Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jan 16;64(Pt 2):o445. doi: 10.1107/S1600536808000809

4-[(2H-Tetra­zol-2-yl)meth­yl]benzonitrile

Zheng Xing a, Zhi-Rong Qu a,*
PMCID: PMC2960265  PMID: 21201472

Abstract

The title compound, C9H7N5, was synthesized by reaction of 4-(bromomethyl)benzonitrile and 2H-tetrazole in the presence of KOH. The relative orientation of the planar tetra­zole ring and the methyl­benzonitrile moiety is (−)-anti­clinal. The crystal packing is dominated by van der Waals inter­actions.

Related literature

For the chemisty of tetra­zoles, see: Bethel et al. (1999); Wu et al. (2005); Zhang et al. (2006); Jin et al. (1994).graphic file with name e-64-0o445-scheme1.jpg

Experimental

Crystal data

  • C9H7N5

  • M r = 185.20

  • Triclinic, Inline graphic

  • a = 5.7514 (8) Å

  • b = 7.4029 (10) Å

  • c = 11.3511 (12) Å

  • α = 81.088 (3)°

  • β = 77.844 (3)°

  • γ = 72.600 (5)°

  • V = 448.64 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 (2) K

  • 0.20 × 0.12 × 0.02 mm

Data collection

  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.980, T max = 0.996

  • 4114 measured reflections

  • 1720 independent reflections

  • 923 reflections with I > 2σ(I)

  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053

  • wR(F 2) = 0.156

  • S = 0.92

  • 1720 reflections

  • 132 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808000809/kp2157sup1.cif

e-64-0o445-sup1.cif (14.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808000809/kp2157Isup2.hkl

e-64-0o445-Isup2.hkl (76.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a Start-up Grant from Southeast University to ZRQ.

supplementary crystallographic information

Comment

Tetrazoles has been the subject of investigations during the last 20 years (Bethel et al., 1999). In recent years, tetrazoles have found a wide range of applications in coordination chemistry due to their role as mono- or bidentate ligands and strong networking ability (Wu et al., 2005; Zhang et al., 2006). Nitrile derivatives have found many industrial applications. For example, phthalonitriles have been used as starting materials for phthalocyanines (Jin et al., 1994). The title compound, is a new tetrazole derivative. We now report the synthesis and crystal structure analysis of 4-((2H-tetrazol-2-yl)methyl)benzonitrile (Fig. 1). The overall molecular conformation is defined by the torsion angle N1—N4—C8—C5 of -92.05 (10)°.

Experimental

The ligand 4-((2H-tetrazol-2-yl)methyl)benzonitrile was synthesized by reaction of 4-(bromomethyl)benzonitrile (1.95 g, 0.01 mol) and 2H-tetrazole (0.7 g, 0.01 mol) and KOH (0.56 g, 0.01 mol) in methanol (20 ml) reacted at 353 K with stirring for 24 h. A mixture of 4-((2H-tetrazol-2-yl)methyl)benzonitrile (18.5 mg, 0.1 mmol) and water (15 ml) and ethanol (15 ml) sealed in a glass were maintained at 293 K. Crystals suitable for X-ray ananlysis were obtained after 2 d.

Refinement

H atoms were included at calculated positions and constrained to an ideal geometry, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

A view of the compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.

Crystal data

C9H7N5 Z = 2
Mr = 185.20 F000 = 192
Triclinic, P1 Dx = 1.371 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 5.7514 (8) Å Cell parameters from 655 reflections
b = 7.4029 (10) Å θ = 3.3–27.4º
c = 11.3511 (12) Å µ = 0.09 mm1
α = 81.088 (3)º T = 293 (2) K
β = 77.844 (3)º Block, colourless
γ = 72.600 (5)º 0.20 × 0.12 × 0.02 mm
V = 448.64 (10) Å3

Data collection

Rigaku Mercury2 diffractometer 1720 independent reflections
Radiation source: fine-focus sealed tube 923 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.045
Detector resolution: 13.6612 pixels mm-1 θmax = 26.0º
T = 293(2) K θmin = 3.3º
CCD_Profile_fitting scans h = −7→7
Absorption correction: multi-scan(CrystalClear; Rigaku, 2005) k = −9→9
Tmin = 0.980, Tmax = 0.996 l = −13→13
4114 measured reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.053   w = 1/[σ2(Fo2) + (0.0718P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.156 (Δ/σ)max < 0.001
S = 0.92 Δρmax = 0.17 e Å3
1720 reflections Δρmin = −0.16 e Å3
132 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Secondary atom site location: difference Fourier map Extinction coefficient: 0.044 (14)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N2 1.0618 (5) 0.2439 (4) 0.4265 (2) 0.0821 (8)
C1 0.3315 (4) 0.9248 (4) 0.9005 (2) 0.0554 (6)
C2 0.4374 (4) 0.7403 (3) 0.8573 (2) 0.0502 (6)
C3 0.6613 (4) 0.6272 (3) 0.8855 (2) 0.0547 (7)
H3 0.7445 0.6703 0.9324 0.066*
C4 0.7606 (4) 0.4506 (3) 0.8438 (2) 0.0560 (7)
H4 0.9121 0.3749 0.8622 0.067*
C5 0.6377 (4) 0.3841 (3) 0.7748 (2) 0.0525 (6)
C6 0.4133 (5) 0.4976 (4) 0.7479 (2) 0.0621 (7)
H6 0.3292 0.4541 0.7018 0.075*
C7 0.3128 (5) 0.6752 (4) 0.7891 (2) 0.0606 (7)
H7 0.1613 0.7510 0.7708 0.073*
C8 0.7485 (5) 0.1932 (3) 0.7266 (2) 0.0611 (7)
H8A 0.8329 0.1040 0.7865 0.073*
H8B 0.6176 0.1460 0.7124 0.073*
N1 0.8605 (4) 0.2339 (4) 0.5064 (2) 0.0764 (7)
C9 1.2358 (6) 0.2213 (5) 0.4920 (3) 0.0730 (9)
N3 1.1596 (4) 0.1945 (3) 0.6083 (2) 0.0703 (7)
N4 0.9239 (4) 0.2044 (3) 0.61371 (17) 0.0550 (6)
N5 0.2481 (4) 1.0719 (3) 0.9343 (2) 0.0770 (8)
H9 1.385 (6) 0.208 (5) 0.462 (3) 0.116 (13)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N2 0.0782 (17) 0.103 (2) 0.0630 (15) −0.0277 (15) −0.0037 (14) −0.0081 (13)
C1 0.0509 (14) 0.0546 (15) 0.0616 (16) −0.0117 (13) −0.0132 (12) −0.0098 (13)
C2 0.0510 (14) 0.0511 (14) 0.0485 (13) −0.0148 (12) −0.0083 (11) −0.0038 (11)
C3 0.0527 (15) 0.0602 (16) 0.0554 (15) −0.0151 (12) −0.0162 (12) −0.0101 (12)
C4 0.0481 (14) 0.0594 (15) 0.0569 (15) −0.0083 (12) −0.0081 (12) −0.0091 (12)
C5 0.0569 (15) 0.0506 (14) 0.0493 (14) −0.0184 (12) −0.0030 (12) −0.0045 (11)
C6 0.0635 (17) 0.0629 (17) 0.0672 (17) −0.0183 (14) −0.0200 (13) −0.0144 (13)
C7 0.0489 (14) 0.0657 (17) 0.0690 (17) −0.0118 (12) −0.0165 (12) −0.0113 (13)
C8 0.0634 (16) 0.0532 (15) 0.0625 (15) −0.0163 (13) 0.0032 (13) −0.0118 (12)
N1 0.0705 (16) 0.0940 (18) 0.0654 (15) −0.0193 (14) −0.0167 (13) −0.0102 (13)
C9 0.063 (2) 0.087 (2) 0.070 (2) −0.0270 (17) 0.0022 (17) −0.0190 (16)
N3 0.0574 (14) 0.0879 (17) 0.0730 (16) −0.0225 (12) −0.0144 (12) −0.0204 (13)
N4 0.0550 (13) 0.0549 (12) 0.0575 (13) −0.0148 (10) −0.0104 (10) −0.0124 (10)
N5 0.0703 (16) 0.0659 (16) 0.0962 (18) −0.0046 (13) −0.0285 (13) −0.0211 (13)

Geometric parameters (Å, °)

N2—C9 1.326 (4) C5—C8 1.502 (3)
N2—N1 1.325 (3) C6—C7 1.380 (3)
C1—N5 1.141 (3) C6—H6 0.9300
C1—C2 1.436 (3) C7—H7 0.9300
C2—C7 1.379 (3) C8—N4 1.463 (3)
C2—C3 1.381 (3) C8—H8A 0.9700
C3—C4 1.375 (3) C8—H8B 0.9700
C3—H3 0.9300 N1—N4 1.312 (3)
C4—C5 1.384 (3) C9—N3 1.304 (3)
C4—H4 0.9300 C9—H9 0.84 (3)
C5—C6 1.379 (3) N3—N4 1.324 (3)
C9—N2—N1 105.1 (2) C2—C7—C6 119.9 (2)
N5—C1—C2 179.6 (3) C2—C7—H7 120.0
C7—C2—C3 120.1 (2) C6—C7—H7 120.0
C7—C2—C1 119.7 (2) N4—C8—C5 111.39 (19)
C3—C2—C1 120.2 (2) N4—C8—H8A 109.4
C4—C3—C2 119.6 (2) C5—C8—H8A 109.4
C4—C3—H3 120.2 N4—C8—H8B 109.4
C2—C3—H3 120.2 C5—C8—H8B 109.4
C3—C4—C5 120.8 (2) H8A—C8—H8B 108.0
C3—C4—H4 119.6 N4—N1—N2 106.5 (2)
C5—C4—H4 119.6 N3—C9—N2 113.6 (3)
C6—C5—C4 119.2 (2) N3—C9—H9 122 (3)
C6—C5—C8 120.0 (2) N2—C9—H9 124 (2)
C4—C5—C8 120.9 (2) C9—N3—N4 102.1 (2)
C5—C6—C7 120.5 (2) N1—N4—N3 112.7 (2)
C5—C6—H6 119.8 N1—N4—C8 123.1 (2)
C7—C6—H6 119.8 N3—N4—C8 124.1 (2)
C7—C2—C3—C4 0.8 (4) C4—C5—C8—N4 −83.5 (3)
C1—C2—C3—C4 179.9 (2) C9—N2—N1—N4 −0.6 (3)
C2—C3—C4—C5 −0.6 (4) N1—N2—C9—N3 1.0 (3)
C3—C4—C5—C6 0.1 (4) N2—C9—N3—N4 −1.0 (3)
C3—C4—C5—C8 178.5 (2) N2—N1—N4—N3 0.0 (3)
C4—C5—C6—C7 0.1 (4) N2—N1—N4—C8 177.3 (2)
C8—C5—C6—C7 −178.3 (2) C9—N3—N4—N1 0.6 (3)
C3—C2—C7—C6 −0.6 (4) C9—N3—N4—C8 −176.6 (2)
C1—C2—C7—C6 −179.7 (2) C5—C8—N4—N1 −92.0 (3)
C5—C6—C7—C2 0.1 (4) C5—C8—N4—N3 84.9 (3)
C6—C5—C8—N4 94.9 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2157).

References

  1. Bethel, P. A., Hill, M. S., Mahon, M. F. & Molloy, K. C. (1999). J. Chem. Soc. Perkin Trans. 1, pp. 3507–3514.
  2. Jin, Z., Nolan, K., McArthur, C. R., Lever, A. B. P. & Leznoff, C. C. (1994). J. Organomet. Chem.468, 205–212.
  3. Rigaku (2005). CrystalClear Version 1.4.0. Rigaku Corporation, Tokyo, Japan.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Wu, T., Yi, B. H. & Li, D. (2005). Inorg. Chem.44, 4130–4132. [DOI] [PubMed]
  6. Zhang, X. M., Zhao, Y. F., Wu, H. S., Batten, S. R. & Ng, S. W. (2006). Dalton Trans. pp. 3170–3178. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808000809/kp2157sup1.cif

e-64-0o445-sup1.cif (14.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808000809/kp2157Isup2.hkl

e-64-0o445-Isup2.hkl (76.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES