Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jan 4;64(Pt 2):m270–m271. doi: 10.1107/S1600536807064276

Hexaaqua­manganese(II) dipicrate dihydrate

Changying Liu a, Xiufang Shi b,*, Bin Du b, Chunli Wu b, Mingjie Zhang a
PMCID: PMC2960271  PMID: 21201254

Abstract

In the title compound, [Mn(H2O)6](C6H2N3O7)2·2H2O, the manganese cation, on an inversion centre, is coordinated by six water mol­ecules, but the picrate anion has no coordinative inter­action with the manganese cation. The anions in the stack are linked via short inter­molecular O⋯C (3.013 and 2.973 Å) and C⋯C (3.089 and 3.065 Å) contacts and hydrogen bonds.

Related literature

For related literature, see: Bibal et al. (2003); García et al. (2004); Harrowfield et al. (1995a ,b ); Honda et al. (2003); Ji & Chen (1996); Maartmann-Moe (1969); Olsher et al. (1996); Yang et al. (2001); Zhang et al. (2003).graphic file with name e-64-0m270-scheme1.jpg

Experimental

Crystal data

  • [Mn(H2O)6](C6H2N3O7)2·2H2O

  • M r = 655.28

  • Orthorhombic, Inline graphic

  • a = 25.344 (6) Å

  • b = 7.1625 (17) Å

  • c = 13.217 (3) Å

  • V = 2399.2 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.67 mm−1

  • T = 294 (2) K

  • 0.28 × 0.24 × 0.20 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.835, T max = 0.878

  • 11295 measured reflections

  • 2122 independent reflections

  • 1643 reflections with I > 2σ(I)

  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.158

  • S = 1.11

  • 2122 reflections

  • 211 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −1.20 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807064276/ww2104sup1.cif

e-64-0m270-sup1.cif (17.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807064276/ww2104Isup2.hkl

e-64-0m270-Isup2.hkl (104.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Mn1—O1 2.120 (3)
Mn1—O3 2.136 (3)
Mn1—O2 2.190 (2)
O1—Mn1—O3 91.52 (11)
O1—Mn1—O3i 88.48 (11)
O1—Mn1—O2i 93.02 (11)
O3i—Mn1—O2i 86.83 (11)
O1—Mn1—O2 86.98 (11)
O3i—Mn1—O2 93.17 (11)

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O11ii 0.846 (10) 1.938 (12) 2.780 (4) 173 (4)
O1—H1B⋯O10iii 0.852 (10) 2.10 (2) 2.906 (4) 157 (4)
O2—H2A⋯O10iv 0.848 (10) 2.048 (12) 2.889 (4) 172 (4)
O2—H2A⋯O9iv 0.848 (10) 2.53 (4) 2.986 (4) 115 (3)
O3—H3A⋯O11v 0.832 (10) 1.951 (12) 2.782 (4) 176 (5)
O3—H3B⋯O6vi 0.841 (10) 2.047 (12) 2.884 (4) 174 (5)
O11—H11A⋯O2vii 0.847 (10) 2.213 (19) 3.006 (4) 156 (4)
O11—H11B⋯O10viii 0.846 (10) 2.17 (2) 2.938 (4) 151 (4)
O11—H11B⋯O4viii 0.846 (10) 2.27 (3) 2.913 (4) 133 (4)
O2—H2B⋯O4ix 0.841 (10) 2.143 (19) 2.930 (4) 156 (4)

Symmetry codes: (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic; (ix) Inline graphic.

Acknowledgments

We acknowledge financial support of this study by Zhengzhou University.

supplementary crystallographic information

Comment

Picrate is commonly used as an accompanying ion in many systems involving extraction and transport of metal ions to improve the extractability and selectivity (Zhang et al., 2003; Bibal et al., 2003; García et al., 2004). In many structures, picrate interacts as monodentate, bidentate and tridentate ligand (Olsher et al., 1996). Besides, picrate is a penta-dentate ligand when it coordinates with sodium or potassium cation by chelating pairs of oxygen atoms from p-nitro groups of adjacent picrates, and with successive cation linking the array into two or three-dimensional network (Harrowfield et al., 1995a; Maartmann-Moe, 1969). Furthermore, the picrate interacts as a heptadentate ligand through all its available oxygen donor atoms to coordinate with caesium (Harrowfield et al., 1995a).

Fig. 1 shows the structure and the atomic numbering schemes of the crystal structure of the title manganese picrate complex (I). This situation is similar to the crystal structure of iron (II) picrate (Honda et al., 2003) and Magnesium (II) picrate (Harrowfield et al., 1995b) and the picrate anion adopts a keto form with C6—O10 bond distance of 1.257 (4) Å, C1—C6 and C5—C6 bond distance of 1.447 (5) and 1.456 (5) Å, respectively, which is longer than the other C—C bond lengths (between 1.374 (5) to 1.460 (4) Å) in the benzene ring. The Mn—O distance ranges from 2.120 (2) to 2.190 (2) Å. The bond angle C1—C6—C5 is 111.9 (3)°, which is the case in some picrate complexes, while the corresponding bond angle of picric acid is 116.4 (5)° (Yang et al., 2001). Selected bond lengths and angles are given in Table 1.

In the case of planarity of picrate anion, the ortho nitro group are twisted relative to the plane of the benzene ring, (between 19.01 and 27.69°), while para-positioned nitro group is deviated 13.02° off the benzene ring. The picrate ions are stacked head-to-tail, presumably as a result of charge-transfer interactions. The anion in the stack are linked via short intermolecular O···C and C···C contacts of 3.013, 2.973, 3.089 and 3.065Å for O6···C1x, O7···C5xi, C2···C2x and C4···C4xi [symmetry codes: (x) 1/2 - x, 3/2 - y, z; (xi) 1/2 - x, 5/2 - y, z] respectively (Fig.2). The picrate anions are not parallel to one another, and the dihedral angles between neighbouring benzene planes are 25.01°, 25.25° and 3.48° respectively.

Experimental

The title compound (I) was obtained by the reaction of 3.20 g (13.96 mmol) picric acid with 0.80 g (6.98 mmol) manganese carbonate in water (350 ml), according to Ji et al., 1996. Heating has been continued for another 1 h and filtered while it was still hot. The filtrate was partially evaporated and left to stand in open atmosphere for a few days, during which time, yellow crystals suitable for X-Ray determination were obtained. Analysis, calculated for C12H20N6O22Mn: C 21.98, H 3.05, N 12.80, Mn 8.40%; Found: C 22.35, H 3.34, N 12.46, Mn 8.68%.

Refinement

All H atoms of water were located from difference map and then refined with O—H distances restrained to 0.85 (1) Å. All other H atoms were positioned geometrically and refined using a riding mode with the C—H bond lengths of 0.93 Å and Uiso(H)=1.2Ueq(carrier atom).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with displacement ellipsoids at the 50% probability level and the atomic labeling scheme.

Fig. 2.

Fig. 2.

The crystal structure of (I), projected along the c axis. The dashed lines indicate short intermolecular contacts with N···O, C···C and O···C distances less than 3.0, 3.2 and 3.0 Å, respectively. [Symmetry mode: (x) 1/2 - x, 3/2 - y, z; (xi) 1/2 - x, 5/2 - y, z]

Crystal data

[Mn(H2O)6](C6H2N3O7)2·2H2O F000 = 1340
Mr = 655.28 Dx = 1.814 Mg m3
Orthorhombic, Pccn Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ab 2ac Cell parameters from 3819 reflections
a = 25.344 (6) Å θ = 3.0–26.9º
b = 7.1625 (17) Å µ = 0.67 mm1
c = 13.217 (3) Å T = 294 (2) K
V = 2399.2 (9) Å3 Prism, yellow
Z = 4 0.28 × 0.24 × 0.20 mm

Data collection

Bruker SMART CCD area-detector diffractometer 2122 independent reflections
Radiation source: fine-focus sealed tube 1643 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.033
T = 294(2) K θmax = 25.0º
φ and ω scans θmin = 3.0º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −30→20
Tmin = 0.835, Tmax = 0.878 k = −6→8
11295 measured reflections l = −14→15

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.158   w = 1/[σ2(Fo2) + (0.1031P)2 + 1.8926P] where P = (Fo2 + 2Fc2)/3
S = 1.11 (Δ/σ)max = 0.002
2122 reflections Δρmax = 0.50 e Å3
211 parameters Δρmin = −1.20 e Å3
8 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Mn1 0.5000 0.0000 0.5000 0.0324 (3)
O1 0.46126 (10) 0.2424 (4) 0.4457 (2) 0.0421 (7)
H1A 0.4744 (16) 0.322 (5) 0.406 (3) 0.051*
H1B 0.4352 (12) 0.300 (6) 0.472 (3) 0.051*
O2 0.55826 (9) 0.1880 (4) 0.56780 (19) 0.0330 (6)
H2A 0.5744 (14) 0.275 (4) 0.537 (3) 0.040*
H2B 0.5784 (12) 0.128 (5) 0.606 (2) 0.040*
O3 0.45862 (10) 0.0148 (5) 0.6406 (2) 0.0445 (8)
H3A 0.4722 (18) 0.009 (6) 0.6979 (17) 0.053*
H3B 0.4257 (5) 0.002 (6) 0.637 (4) 0.053*
O4 0.38727 (10) 0.9511 (5) 0.2517 (2) 0.0513 (8)
O5 0.31431 (10) 0.8379 (4) 0.30495 (17) 0.0370 (6)
O6 0.15343 (9) 0.9452 (4) 0.1363 (2) 0.0377 (7)
O7 0.15241 (9) 1.0752 (4) −0.0108 (2) 0.0394 (7)
O8 0.31310 (10) 1.1774 (4) −0.18909 (18) 0.0380 (6)
O9 0.38129 (10) 1.0114 (4) −0.15080 (19) 0.0366 (7)
O10 0.39594 (9) 0.9860 (4) 0.05051 (18) 0.0341 (6)
N1 0.34078 (10) 0.9135 (4) 0.2395 (2) 0.0283 (7)
N2 0.17602 (11) 1.0079 (4) 0.0613 (2) 0.0251 (7)
N3 0.33772 (10) 1.0754 (4) −0.1311 (2) 0.0258 (6)
C1 0.31536 (13) 0.9605 (5) 0.1440 (2) 0.0242 (7)
C2 0.26072 (13) 0.9623 (5) 0.1463 (3) 0.0251 (7)
H2 0.2428 0.9370 0.2062 0.030*
C3 0.23318 (13) 1.0019 (4) 0.0588 (2) 0.0235 (7)
C4 0.25917 (13) 1.0386 (4) −0.0315 (3) 0.0245 (7)
H4 0.2402 1.0684 −0.0895 0.029*
C5 0.31330 (13) 1.0304 (4) −0.0340 (2) 0.0229 (7)
C6 0.34639 (13) 0.9917 (4) 0.0536 (3) 0.0246 (7)
O11 0.50741 (10) 0.9801 (4) 0.8282 (2) 0.0377 (7)
H11A 0.4971 (15) 0.878 (3) 0.854 (3) 0.045*
H11B 0.5400 (6) 0.982 (6) 0.842 (3) 0.045*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mn1 0.0302 (5) 0.0345 (5) 0.0324 (5) −0.0018 (3) −0.0020 (3) 0.0010 (3)
O1 0.0328 (14) 0.0450 (17) 0.0486 (17) 0.0143 (12) 0.0079 (12) 0.0177 (13)
O2 0.0237 (12) 0.0355 (14) 0.0398 (15) −0.0053 (10) −0.0081 (10) 0.0038 (11)
O3 0.0233 (14) 0.080 (2) 0.0299 (15) −0.0049 (13) 0.0010 (11) 0.0035 (14)
O4 0.0246 (14) 0.098 (2) 0.0312 (15) −0.0061 (14) −0.0079 (11) 0.0097 (15)
O5 0.0351 (13) 0.0514 (17) 0.0247 (13) 0.0044 (12) 0.0019 (10) 0.0052 (12)
O6 0.0214 (13) 0.0518 (17) 0.0399 (15) 0.0010 (11) 0.0062 (11) 0.0082 (13)
O7 0.0202 (13) 0.0538 (18) 0.0443 (16) 0.0023 (12) −0.0087 (11) 0.0137 (13)
O8 0.0415 (14) 0.0462 (16) 0.0263 (13) 0.0089 (12) −0.0015 (11) 0.0059 (12)
O9 0.0194 (13) 0.0578 (18) 0.0325 (14) 0.0028 (11) 0.0030 (10) −0.0004 (12)
O10 0.0160 (12) 0.0588 (18) 0.0274 (14) 0.0035 (10) −0.0005 (9) 0.0030 (11)
N1 0.0224 (15) 0.0361 (17) 0.0265 (15) 0.0045 (12) −0.0018 (12) −0.0022 (13)
N2 0.0187 (14) 0.0231 (15) 0.0334 (17) −0.0001 (11) −0.0012 (12) −0.0012 (12)
N3 0.0235 (14) 0.0308 (15) 0.0231 (14) −0.0023 (12) −0.0018 (11) −0.0031 (12)
C1 0.0208 (16) 0.0291 (18) 0.0226 (16) 0.0028 (13) −0.0026 (13) −0.0010 (14)
C2 0.0218 (17) 0.0265 (18) 0.0269 (17) 0.0002 (13) 0.0015 (13) −0.0006 (14)
C3 0.0180 (16) 0.0232 (16) 0.0294 (18) 0.0012 (12) −0.0011 (13) −0.0019 (13)
C4 0.0204 (17) 0.0259 (17) 0.0271 (17) 0.0018 (13) −0.0060 (13) −0.0009 (14)
C5 0.0200 (16) 0.0263 (18) 0.0224 (16) −0.0011 (13) 0.0000 (13) −0.0007 (13)
C6 0.0208 (17) 0.0265 (18) 0.0265 (19) 0.0016 (13) −0.0029 (13) −0.0023 (13)
O11 0.0303 (15) 0.0455 (17) 0.0374 (16) −0.0029 (12) −0.0032 (12) 0.0069 (12)

Geometric parameters (Å, °)

Mn1—O1 2.120 (3) C1—C2 1.385 (5)
Mn1—O1i 2.120 (3) C1—C6 1.447 (5)
Mn1—O3 2.136 (3) C2—C3 1.380 (5)
Mn1—O3i 2.136 (3) C3—C4 1.389 (5)
Mn1—O2 2.190 (2) C4—C5 1.374 (5)
Mn1—O2 2.190 (2) C5—C6 1.456 (5)
O4—N1 1.219 (4) C2—H2 0.931
O5—N1 1.222 (4) C4—H4 0.931
O6—N2 1.229 (4) O1—H1A 0.846 (10)
O7—N2 1.225 (4) O1—H1B 0.852 (10)
O8—N3 1.229 (4) O2—H2A 0.848 (10)
O9—N3 1.224 (4) O2—H2B 0.841 (10)
O10—C6 1.257 (4) O3—H3A 0.832 (10)
N1—C1 1.456 (4) O3—H3B 0.841 (10)
N2—C3 1.450 (4) O11—H11A 0.847 (10)
N3—C5 1.460 (4) O11—H11B 0.846 (10)
O1—Mn1—O1i 180.0 O9—N3—O8 123.2 (3)
O1—Mn1—O3 91.52 (11) O9—N3—C5 119.1 (3)
O1i—Mn1—O3 88.48 (11) O8—N3—C5 117.7 (3)
O1—Mn1—O3i 88.48 (11) C2—C1—C6 124.1 (3)
O1i—Mn1—O3i 91.52 (11) C2—C1—N1 115.1 (3)
O3—Mn1—O3i 180.0 C6—C1—N1 120.7 (3)
O1—Mn1—O2i 93.02 (11) C3—C2—C1 119.3 (3)
O1i—Mn1—O2i 86.98 (11) C2—C3—C4 121.3 (3)
O3—Mn1—O2i 93.18 (11) C2—C3—N2 119.5 (3)
O3i—Mn1—O2i 86.83 (11) C4—C3—N2 119.2 (3)
O1—Mn1—O2 86.98 (11) C5—C4—C3 119.1 (3)
O1i—Mn1—O2 93.02 (11) C4—C5—C6 124.4 (3)
O3—Mn1—O2 86.83 (11) C4—C5—N3 115.8 (3)
O3i—Mn1—O2 93.17 (11) C6—C5—N3 119.8 (3)
O2i—Mn1—O2 180.0 O10—C6—C1 124.4 (3)
O4—N1—O5 122.3 (3) O10—C6—C5 123.8 (3)
O4—N1—C1 119.5 (3) C1—C6—C5 111.9 (3)
O5—N1—C1 118.3 (3) C3—C2—H2 120.36
O7—N2—O6 123.0 (3) C1—C2—H2 120.37
O7—N2—C3 118.8 (3) C3—C4—H4 120.43
O6—N2—C3 118.2 (3) C5—C4—H4 120.41
O4—N1—C1—C2 −162.6 (3) C3—C4—C5—C6 −2.3 (5)
O5—N1—C1—C2 17.1 (4) C3—C4—C5—N3 −178.5 (3)
O4—N1—C1—C6 20.8 (5) O9—N3—C5—C4 −154.6 (3)
O5—N1—C1—C6 −159.6 (3) O8—N3—C5—C4 25.5 (4)
C6—C1—C2—C3 −2.2 (5) O9—N3—C5—C6 29.0 (4)
N1—C1—C2—C3 −178.8 (3) O8—N3—C5—C6 −150.8 (3)
C1—C2—C3—C4 0.5 (5) C2—C1—C6—O10 −178.3 (3)
C1—C2—C3—N2 −178.7 (3) N1—C1—C6—O10 −1.9 (5)
O7—N2—C3—C2 167.0 (3) C2—C1—C6—C5 1.6 (5)
O6—N2—C3—C2 −12.8 (4) N1—C1—C6—C5 178.0 (3)
O7—N2—C3—C4 −12.2 (4) C4—C5—C6—O10 −179.4 (3)
O6—N2—C3—C4 168.0 (3) N3—C5—C6—O10 −3.4 (5)
C2—C3—C4—C5 1.7 (5) C4—C5—C6—C1 0.7 (4)
N2—C3—C4—C5 −179.1 (3) N3—C5—C6—C1 176.7 (3)

Symmetry codes: (i) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1A···O11ii 0.846 (10) 1.938 (12) 2.780 (4) 173 (4)
O1—H1B···O10iii 0.852 (10) 2.10 (2) 2.906 (4) 157 (4)
O2—H2A···O10iv 0.848 (10) 2.048 (12) 2.889 (4) 172 (4)
O2—H2A···O9iv 0.848 (10) 2.53 (4) 2.986 (4) 115 (3)
O3—H3A···O11v 0.832 (10) 1.951 (12) 2.782 (4) 176 (5)
O3—H3B···O6vi 0.841 (10) 2.047 (12) 2.884 (4) 174 (5)
O11—H11A···O2vii 0.847 (10) 2.213 (19) 3.006 (4) 156 (4)
O11—H11B···O10viii 0.846 (10) 2.17 (2) 2.938 (4) 151 (4)
O11—H11B···O4viii 0.846 (10) 2.27 (3) 2.913 (4) 133 (4)
O2—H2B···O4ix 0.841 (10) 2.143 (19) 2.930 (4) 156 (4)

Symmetry codes: (ii) x, −y+3/2, z−1/2; (iii) x, −y+3/2, z+1/2; (iv) −x+1, y−1/2, −z+1/2; (v) x, y−1, z; (vi) −x+1/2, y−1, z+1/2; (vii) −x+1, y+1/2, −z+3/2; (viii) −x+1, −y+2, −z+1; (ix) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WW2104).

References

  1. Bibal, B., Declercq, J. P., Dutasta, J. P., Tinant, B. & Valade, A. G. (2003). Tetrahedron, 59, 5849–5854.
  2. Bruker (1997). SMART, SAINT and SHELXTL Bruker AXS Inc., Madison, Wisconsin, USA.
  3. García, M. M. R., Verboom, W., Reinhoudt, D. N., Malinowska, E., Pietrzak, M. & Wojciechowska, D. (2004). Tetrahedron, 60, 11299–11306.
  4. Harrowfield, J. M., Skelton, B. W. & White, A. H. (1995a). Aust. J. Chem.48, 1311–1331.
  5. Harrowfield, J. M., Skelton, B. W. & White, A. H. (1995b). Aust. J. Chem.48, 1333–1347.
  6. Honda, K., Yamawaki, H., Matsukawa, M., Goto, M., Matsunaga, T., Aoki, K., Yoshida, M. & Fujiwara, S. (2003). Acta Cryst. C59, m319–m321. [DOI] [PubMed]
  7. Ji, B. M. & Chen, H. T. (1996). J. Luoyang Teach. Coll.15, 44–48.
  8. Maartmann-Moe, K. (1969). Acta Cryst. B25, 1452–1460.
  9. Olsher, U., Feinberg, H., Frolow, F. & Shoham, G. (1996). Pure Appl. Chem.68, 1195–1199.
  10. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  11. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  12. Yang, L., Zhang, T. L., Feng, C. G., Zhang, J. G. & Yu, K. B. (2001). Energ. Mater.9, 37–39.
  13. Zhang, Y. L., Jiang, W. H., Liu, W. S., Wen, Y. H. & Yu, K. B. (2003). Polyhedron, 22, 1695–1699.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807064276/ww2104sup1.cif

e-64-0m270-sup1.cif (17.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807064276/ww2104Isup2.hkl

e-64-0m270-Isup2.hkl (104.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES