Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jan 11;64(Pt 2):o426. doi: 10.1107/S1600536808000524

2-Amino-4,6-dimethyl­pyrimidinium 3,5-dinitro­benzoate dihydrate

Annamalai Subashini a, Packianathan Thomas Muthiah a,*, Daniel E Lynch b
PMCID: PMC2960285  PMID: 21201453

Abstract

In the title compound, C6H10N3 +·C7H3N2O6 ·2H2O, the amino­pyrimidine mol­ecule is protonated at one of the pyrimidine N atoms. The carboxyl­ate group of the 3,5-dinitro­benzoate anion inter­acts with the protonated pyrimidine N atom and the 2-amino group through a pair of N—H⋯O hydrogen bonds, forming an R 2 2(8) motif. Two inversion-related pyrimidine rings are linked via a pair of N—H⋯N hydrogen bonds, also forming an R 2 2(8) ring motif.

Related literature

For related literature, see: Allen et al. (1998); Baker & Santi (1965); Baskar Raj et al. (2003); Desiraju (1989); Hunt et al. (1980); Lynch & Jones (2004); Panneerselvam et al. (2004); Prince et al. (1991); Stanley et al. (2005); Subashini et al. (2006).graphic file with name e-64-0o426-scheme1.jpg

Experimental

Crystal data

  • C6H10N3 +·C7H3N2O6 ·2H2O

  • M r = 371.32

  • Triclinic, Inline graphic

  • a = 7.1465 (3) Å

  • b = 11.0215 (5) Å

  • c = 11.1531 (4) Å

  • α = 99.473 (3)°

  • β = 101.322 (3)°

  • γ = 100.826 (2)°

  • V = 827.33 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 120 K

  • 0.44 × 0.36 × 0.23 mm

Data collection

  • Bruker–Nonius KappaCCD area-detector diffractometer

  • Absorption correction: none

  • 15739 measured reflections

  • 3235 independent reflections

  • 2283 reflections with I > 2σ(I)

  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059

  • wR(F 2) = 0.171

  • S = 1.04

  • 3235 reflections

  • 238 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.55 e Å−3

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808000524/rz2189sup1.cif

e-64-0o426-sup1.cif (23.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808000524/rz2189Isup2.hkl

e-64-0o426-Isup2.hkl (155.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.88 1.73 2.605 (3) 174
N2—H2A⋯N3i 0.88 2.17 3.041 (3) 172
N2—H2B⋯O2 0.88 1.92 2.787 (3) 168

Symmetry code: (i) Inline graphic.

Acknowledgments

AS thanks Bharathidasan University for the award of a Research Student Fellowship (Reference CCCD/PhD-2/15504/2004). DEL thanks the EPSRC National Crystallography Service (Southampton, England) for the X-ray data collection.

supplementary crystallographic information

Comment

Hydrogen-bonding patterns involving aminopyrimidine and carboxylates have been observed in drug–receptor interactions, protein–nucleic acid interactions and supramolecular architectures (Desiraju, 1989). Studies of such interactions are also of current interest because of their applications in drug design and the crystal engineering of pharmaceuticals (Stanley et al., 2005). Pyrimidine and aminopyrimidine derivatives are biologically important compounds as they occur in nature as components of nucleic acids. Some aminopyrimidine derivatives are used as antifolate drugs (Hunt et al., 1980; Baker & Santi, 1965). Two monoclinic polymorphic forms of 3,5-dinitrobenzoic acid (Prince et al., 1991) have already been reported. From our laboratory, the crystal structures of 2-amino-4,6-dimethylpyrimidinium bromide 2-amino-4,6-dimethyl pyrimidine monohydrate (Panneerselvam et al., 2004) and 2-amino-4,6-dimethylpyrimidinium picrate (Subashini et al., 2006) have been reported. The present study was undertaken to explore the hydrogen-bonding patterns involving aminopyrimidine–carboxylate interactions.

The asymmetric unit of the title compound contains one 2-amino-4,6-dimethylpyrimidinium cation, one 3,5-dinitrobenzoate anion and two water molecules (Fig. 1). Protonation of the pyrimidine base on the N1 site is reflected in a change in bond angle. The C2—N3—C4 angle at unprotonated atom N3 is 117.6 (2)°, while for protonated atom N1, the C2—N1—C6 angle is 120.5 (2)°. The carboxylate group of the 3,5-dinitrobenzoate anion (O1 and O2) interacts with the protonated N1 atom and the 2-amino group of the pyrimidine moiety through a pair of N—H···O hydrogen bonds, forming a fork-like interaction with graph-set R22(8) (Lynch & Jones, 2004). This R22(8) motif is one of the 24 most frequently observed bimolecular cyclic hydrogen-bonded motifs in organic crystal structures (Allen et al., 1998). The aminopyrimidinium cations are centrosymmetrically paired through two N—H···N hydrogen hydrogen bonds involving the 2-amino group and the N3 nitrogen atom (graph-set R22(8)) (Fig. 2). A similar type of interaction has been observed in crystal structure of trimethoprim m-chlorobenzoate and trimethoprim m-chlorobenzoate dihydrate (Baskar Raj et al., 2003).

Experimental

A hot ethanol solution of 2-amino-4,6-dimethylpyrimidine (31 mg, Aldrich) was added to a hot aqueous solution of 3,5-dinitrobenzoic acid (53 mg, LOBA) in a 1:1 molar ratio. The resultant solution was warmed over a water bath for an hour. After a few days brown colored block shaped crystals were obtained as a result of slow evaporation.

Refinement

All H atoms were placed in idealized locations and were refined using a riding model, with C—H = 0.95–0.99 Å, N—H = 0.88 Å and Uiso(H) = 1.2 Ueq(C, N). The thermal parameters of both water molecules are very high. All the H atoms of the water molecules have been fixed and were not refined.

Figures

Fig. 1.

Fig. 1.

An ORTEP view of the asymmetric unit of the title compound showing 30% probability displacement ellipsoids. Hydrogen bonds are shown as dashed lines.

Fig. 2.

Fig. 2.

Hydrogen bonding patterns in the title compound. Symmetry codes: (i) -x, -y + 1, -z + 1.

Crystal data

C6H10N3+·C7H3N2O6·2H2O Z = 2
Mr = 371.32 F000 = 388
Triclinic, P1 Dx = 1.491 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 7.1465 (3) Å Cell parameters from 2.5 reflections
b = 11.0215 (5) Å θ = 3.8–26.0º
c = 11.1531 (4) Å µ = 0.13 mm1
α = 99.473 (3)º T = 120 K
β = 101.322 (3)º Block, brown
γ = 100.826 (2)º 0.44 × 0.36 × 0.23 mm
V = 827.33 (6) Å3

Data collection

Bruker–Nonius KappaCCD area-detector diffractometer 2283 reflections with I > 2σ(I)
Radiation source: Bruker–Nonius FR591 rotating anode Rint = 0.043
Monochromator: graphite θmax = 26.0º
T = 120 K θmin = 3.8º
φ and ω scans h = −8→8
Absorption correction: none k = −13→13
15739 measured reflections l = −13→13
3235 independent reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.059   w = 1/[σ2(Fo2) + (0.0801P)2 + 0.6543P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.171 (Δ/σ)max < 0.001
S = 1.04 Δρmax = 0.50 e Å3
3235 reflections Δρmin = −0.55 e Å3
238 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001Fc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.026 (9)
Secondary atom site location: difference Fourier map

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2> σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.2027 (3) 0.33914 (19) 0.72583 (18) 0.0274 (6)
N2 0.1151 (3) 0.35467 (18) 0.51987 (17) 0.0283 (6)
N3 0.0823 (3) 0.51366 (18) 0.67131 (17) 0.0284 (6)
C2 0.1339 (3) 0.4032 (2) 0.6397 (2) 0.0255 (7)
C4 0.1050 (4) 0.5608 (2) 0.7929 (2) 0.0316 (7)
C5 0.1819 (4) 0.4998 (2) 0.8853 (2) 0.0344 (8)
C6 0.2299 (4) 0.3872 (2) 0.8500 (2) 0.0321 (8)
C7 0.0403 (4) 0.6801 (3) 0.8255 (2) 0.0434 (9)
C8 0.3079 (4) 0.3114 (3) 0.9388 (2) 0.0425 (9)
O1 0.2748 (3) 0.11664 (16) 0.66737 (15) 0.0340 (5)
O2 0.1737 (3) 0.11087 (15) 0.46282 (15) 0.0330 (5)
O3 0.2112 (3) −0.24607 (19) 0.15879 (17) 0.0491 (7)
O4 0.3323 (3) −0.39796 (18) 0.21663 (17) 0.0432 (6)
O5 0.5402 (3) −0.39570 (18) 0.65403 (19) 0.0467 (7)
O6 0.4999 (3) −0.2476 (2) 0.79214 (18) 0.0545 (8)
N4 0.2803 (3) −0.2987 (2) 0.23984 (19) 0.0335 (7)
N5 0.4871 (3) −0.2986 (2) 0.6838 (2) 0.0355 (7)
C9 0.2796 (3) −0.0654 (2) 0.5226 (2) 0.0258 (7)
C10 0.2515 (3) −0.1244 (2) 0.3983 (2) 0.0271 (7)
C11 0.3026 (3) −0.2394 (2) 0.3714 (2) 0.0275 (7)
C12 0.3787 (3) −0.3000 (2) 0.4618 (2) 0.0285 (7)
C13 0.4021 (3) −0.2388 (2) 0.5846 (2) 0.0284 (7)
C14 0.3543 (3) −0.1233 (2) 0.6170 (2) 0.0279 (7)
C15 0.2368 (3) 0.0642 (2) 0.5522 (2) 0.0282 (7)
O1W 0.0473 (17) 0.0204 (5) 0.1315 (8) 0.279 (6)
O2W 0.229 (3) −0.0073 (6) −0.0151 (9) 0.474 (10)
H1 0.23000 0.26580 0.70130 0.0330*
H2A 0.06960 0.39440 0.46230 0.0340*
H2B 0.14830 0.28270 0.49790 0.0340*
H5 0.20050 0.53630 0.97130 0.0410*
H7A 0.08110 0.73780 0.77250 0.0650*
H7B 0.09990 0.71960 0.91350 0.0650*
H7C −0.10280 0.66140 0.81180 0.0650*
H8A 0.20720 0.23550 0.93330 0.0640*
H8B 0.34390 0.36210 1.02420 0.0640*
H8C 0.42380 0.28660 0.91730 0.0640*
H10 0.19820 −0.08650 0.33280 0.0320*
H12 0.41290 −0.37870 0.44120 0.0340*
H14 0.37250 −0.08460 0.70240 0.0330*
H1W 0.08570 0.03120 0.21100 0.5000*
H2W 0.08640 0.09280 0.11360 0.5000*
H3W 0.27840 −0.06530 0.01730 0.5000*
H4W 0.31380 0.01390 −0.06280 0.5000*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0299 (11) 0.0296 (11) 0.0237 (10) 0.0107 (8) 0.0048 (8) 0.0057 (8)
N2 0.0387 (11) 0.0276 (11) 0.0201 (10) 0.0132 (9) 0.0051 (8) 0.0048 (8)
N3 0.0335 (11) 0.0288 (11) 0.0224 (10) 0.0102 (9) 0.0049 (8) 0.0023 (8)
C2 0.0258 (12) 0.0260 (12) 0.0247 (12) 0.0069 (9) 0.0044 (9) 0.0057 (9)
C4 0.0340 (13) 0.0349 (13) 0.0242 (12) 0.0086 (11) 0.0057 (10) 0.0019 (10)
C5 0.0377 (14) 0.0418 (15) 0.0210 (12) 0.0098 (12) 0.0052 (10) −0.0002 (11)
C6 0.0310 (13) 0.0429 (15) 0.0223 (12) 0.0089 (11) 0.0044 (10) 0.0079 (11)
C7 0.0584 (18) 0.0442 (16) 0.0293 (14) 0.0246 (14) 0.0089 (13) −0.0008 (12)
C8 0.0509 (17) 0.0532 (17) 0.0275 (13) 0.0204 (14) 0.0061 (12) 0.0137 (12)
O1 0.0443 (10) 0.0293 (9) 0.0276 (9) 0.0117 (8) 0.0058 (8) 0.0034 (7)
O2 0.0418 (10) 0.0282 (9) 0.0306 (9) 0.0130 (8) 0.0058 (7) 0.0081 (7)
O3 0.0682 (14) 0.0540 (13) 0.0280 (10) 0.0282 (11) 0.0047 (9) 0.0079 (9)
O4 0.0543 (12) 0.0393 (11) 0.0371 (10) 0.0195 (9) 0.0120 (9) −0.0005 (8)
O5 0.0540 (12) 0.0408 (11) 0.0513 (12) 0.0265 (10) 0.0066 (9) 0.0150 (9)
O6 0.0819 (16) 0.0477 (12) 0.0293 (11) 0.0239 (11) −0.0054 (10) 0.0069 (9)
N4 0.0348 (12) 0.0362 (12) 0.0286 (11) 0.0105 (10) 0.0052 (9) 0.0038 (9)
N5 0.0394 (12) 0.0330 (12) 0.0334 (12) 0.0108 (10) 0.0018 (9) 0.0098 (9)
C9 0.0220 (11) 0.0244 (12) 0.0295 (12) 0.0042 (9) 0.0043 (9) 0.0045 (10)
C10 0.0237 (12) 0.0293 (13) 0.0274 (12) 0.0055 (10) 0.0019 (9) 0.0093 (10)
C11 0.0253 (12) 0.0314 (13) 0.0245 (12) 0.0063 (10) 0.0050 (9) 0.0034 (10)
C12 0.0261 (12) 0.0261 (12) 0.0333 (13) 0.0078 (10) 0.0060 (10) 0.0049 (10)
C13 0.0245 (12) 0.0291 (12) 0.0317 (13) 0.0068 (10) 0.0020 (10) 0.0110 (10)
C14 0.0257 (12) 0.0301 (13) 0.0260 (12) 0.0039 (10) 0.0047 (9) 0.0048 (10)
C15 0.0259 (12) 0.0271 (12) 0.0318 (13) 0.0065 (10) 0.0072 (10) 0.0057 (10)
O1W 0.516 (15) 0.093 (4) 0.240 (8) 0.075 (6) 0.084 (9) 0.065 (4)
O2W 1.00 (3) 0.072 (3) 0.178 (6) −0.018 (11) −0.117 (16) 0.013 (4)

Geometric parameters (Å, °)

O1—C15 1.272 (3) C4—C7 1.487 (4)
O2—C15 1.241 (3) C5—C6 1.366 (3)
O3—N4 1.226 (3) C6—C8 1.490 (4)
O4—N4 1.224 (3) C5—H5 0.9499
O5—N5 1.218 (3) C7—H7C 0.9802
O6—N5 1.224 (3) C7—H7A 0.9801
O1W—H1W 0.8562 C7—H7B 0.9797
O1W—H2W 0.8633 C8—H8B 0.9799
O2W—H4W 0.9051 C8—H8C 0.9797
O2W—H3W 0.8801 C8—H8A 0.9803
N1—C2 1.353 (3) C9—C14 1.389 (3)
N1—C6 1.360 (3) C9—C15 1.514 (3)
N2—C2 1.326 (3) C9—C10 1.389 (3)
N3—C2 1.349 (3) C10—C11 1.386 (3)
N3—C4 1.336 (3) C11—C12 1.379 (3)
N1—H1 0.8796 C12—C13 1.386 (3)
N2—H2B 0.8804 C13—C14 1.389 (3)
N2—H2A 0.8797 C10—H10 0.9509
N4—C11 1.469 (3) C12—H12 0.9492
N5—C13 1.468 (3) C14—H14 0.9502
C4—C5 1.400 (3)
O1···N1 2.605 (3) C9···C10i 3.461 (3)
O1···C8 3.349 (3) C9···O2iii 3.224 (3)
O1···C11i 3.211 (3) C9···C9i 3.378 (3)
O1W···O2W 2.30 (2) C10···C14i 3.588 (3)
O1W···O1Wii 2.817 (12) C10···C9i 3.461 (3)
O1W···O2Wii 2.10 (2) C10···C15i 3.506 (3)
O2···N2 2.787 (3) C11···C2iii 3.266 (3)
O2···C15iii 3.151 (3) C11···O1i 3.211 (3)
O2···C9iii 3.224 (3) C11···C15i 3.355 (3)
O2···C12i 3.339 (3) C12···O2i 3.339 (3)
O2···C13i 3.275 (3) C12···C15i 3.457 (3)
O2W···O1Wii 2.10 (2) C12···C2iii 3.518 (3)
O2W···O1W 2.30 (2) C13···O2i 3.275 (3)
O3···C6iii 3.218 (4) C14···C10i 3.588 (3)
O4···O5iv 3.070 (3) C15···N1 3.395 (3)
O4···C4iii 3.271 (3) C15···C10i 3.506 (3)
O4···C6i 3.340 (4) C15···C11i 3.355 (3)
O4···N1i 3.177 (3) C15···C12i 3.457 (3)
O5···C2v 3.264 (3) C15···C15iii 3.305 (3)
O5···O4iv 3.070 (3) C15···O2iii 3.151 (3)
O6···C8vi 3.290 (3) C4···H2Ax 3.0334
O6···C7v 3.340 (4) C7···H2Wx 2.8424
O6···C4v 3.194 (3) C7···H2Ax 3.0813
O1···H1 1.7288 C15···H1 2.5614
O1···H14 2.5138 C15···H2B 2.7328
O1W···H3Wii 2.7574 H1···H8C 2.4826
O1W···H3W 2.5016 H1···O1 1.7288
O1W···H2Wii 2.7104 H1···O2 2.8247
O1W···H10 2.8265 H1···C15 2.5614
O1W···H4Wii 2.4802 H1···H2B 2.2763
O2···H1 2.8247 H1W···H10 2.1720
O2···H2B 1.9198 H1W···O2W 2.9005
O2···H10 2.4637 H1W···O2 2.7096
O2···H1W 2.7096 H1W···O2Wii 2.7495
O2W···H8Avii 2.8539 H2A···C4x 3.0334
O2W···H1W 2.9005 H2A···C7x 3.0813
O2W···H2Wii 2.2504 H2A···N3x 2.1682
O2W···H2W 2.1890 H2B···O2 1.9198
O2W···H7Bviii 2.9025 H2B···H1 2.2763
O2W···H1Wii 2.7495 H2B···C15 2.7328
O3···H3W 2.7683 H2W···O1Wii 2.7104
O3···H5viii 2.8895 H2W···C7x 2.8424
O3···H7Bviii 2.6367 H2W···O2W 2.1890
O3···H10 2.4242 H2W···O2Wii 2.2504
O4···H8Ci 2.7564 H3W···H7Bviii 2.4431
O4···H5viii 2.6416 H3W···O1W 2.5016
O4···H12 2.4213 H3W···O1Wii 2.7574
O5···H12iv 2.6470 H3W···O3 2.7683
O5···H12 2.4207 H4W···O1Wii 2.4802
O5···H7Cix 2.6965 H5···H8B 2.4411
O6···H14 2.4304 H5···H7B 2.4096
O6···H8Bvi 2.7417 H5···O4xii 2.6416
N1···O4i 3.177 (3) H5···O3xii 2.8895
N1···O1 2.605 (3) H7B···O2Wxii 2.9025
N1···C15 3.395 (3) H7B···O3xii 2.6367
N2···N3x 3.041 (3) H7B···H5 2.4096
N2···O2 2.787 (3) H7B···H3Wxii 2.4431
N3···N2x 3.041 (3) H7C···O5xiii 2.6965
N3···N5xi 3.189 (3) H8A···O2Wxiv 2.8539
N5···C4v 3.417 (3) H8B···O6vi 2.7417
N5···N3v 3.189 (3) H8B···H5 2.4411
N3···H2Ax 2.1682 H8C···H1 2.4826
C2···C12iii 3.518 (3) H8C···O4i 2.7564
C2···C11iii 3.266 (3) H10···O2 2.4637
C2···O5xi 3.264 (3) H10···O3 2.4242
C4···N5xi 3.417 (3) H10···O1W 2.8265
C4···O6xi 3.194 (3) H10···H1W 2.1720
C4···O4iii 3.271 (3) H12···O5iv 2.6470
C6···O3iii 3.218 (4) H12···O5 2.4207
C6···O4i 3.340 (4) H12···O4 2.4213
C7···O6xi 3.340 (4) H14···O6 2.4304
C8···O6vi 3.290 (3) H14···O1 2.5138
C8···O1 3.349 (3)
H1W—O1W—H2W 105.95 H7B—C7—H7C 109.53
H3W—O2W—H4W 100.59 C4—C7—H7B 109.45
C2—N1—C6 120.5 (2) C4—C7—H7A 109.44
C2—N3—C4 117.6 (2) H8B—C8—H8C 109.45
C6—N1—H1 119.74 C6—C8—H8B 109.50
C2—N1—H1 119.71 C6—C8—H8A 109.44
H2A—N2—H2B 119.98 H8A—C8—H8C 109.41
C2—N2—H2B 119.99 H8A—C8—H8B 109.50
C2—N2—H2A 120.02 C6—C8—H8C 109.53
O3—N4—C11 118.3 (2) C10—C9—C15 118.94 (19)
O4—N4—C11 118.4 (2) C14—C9—C15 121.27 (19)
O3—N4—O4 123.3 (2) C10—C9—C14 119.7 (2)
O6—N5—C13 117.7 (2) C9—C10—C11 118.9 (2)
O5—N5—C13 118.5 (2) N4—C11—C12 117.9 (2)
O5—N5—O6 123.8 (2) N4—C11—C10 118.59 (19)
N1—C2—N3 122.4 (2) C10—C11—C12 123.5 (2)
N1—C2—N2 118.5 (2) C11—C12—C13 115.8 (2)
N2—C2—N3 119.0 (2) N5—C13—C14 119.25 (19)
C5—C4—C7 121.4 (2) C12—C13—C14 123.1 (2)
N3—C4—C7 116.7 (2) N5—C13—C12 117.6 (2)
N3—C4—C5 121.8 (2) C9—C14—C13 118.9 (2)
C4—C5—C6 119.1 (2) O1—C15—C9 116.30 (19)
N1—C6—C5 118.5 (2) O1—C15—O2 126.1 (2)
C5—C6—C8 124.3 (2) O2—C15—C9 117.57 (19)
N1—C6—C8 117.2 (2) C11—C10—H10 120.58
C6—C5—H5 120.51 C9—C10—H10 120.55
C4—C5—H5 120.44 C11—C12—H12 122.06
H7A—C7—H7C 109.42 C13—C12—H12 122.12
H7A—C7—H7B 109.53 C13—C14—H14 120.45
C4—C7—H7C 109.45 C9—C14—H14 120.62
C6—N1—C2—N2 178.0 (2) C4—C5—C6—C8 −178.4 (3)
C6—N1—C2—N3 −2.6 (4) C4—C5—C6—N1 0.6 (4)
C2—N1—C6—C5 1.5 (4) C14—C9—C10—C11 −1.2 (3)
C2—N1—C6—C8 −179.4 (2) C15—C9—C10—C11 175.9 (2)
C4—N3—C2—N1 1.3 (4) C10—C9—C14—C13 0.9 (3)
C4—N3—C2—N2 −179.3 (2) C15—C9—C14—C13 −176.1 (2)
C2—N3—C4—C5 0.9 (4) C10—C9—C15—O1 −176.4 (2)
C2—N3—C4—C7 −177.8 (2) C10—C9—C15—O2 1.6 (3)
O4—N4—C11—C12 −0.9 (3) C14—C9—C15—O1 0.7 (3)
O3—N4—C11—C10 −2.4 (3) C14—C9—C15—O2 178.7 (2)
O4—N4—C11—C10 177.4 (2) C9—C10—C11—N4 −177.5 (2)
O3—N4—C11—C12 179.4 (2) C9—C10—C11—C12 0.7 (3)
O5—N5—C13—C14 −175.2 (2) N4—C11—C12—C13 178.3 (2)
O5—N5—C13—C12 3.0 (3) C10—C11—C12—C13 0.1 (3)
O6—N5—C13—C12 −176.9 (2) C11—C12—C13—N5 −178.6 (2)
O6—N5—C13—C14 4.9 (3) C11—C12—C13—C14 −0.4 (3)
N3—C4—C5—C6 −1.9 (4) N5—C13—C14—C9 178.0 (2)
C7—C4—C5—C6 176.7 (3) C12—C13—C14—C9 −0.1 (3)

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x, −y, −z; (iii) −x, −y, −z+1; (iv) −x+1, −y−1, −z+1; (v) x, y−1, z; (vi) −x+1, −y, −z+2; (vii) x, y, z−1; (viii) x, y−1, z−1; (ix) x+1, y−1, z; (x) −x, −y+1, −z+1; (xi) x, y+1, z; (xii) x, y+1, z+1; (xiii) x−1, y+1, z; (xiv) x, y, z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1 0.88 1.73 2.605 (3) 174
N2—H2A···N3x 0.88 2.17 3.041 (3) 172
N2—H2B···O2 0.88 1.92 2.787 (3) 168

Symmetry codes: (x) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2189).

References

  1. Allen, F. H., Raithby, P. R., Shields, G. P. & Taylor, R. (1998). Chem. Commun. pp. 1043–1044.
  2. Baker, B. R. & Santi, D. V. (1965). J. Pharm. Sci.54, 1252–1257. [DOI] [PubMed]
  3. Baskar Raj, S., Muthiah, P. T., Rychlewska, U. & Warzajtis, B. (2003). CrystEngComm, 5, 48–53.
  4. Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids Amsterdam: Elsevier.
  5. Hunt, W. E., Schwalbe, C. H., Bird, K. & Mallinson, P. D. (1980). Biochem. J.187, 533–536. [DOI] [PMC free article] [PubMed]
  6. Lynch, D. E. & Jones, G. D. (2004). Acta Cryst. B60, 748–754. [DOI] [PubMed]
  7. Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  8. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  9. Panneerselvam, P., Muthiah, P. T. & Francis, S. (2004). Acta Cryst. E60, o747–o749.
  10. Prince, P., Fronczek, F. R. & Gandour, R. D. (1991). Acta Cryst. C47, 895–898.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  13. Stanley, N., Muthiah, P. T., Geib, S. J., Luger, P., Weber, M. & Messerschmidt, M. (2005). Tetrahedron, 61, 7201–7210.
  14. Subashini, A., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2006). Acta Cryst. E62, o3847–o3849.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808000524/rz2189sup1.cif

e-64-0o426-sup1.cif (23.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808000524/rz2189Isup2.hkl

e-64-0o426-Isup2.hkl (155.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES