Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jan 16;64(Pt 2):o458. doi: 10.1107/S1600536808000883

6H,12H-5,11-Ethano­dibenzo[b,f][1,5]diazo­cine

Masoud Faroughi a, Andrew C Try a,*, Peter Turner b
PMCID: PMC2960262  PMID: 21201485

Abstract

In the mol­ecule of the title compound, C16H16N2, the ethano-strapped analogue of unsubstituted Tröger’s base, the dihedral angle between the two benzene rings is 75.85 (4)°, the smallest angle measured for an ethano-strapped analogue.

Related literature

For related literature, see: Hamada & Mukai (1996); Ishida et al. (2005); Solano et al. (2005); Faroughi et al. (2006a ,b ); Faroughi, Try & Turner (2007); Faroughi, Jensen & Try (2007). For related structures, see: Faroughi, Try, Klepetko et al. (2007); Faroughi et al. (2008).graphic file with name e-64-0o458-scheme1.jpg

Experimental

Crystal data

  • C16H16N2

  • M r = 236.31

  • Orthorhombic, Inline graphic

  • a = 11.717 (2) Å

  • b = 8.907 (2) Å

  • c = 22.829 (4) Å

  • V = 2382.5 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 150 (2) K

  • 0.43 × 0.42 × 0.15 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: Gaussian (Coppens et al., 1965) and XPREP (Siemens, 1995) T min = 0.968, T max = 0.990

  • 21723 measured reflections

  • 2913 independent reflections

  • 2398 reflections with I > 2σ(I)

  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.099

  • S = 1.03

  • 2913 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT and XPREP (Siemens, 1995); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: TEXSAN (Molecular Structure Corporation, 1998), Xtal3.6 (Hall et al., 1999), ORTEPII (Johnson, 1976) and WinGX (Farrugia, 1999); software used to prepare material for publication: WinGX.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808000883/tk2243sup1.cif

e-64-0o458-sup1.cif (17.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808000883/tk2243Isup2.hkl

e-64-0o458-Isup2.hkl (143.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Australian Research Council for a Discovery Project grant to ACT (grant No. DP0345180) and Macquarie University for the award of a Macquarie University Research Development grant.

supplementary crystallographic information

Comment

Tröger's base compounds related to the title compound, (I), Fig. 1, are formed from an acid catalysed condensation of anilines, or a range of other amino aromatics, with either formaldehyde or formaldehyde equivalents. The compounds are characterized by the presence of a methano-strapped diazocine ring that is fused to two aromatic rings and this strapped ring system imparts a V-shaped structure on the compounds. The dihedral angle between the aromatic rings has been measured for over 20 simple dibenzo Tröger's base analogues and has been found to lie between 82° (Solano et al., 2005) and 108° (Faroughi et al., 2006b). It has been shown that reaction of 1,2-dibromoethane with several Tröger's base compounds affords ethano-straped analogues (Hamada & Mukai, 1996; Ishida et al., 2005; Faroughi et al., 2007a; Faroughi et al., 2008), as outlined in Fig. 2. The structure of (I) is the third reported structure of an ethano-strapped analogue of Tröger's base. All three structures support the results of molecular modelling studies, which predict that the ethano-strapped analogues should have smaller dihedral angles in comparison with their methano-strapped precursors. The size of the angle for the methano-strapped structures (2,8-dibromo, 2,8-dichloro and unsubstituted, respectively) are as follows: 95° (Faroughi et al., 2006a), 96° (Faroughi et al., 2007b) and 95° (Faroughi, Jensen & Try, 2007), whilst the corresponding values for the ethano-strapped structures are 86° (Faroughi et al., 2007a), 87° (Faroughi et al., 2008) and, for the subject of this report, (I) 76°.

Experimental

The title compound was prepared according to the literature procedure (Hamada & Mukai, 1996) in 37% yield. Single crystals were produced from slow evaporation of a dichloromethane solution of (I).

Refinement

H atoms were positioned geometrically, with C—H = 0.95 and 0.99 Å for aromatic and methylene H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

View of (I), showing the atomic numbering scheme. Displacement ellipsoids are shown at the 50% probability level.

Fig. 2.

Fig. 2.

Synthetic scheme for the synthesis of (I) showing the numbering system used in naming the compound.

Crystal data

C16H16N2 Dx = 1.318 Mg m3
Mr = 236.31 Melting point: 447 K
Orthorhombic, Pbca Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 985 reflections
a = 11.717 (2) Å θ = 2.5–27.9º
b = 8.907 (2) Å µ = 0.08 mm1
c = 22.829 (4) Å T = 150 (2) K
V = 2382.5 (8) Å3 Plate, colourless
Z = 8 0.43 × 0.42 × 0.15 mm
F000 = 1008

Data collection

Bruker SMART 1000 CCD diffractometer 2913 independent reflections
Radiation source: fine-focus sealed tube 2398 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.039
T = 150(2) K θmax = 28.3º
ω scans θmin = 1.8º
Absorption correction: Gaussian(Coppens et al., 1965) and XPREP (Siemens, 1995) h = −15→15
Tmin = 0.968, Tmax = 0.990 k = −11→11
21723 measured reflections l = −29→28

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037 H-atom parameters constrained
wR(F2) = 0.099   w = 1/[σ2(Fo2) + (0.0474P)2 + 0.8505P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
2913 reflections Δρmax = 0.29 e Å3
163 parameters Δρmin = −0.20 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.12902 (7) 0.27164 (10) 0.17143 (4) 0.0194 (2)
N2 0.04073 (7) −0.01939 (10) 0.19142 (4) 0.0194 (2)
C1 0.01598 (9) 0.29851 (11) 0.15021 (5) 0.0187 (2)
C2 0.00104 (9) 0.42146 (12) 0.11285 (5) 0.0222 (2)
H2 0.0648 0.4824 0.1031 0.027*
C3 −0.10531 (10) 0.45585 (12) 0.08975 (5) 0.0244 (2)
H3 −0.1138 0.5389 0.0640 0.029*
C4 −0.19937 (9) 0.36838 (12) 0.10442 (5) 0.0229 (2)
H4 −0.2729 0.3929 0.0897 0.027*
C5 −0.18463 (9) 0.24492 (12) 0.14072 (5) 0.0202 (2)
H5 −0.2489 0.1848 0.1503 0.024*
C6 −0.07795 (9) 0.20660 (11) 0.16355 (4) 0.0184 (2)
C7 −0.06746 (9) 0.06157 (12) 0.19875 (5) 0.0203 (2)
H7A −0.0772 0.0857 0.2408 0.024*
H7B −0.1307 −0.0061 0.1874 0.024*
C8 0.07275 (9) −0.04025 (11) 0.13126 (5) 0.0180 (2)
C9 0.02315 (9) −0.16067 (12) 0.10144 (5) 0.0218 (2)
H9 −0.0295 −0.2238 0.1214 0.026*
C10 0.04935 (10) −0.18974 (13) 0.04328 (5) 0.0252 (2)
H10 0.0139 −0.2711 0.0235 0.030*
C11 0.12743 (10) −0.09959 (13) 0.01412 (5) 0.0261 (3)
H11 0.1471 −0.1200 −0.0255 0.031*
C12 0.17656 (10) 0.02068 (13) 0.04333 (5) 0.0234 (2)
H12 0.2298 0.0824 0.0232 0.028*
C13 0.14986 (9) 0.05357 (11) 0.10154 (5) 0.0187 (2)
C14 0.20158 (9) 0.19445 (12) 0.12853 (5) 0.0207 (2)
H14A 0.2742 0.1667 0.1479 0.025*
H14B 0.2200 0.2657 0.0966 0.025*
C15 0.13809 (10) 0.20766 (12) 0.23032 (5) 0.0225 (2)
H15A 0.0759 0.2483 0.2550 0.027*
H15B 0.2116 0.2388 0.2479 0.027*
C16 0.13116 (9) 0.03597 (12) 0.23015 (5) 0.0221 (2)
H16A 0.2053 −0.0057 0.2172 0.027*
H16B 0.1166 0.0001 0.2705 0.027*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0199 (4) 0.0179 (4) 0.0205 (4) −0.0011 (3) −0.0002 (3) −0.0007 (3)
N2 0.0207 (4) 0.0183 (4) 0.0192 (4) −0.0001 (3) 0.0008 (3) 0.0009 (3)
C1 0.0212 (5) 0.0159 (5) 0.0190 (5) 0.0006 (4) 0.0008 (4) −0.0029 (4)
C2 0.0248 (5) 0.0167 (5) 0.0251 (5) −0.0013 (4) 0.0030 (4) 0.0003 (4)
C3 0.0309 (6) 0.0186 (5) 0.0238 (5) 0.0033 (4) 0.0003 (4) 0.0022 (4)
C4 0.0224 (5) 0.0240 (5) 0.0222 (5) 0.0048 (4) −0.0012 (4) −0.0032 (4)
C5 0.0203 (5) 0.0207 (5) 0.0196 (5) −0.0001 (4) 0.0030 (4) −0.0041 (4)
C6 0.0216 (5) 0.0162 (5) 0.0175 (5) 0.0010 (4) 0.0030 (4) −0.0032 (4)
C7 0.0208 (5) 0.0196 (5) 0.0207 (5) −0.0008 (4) 0.0034 (4) 0.0014 (4)
C8 0.0176 (5) 0.0159 (5) 0.0206 (5) 0.0032 (4) −0.0004 (4) 0.0016 (4)
C9 0.0198 (5) 0.0170 (5) 0.0284 (6) 0.0011 (4) −0.0015 (4) 0.0005 (4)
C10 0.0282 (6) 0.0202 (5) 0.0270 (6) 0.0033 (4) −0.0059 (4) −0.0045 (4)
C11 0.0323 (6) 0.0260 (6) 0.0199 (5) 0.0074 (5) 0.0003 (4) −0.0020 (4)
C12 0.0243 (5) 0.0227 (5) 0.0231 (5) 0.0034 (4) 0.0036 (4) 0.0029 (4)
C13 0.0173 (5) 0.0171 (5) 0.0216 (5) 0.0029 (4) −0.0001 (4) 0.0013 (4)
C14 0.0180 (5) 0.0197 (5) 0.0244 (5) −0.0014 (4) 0.0024 (4) 0.0006 (4)
C15 0.0253 (5) 0.0219 (5) 0.0204 (5) −0.0018 (4) −0.0028 (4) −0.0012 (4)
C16 0.0245 (5) 0.0217 (5) 0.0202 (5) −0.0002 (4) −0.0026 (4) 0.0022 (4)

Geometric parameters (Å, °)

N1—C1 1.4305 (14) C8—C9 1.3970 (15)
N1—C15 1.4639 (14) C8—C13 1.4053 (15)
N1—C14 1.4679 (13) C9—C10 1.3873 (16)
N2—C8 1.4358 (14) C9—H9 0.9500
N2—C16 1.4654 (14) C10—C11 1.3874 (17)
N2—C7 1.4680 (14) C10—H10 0.9500
C1—C2 1.3991 (15) C11—C12 1.3870 (17)
C1—C6 1.4051 (15) C11—H11 0.9500
C2—C3 1.3873 (16) C12—C13 1.3964 (15)
C2—H2 0.9500 C12—H12 0.9500
C3—C4 1.3906 (16) C13—C14 1.5236 (15)
C3—H3 0.9500 C14—H14A 0.9900
C4—C5 1.3877 (16) C14—H14B 0.9900
C4—H4 0.9500 C15—C16 1.5315 (15)
C5—C6 1.3966 (15) C15—H15A 0.9900
C5—H5 0.9500 C15—H15B 0.9900
C6—C7 1.5262 (15) C16—H16A 0.9900
C7—H7A 0.9900 C16—H16B 0.9900
C7—H7B 0.9900
C1—N1—C15 116.32 (9) C10—C9—C8 121.17 (10)
C1—N1—C14 112.87 (8) C10—C9—H9 119.4
C15—N1—C14 112.85 (9) C8—C9—H9 119.4
C8—N2—C16 115.58 (8) C9—C10—C11 119.81 (10)
C8—N2—C7 113.47 (8) C9—C10—H10 120.1
C16—N2—C7 112.97 (8) C11—C10—H10 120.1
C2—C1—C6 119.35 (10) C12—C11—C10 119.34 (11)
C2—C1—N1 116.96 (9) C12—C11—H11 120.3
C6—C1—N1 123.66 (9) C10—C11—H11 120.3
C3—C2—C1 121.13 (10) C11—C12—C13 121.78 (10)
C3—C2—H2 119.4 C11—C12—H12 119.1
C1—C2—H2 119.4 C13—C12—H12 119.1
C2—C3—C4 119.78 (10) C12—C13—C8 118.60 (10)
C2—C3—H3 120.1 C12—C13—C14 117.94 (9)
C4—C3—H3 120.1 C8—C13—C14 123.39 (9)
C5—C4—C3 119.28 (10) N1—C14—C13 115.16 (8)
C5—C4—H4 120.4 N1—C14—H14A 108.5
C3—C4—H4 120.4 C13—C14—H14A 108.5
C4—C5—C6 121.86 (10) N1—C14—H14B 108.5
C4—C5—H5 119.1 C13—C14—H14B 108.5
C6—C5—H5 119.1 H14A—C14—H14B 107.5
C5—C6—C1 118.54 (10) N1—C15—C16 112.49 (9)
C5—C6—C7 118.38 (9) N1—C15—H15A 109.1
C1—C6—C7 122.97 (9) C16—C15—H15A 109.1
N2—C7—C6 115.16 (8) N1—C15—H15B 109.1
N2—C7—H7A 108.5 C16—C15—H15B 109.1
C6—C7—H7A 108.5 H15A—C15—H15B 107.8
N2—C7—H7B 108.5 N2—C16—C15 112.08 (9)
C6—C7—H7B 108.5 N2—C16—H16A 109.2
H7A—C7—H7B 107.5 C15—C16—H16A 109.2
C9—C8—C13 119.27 (10) N2—C16—H16B 109.2
C9—C8—N2 117.18 (9) C15—C16—H16B 109.2
C13—C8—N2 123.56 (9) H16A—C16—H16B 107.9
C15—N1—C1—C2 147.34 (10) C7—N2—C8—C13 97.36 (11)
C14—N1—C1—C2 −79.92 (11) C13—C8—C9—C10 0.49 (16)
C15—N1—C1—C6 −34.51 (14) N2—C8—C9—C10 −179.77 (10)
C14—N1—C1—C6 98.24 (12) C8—C9—C10—C11 1.00 (16)
C6—C1—C2—C3 1.33 (16) C9—C10—C11—C12 −1.34 (17)
N1—C1—C2—C3 179.57 (10) C10—C11—C12—C13 0.20 (17)
C1—C2—C3—C4 0.89 (17) C11—C12—C13—C8 1.28 (16)
C2—C3—C4—C5 −1.89 (16) C11—C12—C13—C14 −175.68 (10)
C3—C4—C5—C6 0.67 (16) C9—C8—C13—C12 −1.61 (15)
C4—C5—C6—C1 1.54 (15) N2—C8—C13—C12 178.68 (9)
C4—C5—C6—C7 −174.80 (9) C9—C8—C13—C14 175.18 (9)
C2—C1—C6—C5 −2.51 (15) N2—C8—C13—C14 −4.53 (16)
N1—C1—C6—C5 179.38 (9) C1—N1—C14—C13 −50.30 (12)
C2—C1—C6—C7 173.65 (10) C15—N1—C14—C13 84.12 (11)
N1—C1—C6—C7 −4.46 (16) C12—C13—C14—N1 146.11 (10)
C8—N2—C7—C6 −49.21 (12) C8—C13—C14—N1 −30.70 (14)
C16—N2—C7—C6 84.85 (11) C1—N1—C15—C16 86.36 (11)
C5—C6—C7—N2 144.50 (10) C14—N1—C15—C16 −46.39 (12)
C1—C6—C7—N2 −31.66 (14) C8—N2—C16—C15 86.95 (11)
C16—N2—C8—C9 144.83 (9) C7—N2—C16—C15 −46.09 (12)
C7—N2—C8—C9 −82.36 (11) N1—C15—C16—N2 −43.67 (13)
C16—N2—C8—C13 −35.45 (14)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2243).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  2. Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst.18, 1035–1038.
  3. Faroughi, M., Jensen, P. & Try, A. C. (2007). Acta Cryst. E63, o3111.
  4. Faroughi, M., Try, A. C., Klepetko, J. & Turner, P. (2007). Tetrahedron Lett.48, 6548–6551.
  5. Faroughi, M., Try, A. C. & Turner, P. (2006a). Acta Cryst. E62, o3674–o3675.
  6. Faroughi, M., Try, A. C. & Turner, P. (2006b). Acta Cryst. E62, o3893–o3894.
  7. Faroughi, M., Try, A. C. & Turner, P. (2007). Acta Cryst. E63, o2695.
  8. Faroughi, M., Try, A. C. & Turner, P. (2008). Acta Cryst. E64, o39. [DOI] [PMC free article] [PubMed]
  9. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  10. Hall, S. R., du Boulay, D. J. & Olthof-Hazekamp, R. (1999). Editors. Xtal3.6 Reference Manual University of Western Australia, Australia.
  11. Hamada, Y. & Mukai, S. (1996). Tetrahedron Asymmetry, 7, 2671–2674.
  12. Ishida, Y., Ito, H., Mori, D. & Saigo, K. (2005). Tetrahedron Lett.46, 109–112.
  13. Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  14. Molecular Structure Corporation (1998). TEXSAN MSC, The Woodlands, Texas, USA.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Siemens (1995). SMART, SAINT and XPREP Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  17. Solano, C., Svensson, D., Olomi, Z., Jensen, J., Wendt, O. F. & Wärnmark, K. (2005). Eur. J. Org. Chem. pp. 3510–3517.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808000883/tk2243sup1.cif

e-64-0o458-sup1.cif (17.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808000883/tk2243Isup2.hkl

e-64-0o458-Isup2.hkl (143.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES