) 0.1545 (5) 0.1062 (2) 0.0454 (8)
H6A 0.4194 0.1392 0.0470 0.054*
C7 0.6189 (4) 0.1567 (4) 0.14250 (18) 0.0370 (7)
C8 0.8214 (4) 0.2543 (5) 0.03929 (18) 0.0411 (7)
C9 0.7578 (5) 0.4524 (5) 0.0400 (3) 0.0586 (10)
H9A 0.8186 0.5270 0.0023 0.088*
H9B 0.7779 0.5013 0.0975 0.088*
H9C 0.6362 0.4555 0.0205 0.088*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N 0.0584 (17) 0.0377 (14) 0.0420 (14) 0.0072 (12) 0.0179 (12) 0.0028 (12)
O1 0.0735 (16) 0.0420 (13) 0.0570 (15) 0.0174 (11) 0.0338 (12) 0.0085 (11)
O2 0.0654 (15) 0.0530 (15) 0.0599 (15) 0.0118 (12) 0.0343 (13) 0.0102 (12)
C1 0.054 (2) 0.066 (2) 0.057 (2) −0.0089 (18) 0.0002 (16) −0.0039 (18)
C2 0.0504 (18) 0.0360 (16) 0.0352 (16) 0.0026 (14) 0.0045 (13) −0.0034 (12)
C3 0.073 (2) 0.0481 (19) 0.0339 (16) 0.0030 (17) 0.0155 (15) −0.0029 (14)
C4 0.057 (2) 0.050 (2) 0.059 (2) 0.0045 (16) 0.0285 (17) 0.0015 (17)
C5 0.0411 (18) 0.064 (2) 0.066 (2) 0.0057 (17) 0.0044 (16) −0.0010 (19)
C6 0.0486 (18) 0.0471 (19) 0.0401 (17) 0.0052 (15) 0.0043 (14) 0.0001 (14)
C7 0.0423 (16) 0.0363 (16) 0.0349 (15) 0.0036 (13) 0.0150 (12) 0.0012 (12)
C8 0.0440 (16) 0.0482 (18) 0.0318 (15) 0.0009 (14) 0.0076 (12) 0.0017 (13)
C9 0.069 (2) 0.044 (2) 0.066 (2) 0.0046 (17) 0.0243 (19) 0.0052 (17)

Geometric parameters (Å, °)

N—C8 1.328 (4) C3—H3A 0.9300
N—O1 1.392 (3) C4—C5 1.378 (5)
N—C7 1.431 (4) C4—H4A 0.9300
O1—H1A 0.8200 C5—C6 1.375 (5)
C1—C2 1.497 (5) C5—H5A 0.9300
C1—H1B 0.9600 C6—C7 1.394 (4)
C1—H1C 0.9600 C6—H6A 0.9300
C1—H1D 0.9600 C8—C9 1.502 (5)
O2—C8 1.238 (3) C9—H9A 0.9600
C2—C3 1.386 (4) C9—H9B 0.9600
C2—C7 1.394 (4) C9—H9C 0.9600
C3—C4 1.371 (5)
C8—N—O1 118.8 (2) C6—C5—C4 119.5 (3)
C8—N—C7 128.6 (3) C6—C5—H5A 120.3
O1—N—C7 112.7 (2) C4—C5—H5A 120.3
N—O1—H1A 109.5 C5—C6—C7 120.2 (3)
C2—C1—H1B 109.5 C5—C6—H6A 119.9
C2—C1—H1C 109.5 C7—C6—H6A 119.9
H1B—C1—H1C 109.5 C6—C7—C2 120.9 (3)
C2—C1—H1D 109.5 C6—C7—N 119.1 (3)
H1B—C1—H1D 109.5 C2—C7—N 119.9 (3)
H1C—C1—H1D 109.5 O2—C8—N 119.4 (3)
C3—C2—C7 117.1 (3) O2—C8—C9 122.4 (3)
C3—C2—C1 121.7 (3) N—C8—C9 118.2 (3)
C7—C2—C1 121.1 (3) C8—C9—H9A 109.5
C4—C3—C2 122.2 (3) C8—C9—H9B 109.5
C4—C3—H3A 118.9 H9A—C9—H9B 109.5
C2—C3—H3A 118.9 C8—C9—H9C 109.5
C3—C4—C5 120.1 (3) H9A—C9—H9C 109.5
C3—C4—H4A 119.9 H9B—C9—H9C 109.5
C5—C4—H4A 119.9
C7—C2—C3—C4 0.9 (5) C1—C2—C7—N 2.0 (4)
C1—C2—C3—C4 179.9 (3) C8—N—C7—C6 82.5 (4)
C2—C3—C4—C5 −0.3 (5) O1—N—C7—C6 −98.0 (3)
C3—C4—C5—C6 −0.6 (6) C8—N—C7—C2 −99.2 (4)
C4—C5—C6—C7 0.8 (5) O1—N—C7—C2 80.4 (3)
C5—C6—C7—C2 −0.1 (5) O1—N—C8—O2 0.4 (5)
C5—C6—C7—N 178.2 (3) C7—N—C8—O2 179.9 (3)
C3—C2—C7—C6 −0.7 (4) O1—N—C8—C9 −178.9 (3)
C1—C2—C7—C6 −179.7 (3) C7—N—C8—C9 0.6 (5)
C3—C2—C7—N −179.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1A···O2 0.82 2.19 2.608 (3) 112
O1—H1A···O2i 0.82 1.97 2.719 (3) 152

Symmetry codes: (i) −x+2, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2420).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Enraf–Nonius (1985). CAD-4 Software Version 5.0. Enraf–Nonius, Delft, The Netherlands.
  3. Fu, S. Y., Zhan, H. Y. & Yu, H. S. (2000). J. S. China Univ. Technol. (Nat. Sci. Ed.), 28, 59–63.
  4. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  5. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808002468/hk2420sup1.cif

e-64-0o533-sup1.cif (14.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808002468/hk2420Isup2.hkl

e-64-0o533-Isup2.hkl (83.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES