Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jan 4;64(Pt 2):o359. doi: 10.1107/S1600536807067505

(4aR,8aR)-2,3-Diphenyl-4a,5,6,7,8,8a-hexa­hydro­quinoxaline

Guo-Xi Wang a, Heng-Yun Ye a,*
PMCID: PMC2960268  PMID: 21201391

Abstract

The title mol­ecule, C20H20N2, is chiral; the absolute configuration follows from the known chirality of the input reagents. In addition to van der Waals forces, C—H⋯π ring inter­actions are also present. The angle between the planes of the phenyl rings is 65.6 (1)°. The heterocyclic ring of the quinoxaline system has a twist-boat configuration, while the cyclohexane ring has a chair configuration.

Related literature

For examples of the synthesis of non-centrosymmetric solid materials by reactions of chiral organic ligands and inorganic salts, see: Qu et al. (2004). For the geometric parameters of C=N bonds, see: Figuet et al. (2001); Kennedy & Reglinski (2001).graphic file with name e-64-0o359-scheme1.jpg

Experimental

Crystal data

  • C20H20N2

  • M r = 288.38

  • Orthorhombic, Inline graphic

  • a = 5.6253 (11) Å

  • b = 15.402 (3) Å

  • c = 18.315 (4) Å

  • V = 1586.8 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 (2) K

  • 0.12 × 0.08 × 0.05 mm

Data collection

  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.901, T max = 1.000 (expected range = 0.898–0.996)

  • 15676 measured reflections

  • 2134 independent reflections

  • 1880 reflections with I > 2σ(I)

  • R int = 0.053

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056

  • wR(F 2) = 0.132

  • S = 1.19

  • 2134 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.13 e Å−3

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1999); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807067505/fb2074sup1.cif

e-64-0o359-sup1.cif (17KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807067505/fb2074Isup2.hkl

e-64-0o359-Isup2.hkl (105KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. D—H⋯π-ring interactions calculated by PLATON (Spek, 2003).

Cg1 and Cg2 are the centroids of the phenyl rings C15–C20 and C8–C13, respectively.

D–H⋯Cg D—H H⋯Cg DCg D—H⋯Cg
C3—H3ACg1i 0.97 2.82 3.761 (4) 164
C4—H4ACg2ii 0.97 2.94 3.840 (3) 154
C11—H11ACg1iii 0.93 2.87 3.769 (3) 164

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported by a Start-up Grant from Southeast University to HYY.

supplementary crystallographic information

Comment

Presence of chiral centres in organic ligands is important for synthesis of chiral coordination polymers (Qu et al., 2004). We report here the crystal structure of (4aR,8aR)-4a,5,6,7,8,8a-hexahydro-2,3-diphenylquinoxaline (Fig. 1).

The lengths of the C?N double bonds (1.276 (3) and 1.278 (3) Å) are similar as in the following compounds containing the C?N double bonds: tris[(5-bromosalicylidene)aminoethyl]amine (Figuet et al. (2001) and N,N'-bis(salicylidene)-1,4,butanediamine (Kennedy et al.(2001).

Experimental

Benzil (2.10 g, 10.0 mmol) and (1R,2R)-(-)-diaminocyclohexane (1.20 g, 10.5 mmol) were dissolved in methanol (20 ml) containing sulfuric acid (0.08 g) as a catalytic agent. The solution was stirred at room temperature. After 4 h, a yellow precipitate appeared. It was filtered off and washed with chilled methanol (10 ml). The crude product was recrystallized by slow evaporation of the saturated ethanol solution. Yellow block-like crystals with dimensions of tenths of mm were isolated.

Refinement

All the H atoms could be found in the difference Fourier maps. Nevertheless, they were placed into the idealized positions and refined in a riding atom approximation with following constraints: Cmethine—Hmethine = 0.98; Cmethylene—Hmethylene = 0.97; Caryl—Haryl = 0.93 Å; UisoH = 1.2UeqC in all the cases. In the absence of significant anomalous scattering effects, 1531 Friedel pairs were merged. The absolute configuration was determined by synthesis. The chiral reactant (1R,2R)-(-)-diaminocyclohexane was used.

Figures

Fig. 1.

Fig. 1.

A view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The crystal packing of the title compound viewed along the a axis.

Crystal data

C20H20N2 F000 = 616
Mr = 288.38 Dx = 1.207 Mg m3
Orthorhombic, P212121 Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 3447 reflections
a = 5.6253 (11) Å θ = 3.4–27.5º
b = 15.402 (3) Å µ = 0.07 mm1
c = 18.315 (4) Å T = 293 (2) K
V = 1586.8 (5) Å3 Block, yellow
Z = 4 0.12 × 0.08 × 0.05 mm

Data collection

Rigaku SCXmini diffractometer 2134 independent reflections
Radiation source: fine-focus sealed tube 1880 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.053
Detector resolution: 13.6612 pixels mm-1 θmax = 27.6º
T = 293(2) K θmin = 3.5º
ω scans h = −7→7
Absorption correction: multi-scan(CrystalClear; Rigaku, 2005) k = −19→20
Tmin = 0.901, Tmax = 1.000 l = −23→23
15676 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056 H-atom parameters constrained
wR(F2) = 0.132   w = 1/[σ2(Fo2) + (0.0548P)2 + 0.1683P] where P = (Fo2 + 2Fc2)/3
S = 1.19 (Δ/σ)max < 0.001
2134 reflections Δρmax = 0.13 e Å3
200 parameters Δρmin = −0.13 e Å3
80 constraints Extinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.010 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.7959 (6) 0.65882 (17) 0.09928 (14) 0.0512 (7)
H1A 0.6841 0.6288 0.1316 0.061*
C2 0.7195 (7) 0.75311 (18) 0.09215 (16) 0.0645 (8)
H2A 0.5568 0.7557 0.0748 0.077*
H2B 0.8198 0.7822 0.0567 0.077*
C3 0.7381 (7) 0.7995 (2) 0.16551 (17) 0.0699 (9)
H3A 0.7004 0.8605 0.1589 0.084*
H3B 0.6221 0.7752 0.1989 0.084*
C4 0.9823 (7) 0.79159 (18) 0.19858 (17) 0.0659 (9)
H4A 0.9824 0.8180 0.2467 0.079*
H4B 1.0958 0.8227 0.1685 0.079*
C5 1.0578 (7) 0.69734 (16) 0.20496 (15) 0.0592 (8)
H5A 1.2196 0.6944 0.2231 0.071*
H5B 0.9556 0.6678 0.2396 0.071*
C6 1.0429 (5) 0.65242 (16) 0.13156 (14) 0.0511 (7)
H6A 1.1540 0.6811 0.0982 0.061*
C7 1.0503 (5) 0.51148 (15) 0.08549 (13) 0.0476 (6)
C8 1.1020 (5) 0.41698 (17) 0.09128 (14) 0.0503 (7)
C9 1.3120 (6) 0.39001 (19) 0.12512 (15) 0.0583 (7)
H9A 1.4192 0.4307 0.1430 0.070*
C10 1.3595 (7) 0.3016 (2) 0.13178 (17) 0.0673 (9)
H10A 1.4989 0.2834 0.1544 0.081*
C11 1.2019 (7) 0.24103 (19) 0.10512 (18) 0.0684 (9)
H11A 1.2349 0.1821 0.1094 0.082*
C12 0.9971 (7) 0.26799 (18) 0.07241 (16) 0.0656 (9)
H12A 0.8894 0.2270 0.0552 0.079*
C13 0.9474 (6) 0.35524 (17) 0.06444 (15) 0.0565 (7)
H13A 0.8089 0.3725 0.0408 0.068*
C14 0.9184 (5) 0.54805 (16) 0.02031 (14) 0.0464 (6)
C15 0.9435 (5) 0.50996 (15) −0.05353 (13) 0.0450 (6)
C16 1.1486 (5) 0.46658 (17) −0.07485 (15) 0.0541 (7)
H16A 1.2679 0.4558 −0.0409 0.065*
C17 1.1760 (6) 0.43947 (19) −0.14618 (15) 0.0601 (7)
H17A 1.3142 0.4108 −0.1601 0.072*
C18 1.0006 (6) 0.45455 (18) −0.19673 (15) 0.0600 (8)
H18A 1.0213 0.4365 −0.2448 0.072*
C19 0.7950 (6) 0.49611 (19) −0.17673 (15) 0.0578 (7)
H19A 0.6759 0.5059 −0.2110 0.069*
C20 0.7659 (6) 0.52341 (16) −0.10515 (14) 0.0511 (6)
H20A 0.6258 0.5511 −0.0915 0.061*
N1 1.1133 (5) 0.56069 (14) 0.13814 (12) 0.0557 (6)
N2 0.7915 (5) 0.61639 (14) 0.02727 (12) 0.0526 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0596 (17) 0.0478 (14) 0.0463 (13) 0.0055 (13) 0.0037 (13) −0.0004 (11)
C2 0.084 (2) 0.0535 (16) 0.0564 (16) 0.0211 (17) −0.0011 (17) −0.0020 (12)
C3 0.094 (3) 0.0526 (16) 0.0631 (18) 0.0175 (18) 0.0079 (19) −0.0023 (13)
C4 0.091 (3) 0.0436 (14) 0.0631 (17) −0.0021 (17) 0.0042 (18) −0.0010 (13)
C5 0.077 (2) 0.0467 (14) 0.0543 (15) −0.0056 (16) −0.0053 (15) 0.0005 (12)
C6 0.0606 (17) 0.0410 (13) 0.0517 (14) 0.0015 (13) 0.0003 (14) 0.0025 (11)
C7 0.0542 (15) 0.0415 (12) 0.0471 (13) 0.0037 (12) −0.0003 (12) 0.0030 (10)
C8 0.0596 (17) 0.0469 (13) 0.0445 (13) 0.0065 (13) 0.0057 (13) 0.0069 (11)
C9 0.0608 (18) 0.0550 (15) 0.0590 (16) 0.0095 (15) −0.0028 (14) 0.0039 (13)
C10 0.078 (2) 0.0612 (18) 0.0628 (18) 0.0265 (18) 0.0031 (18) 0.0132 (14)
C11 0.095 (3) 0.0447 (14) 0.0657 (18) 0.0139 (18) 0.0167 (19) 0.0102 (14)
C12 0.085 (2) 0.0454 (14) 0.0665 (18) −0.0041 (16) 0.0073 (18) 0.0080 (13)
C13 0.0631 (18) 0.0472 (13) 0.0592 (16) 0.0006 (14) −0.0009 (15) 0.0066 (12)
C14 0.0490 (14) 0.0417 (12) 0.0486 (13) −0.0007 (12) −0.0001 (11) 0.0031 (10)
C15 0.0494 (14) 0.0380 (11) 0.0477 (13) −0.0027 (12) 0.0028 (11) 0.0051 (10)
C16 0.0528 (16) 0.0557 (15) 0.0537 (14) 0.0044 (13) 0.0025 (13) 0.0015 (12)
C17 0.0623 (18) 0.0584 (16) 0.0596 (16) 0.0021 (15) 0.0103 (15) −0.0048 (14)
C18 0.079 (2) 0.0521 (15) 0.0490 (14) −0.0030 (16) 0.0042 (15) −0.0046 (12)
C19 0.0713 (19) 0.0506 (14) 0.0513 (14) −0.0014 (15) −0.0106 (15) 0.0051 (12)
C20 0.0562 (16) 0.0431 (13) 0.0539 (14) 0.0002 (13) −0.0018 (13) 0.0043 (11)
N1 0.0655 (15) 0.0453 (11) 0.0563 (13) 0.0060 (12) −0.0078 (12) 0.0012 (10)
N2 0.0574 (14) 0.0507 (12) 0.0499 (12) 0.0069 (12) −0.0034 (11) 0.0012 (10)

Geometric parameters (Å, °)

C1—N2 1.472 (3) C9—C10 1.393 (4)
C1—C6 1.513 (4) C9—H9A 0.9300
C1—C2 1.520 (4) C10—C11 1.377 (5)
C1—H1A 0.9800 C10—H10A 0.9300
C2—C3 1.525 (4) C11—C12 1.363 (5)
C2—H2A 0.9700 C11—H11A 0.9300
C2—H2B 0.9700 C12—C13 1.380 (4)
C3—C4 1.506 (6) C12—H12A 0.9300
C3—H3A 0.9700 C13—H13A 0.9300
C3—H3B 0.9700 C14—N2 1.278 (3)
C4—C5 1.517 (4) C14—C15 1.481 (3)
C4—H4A 0.9700 C15—C16 1.389 (4)
C4—H4B 0.9700 C15—C20 1.391 (4)
C5—C6 1.514 (4) C16—C17 1.380 (4)
C5—H5A 0.9700 C16—H16A 0.9300
C5—H5B 0.9700 C17—C18 1.373 (5)
C6—N1 1.472 (3) C17—H17A 0.9300
C6—H6A 0.9800 C18—C19 1.372 (5)
C7—N1 1.276 (3) C18—H18A 0.9300
C7—C8 1.488 (3) C19—C20 1.387 (4)
C7—C14 1.514 (3) C19—H19A 0.9300
C8—C13 1.379 (4) C20—H20A 0.9300
C8—C9 1.397 (4)
N2—C1—C6 109.6 (2) C13—C8—C7 121.7 (3)
N2—C1—C2 110.0 (2) C9—C8—C7 119.2 (3)
C6—C1—C2 110.8 (3) C10—C9—C8 119.5 (3)
N2—C1—H1A 108.8 C10—C9—H9A 120.3
C6—C1—H1A 108.8 C8—C9—H9A 120.3
C2—C1—H1A 108.8 C11—C10—C9 120.5 (3)
C1—C2—C3 110.7 (2) C11—C10—H10A 119.7
C1—C2—H2A 109.5 C9—C10—H10A 119.7
C3—C2—H2A 109.5 C12—C11—C10 119.6 (3)
C1—C2—H2B 109.5 C12—C11—H11A 120.2
C3—C2—H2B 109.5 C10—C11—H11A 120.2
H2A—C2—H2B 108.1 C11—C12—C13 120.9 (3)
C4—C3—C2 112.2 (3) C11—C12—H12A 119.5
C4—C3—H3A 109.2 C13—C12—H12A 119.5
C2—C3—H3A 109.2 C8—C13—C12 120.4 (3)
C4—C3—H3B 109.2 C8—C13—H13A 119.8
C2—C3—H3B 109.2 C12—C13—H13A 119.8
H3A—C3—H3B 107.9 N2—C14—C15 118.1 (2)
C3—C4—C5 111.3 (3) N2—C14—C7 120.1 (2)
C3—C4—H4A 109.4 C15—C14—C7 121.7 (2)
C5—C4—H4A 109.4 C16—C15—C20 118.5 (2)
C3—C4—H4B 109.4 C16—C15—C14 121.8 (2)
C5—C4—H4B 109.4 C20—C15—C14 119.6 (2)
H4A—C4—H4B 108.0 C17—C16—C15 120.3 (3)
C6—C5—C4 110.7 (2) C17—C16—H16A 119.9
C6—C5—H5A 109.5 C15—C16—H16A 119.9
C4—C5—H5A 109.5 C18—C17—C16 120.5 (3)
C6—C5—H5B 109.5 C18—C17—H17A 119.8
C4—C5—H5B 109.5 C16—C17—H17A 119.8
H5A—C5—H5B 108.1 C19—C18—C17 120.3 (3)
N1—C6—C1 110.0 (2) C19—C18—H18A 119.8
N1—C6—C5 110.5 (2) C17—C18—H18A 119.8
C1—C6—C5 111.6 (2) C18—C19—C20 119.6 (3)
N1—C6—H6A 108.2 C18—C19—H19A 120.2
C1—C6—H6A 108.2 C20—C19—H19A 120.2
C5—C6—H6A 108.2 C19—C20—C15 120.9 (3)
N1—C7—C8 118.2 (2) C19—C20—H20A 119.6
N1—C7—C14 120.7 (2) C15—C20—H20A 119.6
C8—C7—C14 121.1 (2) C7—N1—C6 115.7 (2)
C13—C8—C9 119.1 (3) C14—N2—C1 116.5 (2)

Table 1 D—H···π-ring interactions calculated by PLATON (Spek, 2003)

D–H···Cg D—H H···Cg D···Cg D—H···Cg
C3—H3A···Cg1i 0.97 2.82 3.761 (4) 164
C4—H4A···Cg2ii 0.97 2.94 3.840 (3) 154
C11—H11A···Cg1iii 0.93 2.87 3.769 (3) 164

Symmetry codes:(i) -1/2+x,3/2-y,-z; (ii) 2-x,1/2+y,1/2-z; (iii) 1/2+x,1/2-y,-z. Cg1 and Cg2 are the centroids of the phenyl rings C15–C20 C8–C13, respectively.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2074).

References

  1. Figuet, M., Averbuch-Pouchot, M. T., Du Moulinet d’Hardemare, D. & Jarjayes, O. (2001). Eur. J. Inorg. Chem. pp. 2089–2096.
  2. Kennedy, A. R. & Reglinski, J. (2001). Acta Cryst. E57, o1027–o1028.
  3. Qu, Z.-R., Zhao, H., Wang, Y.-P., Wang, X.-S., Ye, Q., Li, Y.-H., Xiong, R.-G., Abrahams, B. H., Liu, Z.-G., Xue, Z.-L. & You, X.-Z. (2004). Chem. Eur. J.10, 54–60.
  4. Rigaku (2005). CrystalClear Version 1.4.0. Rigaku Corporation, Tokyo, Japan.
  5. Sheldrick, G. M. (1990). Acta Cryst. A46, 467–473.
  6. Sheldrick, G. M. (1997). SHELXL97 University of Göttingen, Germany.
  7. Sheldrick, G. M. (1999). SHELXTL/PC Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
  8. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807067505/fb2074sup1.cif

e-64-0o359-sup1.cif (17KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807067505/fb2074Isup2.hkl

e-64-0o359-Isup2.hkl (105KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES