Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jan 9;64(Pt 2):o411. doi: 10.1107/S1600536808000159

2,4-Diamino-6-methyl-1,3,5-triazine ethanol solvate

Zun-Hong Xiao a,*
PMCID: PMC2960281  PMID: 21201439

Abstract

The crystal structure of the title compound, C4H7N5·C2H6O, is determined by extensive hydrogen bonding. A sequence of dimeric associations, formed by N—H(amino)⋯N(ring), connects the triazine rings into a mol­ecular tape. Mol­ecules are linked into a supra­molecular structure by N—H⋯O and O—H⋯O hydrogen bonds. The asymmetric unit consists of two formula units.

Related literature

For general background, see: Sebenik et al. (1989); Tashiro & Oiwa (1981).graphic file with name e-64-0o411-scheme1.jpg

Experimental

Crystal data

  • C4H7N5·C2H6O

  • M r = 171.21

  • Triclinic, Inline graphic

  • a = 8.3860 (6) Å

  • b = 9.1514 (6) Å

  • c = 11.9104 (9) Å

  • α = 88.703 (1)°

  • β = 87.614 (2)°

  • γ = 76.668 (2)°

  • V = 888.56 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 273 (2) K

  • 0.34 × 0.26 × 0.21 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.975, T max = 0.985

  • 7627 measured reflections

  • 3111 independent reflections

  • 2619 reflections with I > 2σ(I)

  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.118

  • S = 1.07

  • 3111 reflections

  • 223 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808000159/bq2061sup1.cif

e-64-0o411-sup1.cif (18.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808000159/bq2061Isup2.hkl

e-64-0o411-Isup2.hkl (147KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4B⋯N7i 0.86 2.11 2.9666 (18) 171
N5—H5D⋯N8ii 0.86 2.19 3.0132 (19) 159
N5—H5E⋯O2iii 0.86 2.29 3.0071 (19) 142
N10—H10A⋯O2iv 0.86 2.10 2.9337 (18) 163
O2—H2⋯O1v 0.82 1.90 2.7185 (18) 174

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

This work was supported by the Nomarch Education Foundation of Guizhou, China (No. 2004–07).

supplementary crystallographic information

Comment

Triazine compounds are used in pharmaceutical industry as coupling agents for the synthesis of peptides and as side chain of antibiotics, as well as in formulating bactericides and fungicides. 2,4-Diamino-6-methyl-1,3,5-triazine (acetoguanamine) is used as an intermediate for pharmaceuticals and as a modifier and flexibilizer of formaldehyde resins (Sebenik et al., 1989, Tashiro et al., 1981).

The crystal structure of the title compound (Fig. 1) consists of triazine and solvate ethanol molecule. The amino groups are coplanar with the ring plane, the dihedral angle between the triazine ring (C2,N2,C4,N1,C3,N3) and the ring (C8,N7,C9,N8,C10,N6) is 12.73 (7)°. A lot of hydrogen bonds are observed (Table 1), each NH2 group acts as a donor in hydrogen bond with the ring nitrogen atoms of neighboring molecules, these contacts and the cross-linking interactions stabilize the crystal packing.

Experimental

2,4-diamino-6-methyl-1,3,5-triazine (0.625 g, 0.05 mol) was added to a stirred solvent of ethanol (100 ml) at 50°C for 3 h. After cooling to room temperature, the mixture was filtered. The filtrate was set aside for one week to obtain colorless crystals.

Refinement

Water H atoms were located in a difference Fourier map and refined as riding in their as-found positions relative to O atoms with Uiso(H) = 1.2Ueq(O). All other H atoms were placed in calculated positions and refined as riding, with C—H = 0.93–0.97 Å, N—H = 0.86 Å, and Uiso(H) = 1.2–1.5 Ueq(C,N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C4H7N5·C2H6O Z = 4
Mr = 171.21 F000 = 368.0
Triclinic, P1 Dx = 1.280 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 8.3860 (6) Å Cell parameters from 3111 reflections
b = 9.1514 (6) Å θ = 1.7–25.0º
c = 11.9104 (9) Å µ = 0.09 mm1
α = 88.703 (1)º T = 273 (2) K
β = 87.614 (2)º Block, colorless
γ = 76.668 (2)º 0.34 × 0.26 × 0.21 mm
V = 888.56 (11) Å3

Data collection

Bruker CCD area-detector diffractometer 3111 independent reflections
Radiation source: fine-focus sealed tube 2619 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.017
T = 273(2) K θmax = 25.0º
φ and ω scans θmin = 1.7º
Absorption correction: multi-scan(SADABS; Bruker, 2005) h = −9→9
Tmin = 0.975, Tmax = 0.985 k = −10→10
7627 measured reflections l = −12→14

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042 H-atom parameters constrained
wR(F2) = 0.118   w = 1/[σ2(Fo2) + (0.0597P)2 + 0.2811P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max < 0.001
3111 reflections Δρmax = 0.25 e Å3
223 parameters Δρmin = −0.19 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.0454 (2) 0.41963 (19) 0.15635 (15) 0.0388 (4)
H1A −0.0653 0.4778 0.1527 0.058*
H1B 0.0892 0.3946 0.0817 0.058*
H1C 0.1110 0.4770 0.1920 0.058*
C2 0.04756 (19) 0.27874 (17) 0.22268 (13) 0.0290 (4)
C3 −0.07229 (18) 0.14537 (17) 0.34835 (13) 0.0258 (3)
C4 0.18337 (18) 0.04532 (17) 0.27722 (13) 0.0268 (3)
C5 0.6644 (3) 0.2978 (3) 0.0124 (2) 0.0651 (6)
H5A 0.7394 0.2012 0.0089 0.098*
H5B 0.7212 0.3716 0.0348 0.098*
H5C 0.6200 0.3244 −0.0602 0.098*
C6 0.5286 (2) 0.2917 (2) 0.09584 (17) 0.0486 (5)
H6A 0.5730 0.2628 0.1691 0.058*
H6B 0.4548 0.3900 0.1019 0.058*
C7 0.3737 (2) 0.18852 (18) 0.49621 (15) 0.0342 (4)
H7A 0.4172 0.1132 0.4412 0.051*
H7B 0.2683 0.1765 0.5241 0.051*
H7C 0.4469 0.1780 0.5572 0.051*
C8 0.35597 (18) 0.34072 (16) 0.44340 (12) 0.0254 (3)
C9 0.47170 (18) 0.50943 (16) 0.34763 (12) 0.0244 (3)
C10 0.20147 (18) 0.56977 (16) 0.39979 (12) 0.0255 (3)
N1 0.05944 (15) 0.02890 (14) 0.34824 (11) 0.0279 (3)
N2 0.18531 (16) 0.17023 (15) 0.21443 (11) 0.0299 (3)
N3 −0.08554 (15) 0.27267 (14) 0.28518 (11) 0.0284 (3)
N4 −0.20112 (16) 0.13534 (15) 0.41484 (11) 0.0323 (3)
H4A −0.1984 0.0563 0.4559 0.039*
H4B −0.2871 0.2079 0.4167 0.039*
N6 0.20797 (15) 0.43256 (14) 0.44771 (11) 0.0273 (3)
N7 0.49186 (15) 0.37128 (13) 0.39648 (10) 0.0268 (3)
N8 0.32886 (15) 0.61343 (14) 0.34805 (11) 0.0274 (3)
N9 0.05530 (15) 0.66659 (15) 0.40412 (12) 0.0336 (3)
H9A 0.0442 0.7546 0.3742 0.040*
H9B −0.0276 0.6409 0.4368 0.040*
N10 0.60412 (15) 0.54140 (15) 0.29698 (11) 0.0309 (3)
H10A 0.5979 0.6276 0.2650 0.037*
H10B 0.6959 0.4759 0.2962 0.037*
O1 0.44204 (16) 0.18580 (16) 0.06094 (10) 0.0475 (4)
H1 0.3607 0.1897 0.1024 0.071*
C11 0.0989 (3) 0.1326 (3) 0.89654 (19) 0.0599 (6)
H11A 0.1324 0.1124 0.9725 0.090*
H11B 0.0321 0.0655 0.8769 0.090*
H11C 0.0370 0.2344 0.8900 0.090*
C12 0.2460 (2) 0.1100 (2) 0.81971 (17) 0.0495 (5)
H12A 0.3036 0.0053 0.8237 0.059*
H12B 0.2103 0.1310 0.7434 0.059*
N5 0.31467 (16) −0.06868 (15) 0.26948 (12) 0.0353 (3)
H5D 0.3180 −0.1490 0.3091 0.042*
H5E 0.3961 −0.0619 0.2249 0.042*
O2 0.35702 (16) 0.19983 (16) 0.84251 (11) 0.0461 (3)
H2 0.3769 0.1931 0.9095 0.069*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0392 (10) 0.0326 (9) 0.0423 (10) −0.0051 (7) 0.0017 (8) 0.0095 (8)
C2 0.0299 (8) 0.0272 (8) 0.0294 (8) −0.0059 (7) −0.0023 (6) 0.0018 (6)
C3 0.0241 (8) 0.0242 (8) 0.0282 (8) −0.0041 (6) −0.0011 (6) −0.0001 (6)
C4 0.0250 (8) 0.0267 (8) 0.0281 (8) −0.0051 (6) −0.0004 (6) 0.0010 (6)
C5 0.0531 (13) 0.0762 (16) 0.0747 (16) −0.0344 (12) 0.0045 (11) 0.0046 (12)
C6 0.0485 (11) 0.0488 (11) 0.0516 (12) −0.0174 (9) 0.0003 (9) −0.0063 (9)
C7 0.0298 (9) 0.0250 (8) 0.0454 (10) −0.0028 (7) 0.0032 (7) 0.0040 (7)
C8 0.0248 (8) 0.0233 (8) 0.0269 (8) −0.0032 (6) 0.0004 (6) −0.0019 (6)
C9 0.0251 (8) 0.0230 (7) 0.0242 (8) −0.0037 (6) 0.0001 (6) −0.0011 (6)
C10 0.0237 (8) 0.0244 (8) 0.0270 (8) −0.0028 (6) −0.0012 (6) −0.0002 (6)
N1 0.0247 (7) 0.0251 (7) 0.0313 (7) −0.0019 (5) 0.0038 (5) 0.0036 (5)
N2 0.0293 (7) 0.0285 (7) 0.0311 (7) −0.0062 (6) 0.0035 (5) 0.0031 (6)
N3 0.0257 (7) 0.0258 (7) 0.0321 (7) −0.0030 (5) 0.0003 (5) 0.0039 (5)
N4 0.0258 (7) 0.0250 (7) 0.0419 (8) 0.0007 (5) 0.0089 (6) 0.0058 (6)
N6 0.0237 (7) 0.0234 (7) 0.0334 (7) −0.0032 (5) 0.0008 (5) 0.0007 (5)
N7 0.0241 (7) 0.0228 (7) 0.0312 (7) −0.0013 (5) 0.0016 (5) 0.0015 (5)
N8 0.0251 (7) 0.0239 (7) 0.0309 (7) −0.0016 (5) 0.0009 (5) 0.0026 (5)
N9 0.0223 (7) 0.0269 (7) 0.0478 (9) 0.0005 (5) 0.0038 (6) 0.0078 (6)
N10 0.0237 (7) 0.0253 (7) 0.0411 (8) −0.0017 (5) 0.0039 (6) 0.0054 (6)
O1 0.0477 (8) 0.0614 (9) 0.0398 (7) −0.0274 (7) 0.0112 (6) −0.0083 (6)
C11 0.0513 (12) 0.0746 (15) 0.0606 (14) −0.0303 (11) 0.0095 (10) −0.0034 (11)
C12 0.0453 (11) 0.0601 (13) 0.0463 (11) −0.0190 (10) 0.0023 (9) −0.0044 (9)
N5 0.0260 (7) 0.0298 (7) 0.0455 (8) 0.0005 (6) 0.0105 (6) 0.0072 (6)
O2 0.0461 (8) 0.0581 (8) 0.0391 (7) −0.0241 (6) 0.0010 (6) 0.0112 (6)

Geometric parameters (Å, °)

C1—C2 1.494 (2) C8—N7 1.3327 (19)
C1—H1A 0.9600 C9—N10 1.3300 (19)
C1—H1B 0.9600 C9—N8 1.3471 (19)
C1—H1C 0.9600 C9—N7 1.3571 (19)
C2—N3 1.327 (2) C10—N9 1.3364 (19)
C2—N2 1.340 (2) C10—N8 1.3459 (19)
C3—N4 1.332 (2) C10—N6 1.3580 (19)
C3—N1 1.3466 (19) N4—H4A 0.8600
C3—N3 1.3576 (19) N4—H4B 0.8600
C4—N5 1.332 (2) N9—H9A 0.8600
C4—N1 1.346 (2) N9—H9B 0.8600
C4—N2 1.355 (2) N10—H10A 0.8600
C5—C6 1.490 (3) N10—H10B 0.8600
C5—H5A 0.9600 O1—H1 0.8200
C5—H5B 0.9600 C11—C12 1.482 (3)
C5—H5C 0.9600 C11—H11A 0.9600
C6—O1 1.417 (2) C11—H11B 0.9600
C6—H6A 0.9700 C11—H11C 0.9600
C6—H6B 0.9700 C12—O2 1.415 (2)
C7—C8 1.494 (2) C12—H12A 0.9700
C7—H7A 0.9600 C12—H12B 0.9700
C7—H7B 0.9600 N5—H5D 0.8600
C7—H7C 0.9600 N5—H5E 0.8600
C8—N6 1.3285 (19) O2—H2 0.8200
C2—C1—H1A 109.5 N10—C9—N7 116.38 (13)
C2—C1—H1B 109.5 N8—C9—N7 124.41 (13)
H1A—C1—H1B 109.5 N9—C10—N8 118.57 (13)
C2—C1—H1C 109.5 N9—C10—N6 116.26 (13)
H1A—C1—H1C 109.5 N8—C10—N6 125.17 (13)
H1B—C1—H1C 109.5 C4—N1—C3 114.56 (13)
N3—C2—N2 125.90 (14) C2—N2—C4 114.89 (13)
N3—C2—C1 117.42 (14) C2—N3—C3 114.50 (13)
N2—C2—C1 116.68 (14) C3—N4—H4A 120.0
N4—C3—N1 117.82 (13) C3—N4—H4B 120.0
N4—C3—N3 116.89 (13) H4A—N4—H4B 120.0
N1—C3—N3 125.28 (13) C8—N6—C10 114.35 (12)
N5—C4—N1 117.59 (14) C8—N7—C9 114.99 (12)
N5—C4—N2 117.68 (13) C10—N8—C9 114.81 (12)
N1—C4—N2 124.72 (14) C10—N9—H9A 120.0
C6—C5—H5A 109.5 C10—N9—H9B 120.0
C6—C5—H5B 109.5 H9A—N9—H9B 120.0
H5A—C5—H5B 109.5 C9—N10—H10A 120.0
C6—C5—H5C 109.5 C9—N10—H10B 120.0
H5A—C5—H5C 109.5 H10A—N10—H10B 120.0
H5B—C5—H5C 109.5 C6—O1—H1 109.5
O1—C6—C5 109.36 (17) C12—C11—H11A 109.5
O1—C6—H6A 109.8 C12—C11—H11B 109.5
C5—C6—H6A 109.8 H11A—C11—H11B 109.5
O1—C6—H6B 109.8 C12—C11—H11C 109.5
C5—C6—H6B 109.8 H11A—C11—H11C 109.5
H6A—C6—H6B 108.3 H11B—C11—H11C 109.5
C8—C7—H7A 109.5 O2—C12—C11 114.80 (17)
C8—C7—H7B 109.5 O2—C12—H12A 108.6
H7A—C7—H7B 109.5 C11—C12—H12A 108.6
C8—C7—H7C 109.5 O2—C12—H12B 108.6
H7A—C7—H7C 109.5 C11—C12—H12B 108.6
H7B—C7—H7C 109.5 H12A—C12—H12B 107.5
N6—C8—N7 126.22 (13) C4—N5—H5D 120.0
N6—C8—C7 117.53 (13) C4—N5—H5E 120.0
N7—C8—C7 116.25 (13) H5D—N5—H5E 120.0
N10—C9—N8 119.21 (13) C12—O2—H2 109.5
N5—C4—N1—C3 −177.19 (14) N7—C8—N6—C10 −0.8 (2)
N2—C4—N1—C3 3.9 (2) C7—C8—N6—C10 178.93 (13)
N4—C3—N1—C4 178.53 (14) N9—C10—N6—C8 −178.84 (13)
N3—C3—N1—C4 −0.9 (2) N8—C10—N6—C8 2.1 (2)
N3—C2—N2—C4 −0.2 (2) N6—C8—N7—C9 −1.2 (2)
C1—C2—N2—C4 178.97 (14) C7—C8—N7—C9 179.03 (13)
N5—C4—N2—C2 177.66 (14) N10—C9—N7—C8 −177.94 (13)
N1—C4—N2—C2 −3.4 (2) N8—C9—N7—C8 2.4 (2)
N2—C2—N3—C3 2.9 (2) N9—C10—N8—C9 179.85 (13)
C1—C2—N3—C3 −176.34 (14) N6—C10—N8—C9 −1.1 (2)
N4—C3—N3—C2 178.33 (14) N10—C9—N8—C10 179.00 (13)
N1—C3—N3—C2 −2.3 (2) N7—C9—N8—C10 −1.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N4—H4B···N7i 0.86 2.11 2.9666 (18) 171
N5—H5D···N8ii 0.86 2.19 3.0132 (19) 159
N5—H5E···O2iii 0.86 2.29 3.0071 (19) 142
N10—H10A···O2iv 0.86 2.10 2.9337 (18) 163
O2—H2···O1v 0.82 1.90 2.7185 (18) 174

Symmetry codes: (i) x−1, y, z; (ii) x, y−1, z; (iii) −x+1, −y, −z+1; (iv) −x+1, −y+1, −z+1; (v) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2061).

References

  1. Bruker (2002). SMART and SAINT Bruker AXS, Inc., Madison, Wisconsin, USA.
  2. Bruker (2005). SADABS Version 1.22. Bruker AXS, Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  5. Sebenik, A., Osredkar, U. & Zigon, M. (1989). Polym. Bull.22, 155–161.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Tashiro, T. & Oiwa, M. (1981). J. Polym. Sci. Polym. Chem.19, 645–654.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808000159/bq2061sup1.cif

e-64-0o411-sup1.cif (18.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808000159/bq2061Isup2.hkl

e-64-0o411-Isup2.hkl (147KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES