Abstract
The title molecule, C20H20N2, is chiral; the absolute configuration follows from the known chirality of the input reagents. In addition to van der Waals forces, C—H⋯π ring interactions are also present. The angle between the planes of the phenyl rings is 65.6 (1)°. The heterocyclic ring of the quinoxaline system has a twist-boat configuration, while the cyclohexane ring has a chair configuration.
Related literature
For examples of the synthesis of non-centrosymmetric solid materials by reactions of chiral organic ligands and inorganic salts, see: Qu et al. (2004 ▶). For the geometric parameters of C=N bonds, see: Figuet et al. (2001 ▶); Kennedy & Reglinski (2001 ▶).
Experimental
Crystal data
C20H20N2
M r = 288.38
Orthorhombic,
a = 5.6253 (11) Å
b = 15.402 (3) Å
c = 18.315 (4) Å
V = 1586.8 (5) Å3
Z = 4
Mo Kα radiation
μ = 0.07 mm−1
T = 293 (2) K
0.12 × 0.08 × 0.05 mm
Data collection
Rigaku SCXmini diffractometer
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 ▶) T min = 0.901, T max = 1.000 (expected range = 0.898–0.996)
15676 measured reflections
2134 independent reflections
1880 reflections with I > 2σ(I)
R int = 0.053
Refinement
R[F 2 > 2σ(F 2)] = 0.056
wR(F 2) = 0.132
S = 1.19
2134 reflections
200 parameters
H-atom parameters constrained
Δρmax = 0.13 e Å−3
Δρmin = −0.13 e Å−3
Data collection: CrystalClear (Rigaku, 2005 ▶); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 ▶); molecular graphics: SHELXTL (Sheldrick, 1999 ▶); software used to prepare material for publication: SHELXTL.
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807067505/fb2074sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536807067505/fb2074Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. D—H⋯π-ring interactions calculated by PLATON (Spek, 2003 ▶).
Cg1 and Cg2 are the centroids of the phenyl rings C15–C20 and C8–C13, respectively.
D–H⋯Cg | D—H | H⋯Cg | D⋯Cg | D—H⋯Cg |
---|---|---|---|---|
C3—H3A⋯Cg1i | 0.97 | 2.82 | 3.761 (4) | 164 |
C4—H4A⋯Cg2ii | 0.97 | 2.94 | 3.840 (3) | 154 |
C11—H11A⋯Cg1iii | 0.93 | 2.87 | 3.769 (3) | 164 |
Symmetry codes: (i) ; (ii)
; (iii)
.
Acknowledgments
This work was supported by a Start-up Grant from Southeast University to HYY.
supplementary crystallographic information
Comment
Presence of chiral centres in organic ligands is important for synthesis of chiral coordination polymers (Qu et al., 2004). We report here the crystal structure of (4aR,8aR)-4a,5,6,7,8,8a-hexahydro-2,3-diphenylquinoxaline (Fig. 1).
The lengths of the C?N double bonds (1.276 (3) and 1.278 (3) Å) are similar as in the following compounds containing the C?N double bonds: tris[(5-bromosalicylidene)aminoethyl]amine (Figuet et al. (2001) and N,N'-bis(salicylidene)-1,4,butanediamine (Kennedy et al.(2001).
Experimental
Benzil (2.10 g, 10.0 mmol) and (1R,2R)-(-)-diaminocyclohexane (1.20 g, 10.5 mmol) were dissolved in methanol (20 ml) containing sulfuric acid (0.08 g) as a catalytic agent. The solution was stirred at room temperature. After 4 h, a yellow precipitate appeared. It was filtered off and washed with chilled methanol (10 ml). The crude product was recrystallized by slow evaporation of the saturated ethanol solution. Yellow block-like crystals with dimensions of tenths of mm were isolated.
Refinement
All the H atoms could be found in the difference Fourier maps. Nevertheless, they were placed into the idealized positions and refined in a riding atom approximation with following constraints: Cmethine—Hmethine = 0.98; Cmethylene—Hmethylene = 0.97; Caryl—Haryl = 0.93 Å; UisoH = 1.2UeqC in all the cases. In the absence of significant anomalous scattering effects, 1531 Friedel pairs were merged. The absolute configuration was determined by synthesis. The chiral reactant (1R,2R)-(-)-diaminocyclohexane was used.
Figures
Fig. 1.
A view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
The crystal packing of the title compound viewed along the a axis.
Crystal data
C20H20N2 | F000 = 616 |
Mr = 288.38 | Dx = 1.207 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 3447 reflections |
a = 5.6253 (11) Å | θ = 3.4–27.5º |
b = 15.402 (3) Å | µ = 0.07 mm−1 |
c = 18.315 (4) Å | T = 293 (2) K |
V = 1586.8 (5) Å3 | Block, yellow |
Z = 4 | 0.12 × 0.08 × 0.05 mm |
Data collection
Rigaku SCXmini diffractometer | 2134 independent reflections |
Radiation source: fine-focus sealed tube | 1880 reflections with I > 2σ(I) |
Monochromator: graphite | Rint = 0.053 |
Detector resolution: 13.6612 pixels mm-1 | θmax = 27.6º |
T = 293(2) K | θmin = 3.5º |
ω scans | h = −7→7 |
Absorption correction: multi-scan(CrystalClear; Rigaku, 2005) | k = −19→20 |
Tmin = 0.901, Tmax = 1.000 | l = −23→23 |
15676 measured reflections |
Refinement
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.056 | H-atom parameters constrained |
wR(F2) = 0.132 | w = 1/[σ2(Fo2) + (0.0548P)2 + 0.1683P] where P = (Fo2 + 2Fc2)/3 |
S = 1.19 | (Δ/σ)max < 0.001 |
2134 reflections | Δρmax = 0.13 e Å−3 |
200 parameters | Δρmin = −0.13 e Å−3 |
80 constraints | Extinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.010 (2) |
Special details
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x | y | z | Uiso*/Ueq | ||
C1 | 0.7959 (6) | 0.65882 (17) | 0.09928 (14) | 0.0512 (7) | |
H1A | 0.6841 | 0.6288 | 0.1316 | 0.061* | |
C2 | 0.7195 (7) | 0.75311 (18) | 0.09215 (16) | 0.0645 (8) | |
H2A | 0.5568 | 0.7557 | 0.0748 | 0.077* | |
H2B | 0.8198 | 0.7822 | 0.0567 | 0.077* | |
C3 | 0.7381 (7) | 0.7995 (2) | 0.16551 (17) | 0.0699 (9) | |
H3A | 0.7004 | 0.8605 | 0.1589 | 0.084* | |
H3B | 0.6221 | 0.7752 | 0.1989 | 0.084* | |
C4 | 0.9823 (7) | 0.79159 (18) | 0.19858 (17) | 0.0659 (9) | |
H4A | 0.9824 | 0.8180 | 0.2467 | 0.079* | |
H4B | 1.0958 | 0.8227 | 0.1685 | 0.079* | |
C5 | 1.0578 (7) | 0.69734 (16) | 0.20496 (15) | 0.0592 (8) | |
H5A | 1.2196 | 0.6944 | 0.2231 | 0.071* | |
H5B | 0.9556 | 0.6678 | 0.2396 | 0.071* | |
C6 | 1.0429 (5) | 0.65242 (16) | 0.13156 (14) | 0.0511 (7) | |
H6A | 1.1540 | 0.6811 | 0.0982 | 0.061* | |
C7 | 1.0503 (5) | 0.51148 (15) | 0.08549 (13) | 0.0476 (6) | |
C8 | 1.1020 (5) | 0.41698 (17) | 0.09128 (14) | 0.0503 (7) | |
C9 | 1.3120 (6) | 0.39001 (19) | 0.12512 (15) | 0.0583 (7) | |
H9A | 1.4192 | 0.4307 | 0.1430 | 0.070* | |
C10 | 1.3595 (7) | 0.3016 (2) | 0.13178 (17) | 0.0673 (9) | |
H10A | 1.4989 | 0.2834 | 0.1544 | 0.081* | |
C11 | 1.2019 (7) | 0.24103 (19) | 0.10512 (18) | 0.0684 (9) | |
H11A | 1.2349 | 0.1821 | 0.1094 | 0.082* | |
C12 | 0.9971 (7) | 0.26799 (18) | 0.07241 (16) | 0.0656 (9) | |
H12A | 0.8894 | 0.2270 | 0.0552 | 0.079* | |
C13 | 0.9474 (6) | 0.35524 (17) | 0.06444 (15) | 0.0565 (7) | |
H13A | 0.8089 | 0.3725 | 0.0408 | 0.068* | |
C14 | 0.9184 (5) | 0.54805 (16) | 0.02031 (14) | 0.0464 (6) | |
C15 | 0.9435 (5) | 0.50996 (15) | −0.05353 (13) | 0.0450 (6) | |
C16 | 1.1486 (5) | 0.46658 (17) | −0.07485 (15) | 0.0541 (7) | |
H16A | 1.2679 | 0.4558 | −0.0409 | 0.065* | |
C17 | 1.1760 (6) | 0.43947 (19) | −0.14618 (15) | 0.0601 (7) | |
H17A | 1.3142 | 0.4108 | −0.1601 | 0.072* | |
C18 | 1.0006 (6) | 0.45455 (18) | −0.19673 (15) | 0.0600 (8) | |
H18A | 1.0213 | 0.4365 | −0.2448 | 0.072* | |
C19 | 0.7950 (6) | 0.49611 (19) | −0.17673 (15) | 0.0578 (7) | |
H19A | 0.6759 | 0.5059 | −0.2110 | 0.069* | |
C20 | 0.7659 (6) | 0.52341 (16) | −0.10515 (14) | 0.0511 (6) | |
H20A | 0.6258 | 0.5511 | −0.0915 | 0.061* | |
N1 | 1.1133 (5) | 0.56069 (14) | 0.13814 (12) | 0.0557 (6) | |
N2 | 0.7915 (5) | 0.61639 (14) | 0.02727 (12) | 0.0526 (6) |
Atomic displacement parameters (Å2)
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0596 (17) | 0.0478 (14) | 0.0463 (13) | 0.0055 (13) | 0.0037 (13) | −0.0004 (11) |
C2 | 0.084 (2) | 0.0535 (16) | 0.0564 (16) | 0.0211 (17) | −0.0011 (17) | −0.0020 (12) |
C3 | 0.094 (3) | 0.0526 (16) | 0.0631 (18) | 0.0175 (18) | 0.0079 (19) | −0.0023 (13) |
C4 | 0.091 (3) | 0.0436 (14) | 0.0631 (17) | −0.0021 (17) | 0.0042 (18) | −0.0010 (13) |
C5 | 0.077 (2) | 0.0467 (14) | 0.0543 (15) | −0.0056 (16) | −0.0053 (15) | 0.0005 (12) |
C6 | 0.0606 (17) | 0.0410 (13) | 0.0517 (14) | 0.0015 (13) | 0.0003 (14) | 0.0025 (11) |
C7 | 0.0542 (15) | 0.0415 (12) | 0.0471 (13) | 0.0037 (12) | −0.0003 (12) | 0.0030 (10) |
C8 | 0.0596 (17) | 0.0469 (13) | 0.0445 (13) | 0.0065 (13) | 0.0057 (13) | 0.0069 (11) |
C9 | 0.0608 (18) | 0.0550 (15) | 0.0590 (16) | 0.0095 (15) | −0.0028 (14) | 0.0039 (13) |
C10 | 0.078 (2) | 0.0612 (18) | 0.0628 (18) | 0.0265 (18) | 0.0031 (18) | 0.0132 (14) |
C11 | 0.095 (3) | 0.0447 (14) | 0.0657 (18) | 0.0139 (18) | 0.0167 (19) | 0.0102 (14) |
C12 | 0.085 (2) | 0.0454 (14) | 0.0665 (18) | −0.0041 (16) | 0.0073 (18) | 0.0080 (13) |
C13 | 0.0631 (18) | 0.0472 (13) | 0.0592 (16) | 0.0006 (14) | −0.0009 (15) | 0.0066 (12) |
C14 | 0.0490 (14) | 0.0417 (12) | 0.0486 (13) | −0.0007 (12) | −0.0001 (11) | 0.0031 (10) |
C15 | 0.0494 (14) | 0.0380 (11) | 0.0477 (13) | −0.0027 (12) | 0.0028 (11) | 0.0051 (10) |
C16 | 0.0528 (16) | 0.0557 (15) | 0.0537 (14) | 0.0044 (13) | 0.0025 (13) | 0.0015 (12) |
C17 | 0.0623 (18) | 0.0584 (16) | 0.0596 (16) | 0.0021 (15) | 0.0103 (15) | −0.0048 (14) |
C18 | 0.079 (2) | 0.0521 (15) | 0.0490 (14) | −0.0030 (16) | 0.0042 (15) | −0.0046 (12) |
C19 | 0.0713 (19) | 0.0506 (14) | 0.0513 (14) | −0.0014 (15) | −0.0106 (15) | 0.0051 (12) |
C20 | 0.0562 (16) | 0.0431 (13) | 0.0539 (14) | 0.0002 (13) | −0.0018 (13) | 0.0043 (11) |
N1 | 0.0655 (15) | 0.0453 (11) | 0.0563 (13) | 0.0060 (12) | −0.0078 (12) | 0.0012 (10) |
N2 | 0.0574 (14) | 0.0507 (12) | 0.0499 (12) | 0.0069 (12) | −0.0034 (11) | 0.0012 (10) |
Geometric parameters (Å, °)
C1—N2 | 1.472 (3) | C9—C10 | 1.393 (4) |
C1—C6 | 1.513 (4) | C9—H9A | 0.9300 |
C1—C2 | 1.520 (4) | C10—C11 | 1.377 (5) |
C1—H1A | 0.9800 | C10—H10A | 0.9300 |
C2—C3 | 1.525 (4) | C11—C12 | 1.363 (5) |
C2—H2A | 0.9700 | C11—H11A | 0.9300 |
C2—H2B | 0.9700 | C12—C13 | 1.380 (4) |
C3—C4 | 1.506 (6) | C12—H12A | 0.9300 |
C3—H3A | 0.9700 | C13—H13A | 0.9300 |
C3—H3B | 0.9700 | C14—N2 | 1.278 (3) |
C4—C5 | 1.517 (4) | C14—C15 | 1.481 (3) |
C4—H4A | 0.9700 | C15—C16 | 1.389 (4) |
C4—H4B | 0.9700 | C15—C20 | 1.391 (4) |
C5—C6 | 1.514 (4) | C16—C17 | 1.380 (4) |
C5—H5A | 0.9700 | C16—H16A | 0.9300 |
C5—H5B | 0.9700 | C17—C18 | 1.373 (5) |
C6—N1 | 1.472 (3) | C17—H17A | 0.9300 |
C6—H6A | 0.9800 | C18—C19 | 1.372 (5) |
C7—N1 | 1.276 (3) | C18—H18A | 0.9300 |
C7—C8 | 1.488 (3) | C19—C20 | 1.387 (4) |
C7—C14 | 1.514 (3) | C19—H19A | 0.9300 |
C8—C13 | 1.379 (4) | C20—H20A | 0.9300 |
C8—C9 | 1.397 (4) | ||
N2—C1—C6 | 109.6 (2) | C13—C8—C7 | 121.7 (3) |
N2—C1—C2 | 110.0 (2) | C9—C8—C7 | 119.2 (3) |
C6—C1—C2 | 110.8 (3) | C10—C9—C8 | 119.5 (3) |
N2—C1—H1A | 108.8 | C10—C9—H9A | 120.3 |
C6—C1—H1A | 108.8 | C8—C9—H9A | 120.3 |
C2—C1—H1A | 108.8 | C11—C10—C9 | 120.5 (3) |
C1—C2—C3 | 110.7 (2) | C11—C10—H10A | 119.7 |
C1—C2—H2A | 109.5 | C9—C10—H10A | 119.7 |
C3—C2—H2A | 109.5 | C12—C11—C10 | 119.6 (3) |
C1—C2—H2B | 109.5 | C12—C11—H11A | 120.2 |
C3—C2—H2B | 109.5 | C10—C11—H11A | 120.2 |
H2A—C2—H2B | 108.1 | C11—C12—C13 | 120.9 (3) |
C4—C3—C2 | 112.2 (3) | C11—C12—H12A | 119.5 |
C4—C3—H3A | 109.2 | C13—C12—H12A | 119.5 |
C2—C3—H3A | 109.2 | C8—C13—C12 | 120.4 (3) |
C4—C3—H3B | 109.2 | C8—C13—H13A | 119.8 |
C2—C3—H3B | 109.2 | C12—C13—H13A | 119.8 |
H3A—C3—H3B | 107.9 | N2—C14—C15 | 118.1 (2) |
C3—C4—C5 | 111.3 (3) | N2—C14—C7 | 120.1 (2) |
C3—C4—H4A | 109.4 | C15—C14—C7 | 121.7 (2) |
C5—C4—H4A | 109.4 | C16—C15—C20 | 118.5 (2) |
C3—C4—H4B | 109.4 | C16—C15—C14 | 121.8 (2) |
C5—C4—H4B | 109.4 | C20—C15—C14 | 119.6 (2) |
H4A—C4—H4B | 108.0 | C17—C16—C15 | 120.3 (3) |
C6—C5—C4 | 110.7 (2) | C17—C16—H16A | 119.9 |
C6—C5—H5A | 109.5 | C15—C16—H16A | 119.9 |
C4—C5—H5A | 109.5 | C18—C17—C16 | 120.5 (3) |
C6—C5—H5B | 109.5 | C18—C17—H17A | 119.8 |
C4—C5—H5B | 109.5 | C16—C17—H17A | 119.8 |
H5A—C5—H5B | 108.1 | C19—C18—C17 | 120.3 (3) |
N1—C6—C1 | 110.0 (2) | C19—C18—H18A | 119.8 |
N1—C6—C5 | 110.5 (2) | C17—C18—H18A | 119.8 |
C1—C6—C5 | 111.6 (2) | C18—C19—C20 | 119.6 (3) |
N1—C6—H6A | 108.2 | C18—C19—H19A | 120.2 |
C1—C6—H6A | 108.2 | C20—C19—H19A | 120.2 |
C5—C6—H6A | 108.2 | C19—C20—C15 | 120.9 (3) |
N1—C7—C8 | 118.2 (2) | C19—C20—H20A | 119.6 |
N1—C7—C14 | 120.7 (2) | C15—C20—H20A | 119.6 |
C8—C7—C14 | 121.1 (2) | C7—N1—C6 | 115.7 (2) |
C13—C8—C9 | 119.1 (3) | C14—N2—C1 | 116.5 (2) |
Table 1 D—H···π-ring interactions calculated by PLATON (Spek, 2003)
D–H···Cg | D—H | H···Cg | D···Cg | D—H···Cg |
C3—H3A···Cg1i | 0.97 | 2.82 | 3.761 (4) | 164 |
C4—H4A···Cg2ii | 0.97 | 2.94 | 3.840 (3) | 154 |
C11—H11A···Cg1iii | 0.93 | 2.87 | 3.769 (3) | 164 |
Symmetry codes:(i) -1/2+x,3/2-y,-z; (ii) 2-x,1/2+y,1/2-z; (iii) 1/2+x,1/2-y,-z. Cg1 and Cg2 are the centroids of the phenyl rings C15–C20 C8–C13, respectively.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2074).
References
- Figuet, M., Averbuch-Pouchot, M. T., Du Moulinet d’Hardemare, D. & Jarjayes, O. (2001). Eur. J. Inorg. Chem. pp. 2089–2096.
- Kennedy, A. R. & Reglinski, J. (2001). Acta Cryst. E57, o1027–o1028.
- Qu, Z.-R., Zhao, H., Wang, Y.-P., Wang, X.-S., Ye, Q., Li, Y.-H., Xiong, R.-G., Abrahams, B. H., Liu, Z.-G., Xue, Z.-L. & You, X.-Z. (2004). Chem. Eur. J.10, 54–60.
- Rigaku (2005). CrystalClear Version 1.4.0. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467–473.
- Sheldrick, G. M. (1997). SHELXL97 University of Göttingen, Germany.
- Sheldrick, G. M. (1999). SHELXTL/PC Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807067505/fb2074sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536807067505/fb2074Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report