Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jan 9;64(Pt 2):m326. doi: 10.1107/S1600536807068602

[2,6-Bis(5-chloro­pyrimidin-2-yl-κN)pyri­dine-κN](2,2′:6′,2′′-terpyridine-κ3 N,N′,N′′)ruthenium(II) bis­(hexa­fluoridophosphate) acetonitrile disolvate

Elaine A Medlycott a, Jianhua Wang a, Garry S Hanan a,*
PMCID: PMC2960288  PMID: 21201294

Abstract

In the title compound, [Ru(C13H7Cl2N5)(C15H11N3)](PF6)2·2CH3CN, the RuII atom is coordinated in a distorted octa­hedral geometry by a tridentate 2,2′:6′,2′′-terpyridine ligand and a tridentate 2,6-bis­(5-chloro­pyrimidin-2-yl)pyridine ligand. Least-squares mean-plane distortions of only 1.72 (2) and 2.91 (2)° of the pyrimidyl rings with respect to the central pyridine are observed for the bis­(pyrimid­yl)pyridine-based tridentate ligand, while the distal pyridyl rings of terpyridine twist by 13.43 (7) and 4.68 (9)° away from the central pyridine ring.

Related literature

For related literature, see: Fang et al. (2002); Groen et al. (1998); Medlycott & Hanan (2005); Polson et al. (2004); Pyo et al. (1999).graphic file with name e-64-0m326-scheme1.jpg

Experimental

Crystal data

  • [Ru(C13H7Cl2N5)(C15H11N3)](PF6)2·2C2H3N

  • M r = 1010.52

  • Orthorhombic, Inline graphic

  • a = 16.3846 (2) Å

  • b = 62.8985 (8) Å

  • c = 14.5581 (2) Å

  • V = 15003.1 (3) Å3

  • Z = 16

  • Cu Kα radiation

  • μ = 6.43 mm−1

  • T = 100 (2) K

  • 0.48 × 0.25 × 0.07 mm

Data collection

  • Bruker SMART 2K diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.190, T max = 0.640

  • 45518 measured reflections

  • 7327 independent reflections

  • 7121 reflections with I > 2σ(I)

  • R int = 0.053

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.072

  • S = 1.08

  • 7327 reflections

  • 534 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.38 e Å−3

  • Absolute structure: Flack (1983), 3439 Friedel pairs

  • Flack parameter: 0.052 (5)

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: UdMX (local program) and Spek (2003).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807068602/hy2110sup1.cif

e-64-0m326-sup1.cif (33.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807068602/hy2110Isup2.hkl

e-64-0m326-Isup2.hkl (358.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Ru1—N1 2.088 (2)
Ru1—N3 1.980 (2)
Ru1—N4 2.069 (2)
Ru1—N6 2.083 (3)
Ru1—N7 2.000 (2)
Ru1—N8 2.068 (3)
N3—Ru1—N7 175.35 (9)
N3—Ru1—N8 100.81 (12)
N7—Ru1—N8 78.90 (12)
N3—Ru1—N4 79.37 (9)
N7—Ru1—N4 96.00 (9)
N8—Ru1—N4 92.69 (10)
N3—Ru1—N6 101.62 (11)
N7—Ru1—N6 78.75 (11)
N8—Ru1—N6 157.58 (9)
N4—Ru1—N6 91.4 (1)
N3—Ru1—N1 79.51 (9)
N7—Ru1—N1 105.12 (9)
N8—Ru1—N1 90.79 (10)
N4—Ru1—N1 158.87 (9)
N6—Ru1—N1 93.3 (1)

Acknowledgments

We are grateful to the Natural Sciences and Engineering Research Council of Canada and the Ministère de l’Education du Québec for financial support.

supplementary crystallographic information

Comment

Ruthenium(II) complexes of tridentate polypyridine ligands have gained much attention in the last few decades due to their interesting photophysical properties. There have been many attempts to try and improve the photophysical properties of these complexes both in the ground state and excited states (Medlycott & Hanan, 2005). Manipulation of the electronic properties of the coordinated ligands can result in an improvement of the photophysical properties of the complex. We have previously employed this strategy by using electron-deficient trazine-based tridenate ligands (Polson et al., 2004) to lower the energy of the 3MLCT emitting state. Herein, we employ a functionalized bis(pyrimidin-2-yl)pyridine tridentate ligand for the synthesis of a ruthenium(II) complex in order to manipulate the energy of the 3MLCT emitting state. A structurally similar ligand, namely bis(pyrimidin-2-yl)pyridine, has previously been employed for the synthesis of palladium(II) complexes in order to study the dynamic behviour of such complexes in solution (Groen et al., 1998). However, the electronic behaviour and solid state structures of these systems were not reported.

The title compound crystalizes in the orthorhombic space group Fdd2 with one complex cation, two PF6- anions and two acetonitrile molecules in the asymmetric unit. The complex possesses octahedral geometry with significant distortions due to the tridentate nature of the coordinating ligands as previously observed in the parent complex [Ru(tpy)2]2+ (tpy = 2,2':6',2"-terpyridine) (Pyo et al., 1999). Small variations in the Ru—N bond distances are observed between the two coordinated ligands indicating minimal changes in the electronic (solid state) ground-state properties of the complex compared to [Ru(tpy)2]2+ (Pyo et al., 1999). Similarly, small changes are observed in the N,N,N-tridentate bite angles on the pyrimidyl-substituted ligand 158.87 (9)° compared to the coordinated tpy, 157.58 (9)°, indicating that introducing a pyrimidyl ring has minimal steric effects on the ligand field of the complex.

Comparison of the planarity of the two coordinated ligands in the title compound shows us that the bis(pyrimidin-2-yl)pyridine-based ligand lies planar. Least-square mean plane distortions of only 1.72 (2)° and 2.91 (2)° of the pyrimidyl rings with respect to the central pyridine are observed. However, the distal pyridyl-rings of terpyridine twist by 13.43 (7)° and 4.68 (9)° away from the central pyridine ring. This difference may be explained on considering the uncoordinated pyrimidyl-N atoms forming favourable intramolecular C–H···N interactions with the central pyridine ring. This coplanar effect has previously been shown to dramatically enhance the photophysical properties of such complexes (Fang et al., 2002).

We are currently investigating the consequences of pyrimidyl substitution of tridentate-tpy based ligands on the photophysical properties of their ruthenium(II) complexes.

Experimental

The title compound was synthesized following previously established procedures (Polson et al.,2004).

Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.95Å and Uiso(H) = 1.2Ueq(C) for the ligands and with C—H = 0.98Å and Uiso(H) = 1.5Ueq(C) for the methyl group of acetonitrile. A final verification of possible voids was performed using the VOID routine of the PLATON program (Spek, 2003).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound. Displacement ellipsoids are shown at the 50% probability level. The PF6- counter anions, H atoms and acetonitrile solvent molecules have been omitted for clarity.

Crystal data

[Ru(C13H7Cl2N5)(C15H11N3)](PF6)2·2C2H3N F000 = 8032
Mr = 1010.52 Dx = 1.789 Mg m3
Orthorhombic, Fdd2 Cu Kα radiation λ = 1.54178 Å
Hall symbol: F 2 -2d Cell parameters from 7885 reflections
a = 16.3846 (2) Å θ = 2.8–72.9º
b = 62.8985 (8) Å µ = 6.44 mm1
c = 14.5581 (2) Å T = 100 (2) K
V = 15003.1 (3) Å3 Block, red
Z = 16 0.48 × 0.25 × 0.07 mm

Data collection

Bruker SMART 2K diffractometer 7327 independent reflections
Radiation source: X-ray Sealed Tube 7121 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.053
T = 100(2) K θmax = 73.0º
ω scans θmin = 2.8º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −19→18
Tmin = 0.190, Tmax = 0.640 k = −77→77
45518 measured reflections l = −17→17

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.029   w = 1/[σ2(Fo2) + (0.0495P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.072 (Δ/σ)max = 0.002
S = 1.08 Δρmax = 0.71 e Å3
7327 reflections Δρmin = −0.38 e Å3
534 parameters Extinction correction: none
1 restraint Absolute structure: Flack (1983), 3439 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.052 (5)
Secondary atom site location: difference Fourier map

Special details

Experimental. X-ray crystallographic data for the title compound were collected from a single-crystal sample, which was mounted on a loop fiber. Data were collected using a Bruker Platform diffractometer, equipped with a Bruker SMART 2 K Charged-Coupled Device (CCD) Area Detector using the program SMART and normal focus sealed tube source graphite monochromated Cu—Kα radiation. The crystal-to-detector distance was 4.908 cm, and the data collection was carried out in 512 x 512 pixel mode, utilizing 4 x 4 pixel binning. The initial unit-cell parameters were determined by a least-squares fit of the angular setting of strong reflections, collected by a 9.0 degree scan in 30 frames over four different parts of the reciprocal space (120 frames total). One complete sphere of data was collected, to better than 0.8Å resolution. Upon completion of the data collection, the first 101 frames were recollected in order to improve the decay correction analysis.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ru1 0.290100 (12) 0.172144 (3) 0.184589 (14) 0.01338 (6)
N1 0.16426 (13) 0.16743 (3) 0.17514 (17) 0.0127 (5)
N2 0.06878 (15) 0.13822 (4) 0.16488 (17) 0.0192 (5)
N3 0.28547 (14) 0.14071 (3) 0.1797 (2) 0.0158 (4)
N4 0.41289 (14) 0.16477 (4) 0.19327 (18) 0.0162 (5)
N5 0.50172 (15) 0.13428 (4) 0.19511 (18) 0.0185 (5)
N6 0.30146 (14) 0.17985 (4) 0.04606 (19) 0.0161 (5)
N7 0.30453 (13) 0.20369 (3) 0.1912 (2) 0.0171 (5)
N8 0.28073 (15) 0.17725 (4) 0.32451 (18) 0.0164 (5)
Cl1 −0.05599 (5) 0.191627 (12) 0.18178 (7) 0.03047 (17)
Cl2 0.63956 (5) 0.185785 (12) 0.20297 (6) 0.02663 (17)
C1 0.10321 (18) 0.18085 (4) 0.1752 (2) 0.0187 (6)
H1 0.1139 0.1957 0.1764 0.022*
C2 0.02315 (19) 0.17372 (5) 0.1736 (2) 0.0216 (6)
C3 0.00786 (18) 0.15218 (5) 0.1673 (2) 0.0205 (6)
H3 −0.0469 0.1473 0.1648 0.025*
C4 0.14379 (17) 0.14580 (4) 0.1707 (2) 0.0161 (6)
C5 0.21284 (17) 0.13084 (4) 0.1747 (2) 0.0166 (6)
C6 0.20777 (17) 0.10876 (4) 0.1748 (2) 0.0179 (6)
H6 0.1563 0.1018 0.1723 0.021*
C7 0.27997 (18) 0.09704 (4) 0.1786 (2) 0.0195 (6)
H7 0.2782 0.0819 0.1792 0.023*
C8 0.35412 (17) 0.10751 (4) 0.1814 (2) 0.0184 (5)
H8 0.4036 0.0996 0.1816 0.022*
C9 0.35616 (16) 0.12949 (4) 0.1840 (2) 0.0157 (5)
C10 0.42780 (17) 0.14324 (4) 0.1912 (2) 0.0155 (5)
C11 0.56623 (19) 0.14731 (5) 0.1980 (2) 0.0194 (6)
H11 0.6197 0.1415 0.1991 0.023*
C12 0.55631 (19) 0.16922 (5) 0.1993 (2) 0.0195 (6)
C13 0.47850 (17) 0.17753 (5) 0.1987 (2) 0.0175 (6)
H13 0.4711 0.1925 0.2022 0.021*
C21 0.30071 (18) 0.16651 (5) −0.0258 (2) 0.0195 (6)
H21 0.2985 0.1516 −0.0147 0.023*
C22 0.3031 (2) 0.17365 (5) −0.1157 (2) 0.0246 (7)
H22 0.3032 0.1638 −0.1651 0.029*
C23 0.3053 (2) 0.19512 (6) −0.1327 (2) 0.0264 (7)
H23 0.3035 0.2003 −0.1939 0.032*
C24 0.31023 (19) 0.20912 (5) −0.0588 (3) 0.0236 (6)
H24 0.3144 0.2240 −0.0690 0.028*
C25 0.30901 (18) 0.20109 (5) 0.0297 (2) 0.0176 (6)
C26 0.31643 (18) 0.21439 (5) 0.1127 (2) 0.0181 (6)
C27 0.3406 (2) 0.23558 (5) 0.1156 (2) 0.0229 (7)
H27 0.3490 0.2434 0.0606 0.028*
C28 0.3523 (2) 0.24505 (5) 0.2008 (2) 0.0283 (7)
H28 0.3690 0.2595 0.2040 0.034*
C29 0.3398 (2) 0.23369 (5) 0.2810 (2) 0.0246 (7)
H29 0.3481 0.2402 0.3392 0.030*
C30 0.31470 (19) 0.21252 (5) 0.2749 (2) 0.0193 (6)
C31 0.29853 (18) 0.19766 (5) 0.3507 (2) 0.0191 (6)
C32 0.3001 (2) 0.20342 (5) 0.4418 (3) 0.0257 (7)
H32 0.3149 0.2175 0.4591 0.031*
C33 0.2797 (2) 0.18839 (6) 0.5089 (2) 0.0262 (7)
H33 0.2806 0.1922 0.5721 0.031*
C34 0.25841 (19) 0.16815 (6) 0.4826 (2) 0.0241 (7)
H34 0.2430 0.1578 0.5270 0.029*
C35 0.25996 (19) 0.16315 (5) 0.3895 (2) 0.0202 (6)
H35 0.2457 0.1491 0.3712 0.024*
P1 0.53369 (4) 0.138455 (11) −0.06986 (7) 0.01995 (15)
F11 0.55805 (15) 0.15979 (3) −0.12300 (15) 0.0394 (5)
F12 0.47251 (14) 0.15156 (4) −0.00468 (16) 0.0489 (6)
F13 0.60507 (12) 0.14221 (4) 0.00174 (15) 0.0395 (5)
F14 0.59497 (16) 0.12565 (4) −0.13491 (16) 0.0478 (6)
F15 0.46190 (13) 0.13468 (4) −0.14174 (17) 0.0456 (6)
F16 0.50911 (17) 0.11725 (4) −0.01669 (18) 0.0514 (7)
P2 0.55212 (6) 0.220273 (12) 0.44248 (8) 0.02989 (19)
F21 0.62202 (18) 0.23668 (4) 0.41314 (18) 0.0620 (8)
F22 0.61423 (13) 0.20103 (4) 0.4277 (2) 0.0494 (6)
F23 0.52253 (16) 0.21836 (4) 0.33806 (17) 0.0481 (6)
F24 0.4896 (2) 0.23943 (4) 0.45789 (19) 0.0691 (9)
F25 0.57961 (18) 0.22231 (4) 0.54775 (16) 0.0499 (6)
F26 0.48287 (14) 0.20363 (4) 0.47239 (17) 0.0412 (5)
C41 0.5921 (3) 0.24842 (7) 0.1749 (4) 0.0671 (15)
H41A 0.5672 0.2485 0.2362 0.101*
H41B 0.6125 0.2341 0.1613 0.101*
H41C 0.5511 0.2524 0.1291 0.101*
C42 0.6591 (3) 0.26342 (6) 0.1723 (3) 0.0385 (9)
N43 0.7112 (2) 0.27540 (5) 0.1708 (3) 0.0412 (9)
C51 0.5307 (3) 0.20455 (7) −0.0195 (3) 0.0445 (10)
H51A 0.5680 0.2005 0.0302 0.067*
H51B 0.4951 0.1925 −0.0341 0.067*
H51C 0.4974 0.2167 0.0000 0.067*
C52 0.5776 (2) 0.21037 (5) −0.1004 (3) 0.0301 (8)
N53 0.6152 (2) 0.21498 (5) −0.1637 (2) 0.0403 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ru1 0.01374 (10) 0.00810 (9) 0.01831 (10) 0.00004 (7) 0.00117 (8) 0.00034 (9)
N1 0.0076 (10) 0.0176 (11) 0.0129 (12) −0.0043 (8) −0.0006 (9) 0.0052 (10)
N2 0.0179 (13) 0.0198 (12) 0.0198 (14) −0.0043 (10) −0.0001 (10) 0.0000 (10)
N3 0.0191 (11) 0.0120 (10) 0.0164 (11) 0.0004 (8) −0.0004 (10) 0.0014 (12)
N4 0.0171 (12) 0.0150 (11) 0.0167 (12) −0.0012 (8) 0.0020 (11) −0.0005 (11)
N5 0.0189 (12) 0.0146 (11) 0.0220 (13) 0.0035 (8) 0.0033 (11) 0.0011 (10)
N6 0.0139 (12) 0.0110 (12) 0.0233 (14) −0.0003 (9) 0.0007 (10) 0.0012 (10)
N7 0.0165 (12) 0.0104 (10) 0.0243 (13) 0.0007 (8) 0.0028 (12) 0.0009 (11)
N8 0.0151 (12) 0.0151 (12) 0.0191 (13) −0.0002 (9) −0.0001 (9) −0.0003 (10)
Cl1 0.0194 (3) 0.0265 (4) 0.0456 (5) 0.0084 (3) 0.0040 (4) 0.0037 (4)
Cl2 0.0186 (4) 0.0253 (4) 0.0360 (5) −0.0046 (3) 0.0018 (3) −0.0041 (3)
C1 0.0202 (14) 0.0153 (12) 0.0205 (15) −0.0006 (10) 0.0014 (13) 0.0026 (11)
C2 0.0188 (13) 0.0230 (14) 0.0230 (18) 0.0043 (11) 0.0024 (13) 0.0019 (13)
C3 0.0134 (14) 0.0280 (15) 0.0200 (16) −0.0011 (11) −0.0002 (11) −0.0008 (12)
C4 0.0182 (14) 0.0148 (12) 0.0153 (15) −0.0016 (10) 0.0032 (11) −0.0023 (11)
C5 0.0199 (13) 0.0148 (12) 0.0150 (15) −0.0041 (10) 0.0014 (11) 0.0004 (12)
C6 0.0207 (13) 0.0128 (12) 0.0202 (16) −0.0050 (10) 0.0020 (12) −0.0008 (12)
C7 0.0275 (15) 0.0089 (11) 0.0220 (15) 0.0012 (10) 0.0001 (13) 0.0009 (13)
C8 0.0240 (14) 0.0129 (12) 0.0183 (13) 0.0039 (10) 0.0012 (14) 0.0025 (12)
C9 0.0181 (13) 0.0120 (12) 0.0171 (13) 0.0008 (9) 0.0015 (13) 0.0015 (12)
C10 0.0179 (13) 0.0139 (12) 0.0146 (13) 0.0043 (9) 0.0001 (12) 0.0011 (12)
C11 0.0167 (14) 0.0236 (14) 0.0178 (15) 0.0030 (11) 0.0007 (12) 0.0019 (12)
C12 0.0185 (14) 0.0202 (14) 0.0197 (18) −0.0038 (11) 0.0021 (12) −0.0029 (12)
C13 0.0176 (14) 0.0164 (13) 0.0184 (15) −0.0020 (10) 0.0035 (12) −0.0011 (11)
C21 0.0166 (15) 0.0147 (14) 0.0272 (16) −0.0008 (11) −0.0005 (12) −0.0031 (12)
C22 0.0254 (17) 0.0258 (17) 0.0225 (17) −0.0011 (13) 0.0016 (13) −0.0064 (13)
C23 0.0259 (17) 0.0316 (19) 0.0218 (16) −0.0009 (14) 0.0022 (13) 0.0042 (14)
C24 0.0235 (15) 0.0196 (14) 0.0277 (17) −0.0016 (11) 0.0048 (15) 0.0047 (14)
C25 0.0160 (14) 0.0130 (14) 0.0237 (15) −0.0031 (11) 0.0010 (12) 0.0025 (12)
C26 0.0148 (14) 0.0148 (14) 0.0247 (16) 0.0009 (11) 0.0005 (12) 0.0013 (12)
C27 0.0269 (16) 0.0126 (14) 0.0293 (17) −0.0019 (12) 0.0033 (13) 0.0021 (12)
C28 0.0359 (19) 0.0136 (14) 0.035 (2) −0.0055 (12) 0.0036 (15) −0.0036 (13)
C29 0.0305 (17) 0.0147 (14) 0.0287 (17) −0.0020 (12) 0.0007 (14) −0.0057 (12)
C30 0.0168 (15) 0.0174 (15) 0.0237 (16) 0.0009 (11) 0.0008 (12) −0.0040 (12)
C31 0.0157 (15) 0.0159 (15) 0.0258 (17) 0.0005 (11) 0.0024 (12) −0.0006 (12)
C32 0.0273 (16) 0.0277 (17) 0.0222 (16) −0.0046 (12) −0.0017 (14) −0.0065 (15)
C33 0.0233 (17) 0.034 (2) 0.0213 (16) −0.0021 (14) 0.0001 (13) −0.0002 (14)
C34 0.0149 (16) 0.0327 (18) 0.0245 (16) −0.0007 (13) −0.0002 (13) 0.0058 (14)
C35 0.0159 (15) 0.0171 (14) 0.0277 (16) −0.0009 (11) 0.0008 (12) 0.0045 (12)
P1 0.0173 (3) 0.0206 (3) 0.0220 (4) −0.0014 (3) −0.0014 (3) 0.0043 (4)
F11 0.0604 (15) 0.0288 (11) 0.0290 (11) −0.0096 (10) −0.0010 (10) 0.0081 (9)
F12 0.0412 (13) 0.0762 (18) 0.0295 (12) 0.0268 (12) 0.0053 (10) 0.0076 (12)
F13 0.0272 (11) 0.0636 (15) 0.0277 (11) −0.0158 (10) −0.0083 (9) 0.0098 (10)
F14 0.0543 (15) 0.0551 (15) 0.0339 (12) 0.0287 (12) 0.0038 (11) 0.0004 (11)
F15 0.0329 (13) 0.0671 (17) 0.0369 (13) −0.0200 (11) −0.0104 (10) 0.0106 (12)
F16 0.0697 (17) 0.0369 (13) 0.0477 (15) −0.0190 (12) −0.0112 (13) 0.0209 (11)
P2 0.0418 (5) 0.0167 (3) 0.0312 (5) −0.0054 (3) 0.0004 (4) −0.0044 (4)
F21 0.093 (2) 0.0467 (14) 0.0464 (16) −0.0465 (14) −0.0020 (14) 0.0039 (12)
F22 0.0305 (11) 0.0396 (12) 0.0783 (18) −0.0016 (9) 0.0024 (13) −0.0136 (14)
F23 0.0615 (16) 0.0487 (15) 0.0342 (12) −0.0094 (12) −0.0039 (11) −0.0094 (11)
F24 0.116 (3) 0.0338 (13) 0.0576 (19) 0.0370 (15) 0.0013 (16) −0.0069 (12)
F25 0.0831 (19) 0.0298 (12) 0.0367 (13) −0.0235 (12) −0.0118 (12) 0.0036 (10)
F26 0.0352 (12) 0.0343 (12) 0.0541 (14) −0.0045 (9) 0.0122 (10) −0.0061 (10)
C41 0.074 (3) 0.048 (3) 0.080 (4) −0.016 (2) −0.032 (3) 0.020 (3)
C42 0.054 (2) 0.0251 (17) 0.036 (2) 0.0097 (16) −0.0056 (19) 0.0037 (16)
N43 0.050 (2) 0.0265 (15) 0.047 (2) 0.0066 (14) 0.0009 (16) 0.0026 (15)
C51 0.044 (2) 0.044 (2) 0.045 (2) −0.0034 (18) 0.0125 (19) 0.0020 (19)
C52 0.0322 (19) 0.0219 (16) 0.036 (2) 0.0064 (13) −0.0042 (15) −0.0004 (14)
N53 0.053 (2) 0.0313 (17) 0.0368 (18) 0.0028 (14) 0.0104 (16) 0.0072 (14)

Geometric parameters (Å, °)

Ru1—N1 2.088 (2) C22—H22 0.95
Ru1—N3 1.980 (2) C23—C24 1.393 (5)
Ru1—N4 2.069 (2) C23—H23 0.95
Ru1—N6 2.083 (3) C24—C25 1.383 (5)
Ru1—N7 2.000 (2) C24—H24 0.95
Ru1—N8 2.068 (3) C25—C26 1.475 (4)
N1—C1 1.309 (4) C26—C27 1.391 (4)
N1—C4 1.403 (3) C27—C28 1.389 (5)
N2—C4 1.321 (4) C27—H27 0.95
N2—C3 1.330 (4) C28—C29 1.384 (5)
N3—C5 1.344 (4) C28—H28 0.95
N3—C9 1.358 (3) C29—C30 1.396 (4)
N4—C13 1.344 (4) C29—H29 0.95
N4—C10 1.376 (3) C30—C31 1.471 (4)
N5—C10 1.337 (3) C31—C32 1.375 (5)
N5—C11 1.339 (4) C32—C33 1.399 (5)
N6—C21 1.342 (4) C32—H32 0.95
N6—C25 1.363 (4) C33—C34 1.375 (5)
N7—C26 1.340 (4) C33—H33 0.95
N7—C30 1.349 (4) C34—C35 1.392 (4)
N8—C35 1.341 (4) C34—H34 0.95
N8—C31 1.370 (4) C35—H35 0.95
Cl1—C2 1.722 (3) P1—F13 1.584 (2)
Cl2—C12 1.717 (3) P1—F15 1.592 (2)
C1—C2 1.386 (4) P1—F16 1.594 (2)
C1—H1 0.95 P1—F14 1.598 (2)
C2—C3 1.381 (4) P1—F11 1.599 (2)
C3—H3 0.95 P1—F12 1.608 (2)
C4—C5 1.473 (4) P2—F22 1.596 (2)
C5—C6 1.391 (4) P2—F24 1.598 (3)
C6—C7 1.395 (4) P2—F21 1.600 (2)
C6—H6 0.95 P2—F23 1.600 (3)
C7—C8 1.382 (4) P2—F25 1.602 (2)
C7—H7 0.95 P2—F26 1.604 (2)
C8—C9 1.383 (4) C41—C42 1.448 (6)
C8—H8 0.95 C41—H41a 0.98
C9—C10 1.462 (4) C41—H41b 0.98
C11—C12 1.387 (4) C41—H41c 0.98
C11—H11 0.95 C42—N43 1.140 (5)
C12—C13 1.378 (4) C51—C52 1.453 (5)
C13—H13 0.95 C51—H51a 0.98
C21—C22 1.383 (5) C51—H51b 0.98
C21—H21 0.95 C51—H51c 0.98
C22—C23 1.374 (5) C52—N53 1.145 (5)
N3—Ru1—N7 175.35 (9) C24—C23—H23 120.5
N3—Ru1—N8 100.81 (12) C25—C24—C23 119.2 (3)
N7—Ru1—N8 78.90 (12) C25—C24—H24 120.4
N3—Ru1—N4 79.37 (9) C23—C24—H24 120.4
N7—Ru1—N4 96.00 (9) N6—C25—C24 121.5 (3)
N8—Ru1—N4 92.69 (10) N6—C25—C26 114.8 (3)
N3—Ru1—N6 101.62 (11) C24—C25—C26 123.7 (3)
N7—Ru1—N6 78.75 (11) N7—C26—C27 119.8 (3)
N8—Ru1—N6 157.58 (9) N7—C26—C25 113.7 (3)
N4—Ru1—N6 91.4 (1) C27—C26—C25 126.3 (3)
N3—Ru1—N1 79.51 (9) C28—C27—C26 118.5 (3)
N7—Ru1—N1 105.12 (9) C28—C27—H27 120.7
N8—Ru1—N1 90.79 (10) C26—C27—H27 120.7
N4—Ru1—N1 158.87 (9) C29—C28—C27 120.7 (3)
N6—Ru1—N1 93.3 (1) C29—C28—H28 119.6
C1—N1—C4 116.3 (2) C27—C28—H28 119.6
C1—N1—RU1 131.55 (19) C28—C29—C30 118.8 (3)
C4—N1—RU1 112.15 (18) C28—C29—H29 120.6
C4—N2—C3 117.3 (3) C30—C29—H29 120.6
C5—N3—C9 121.2 (2) N7—C30—C29 119.1 (3)
C5—N3—RU1 119.80 (18) N7—C30—C31 113.2 (3)
C9—N3—RU1 119.00 (18) C29—C30—C31 127.7 (3)
C13—N4—C10 116.5 (2) N8—C31—C32 121.3 (3)
C13—N4—RU1 130.4 (2) N8—C31—C30 115.1 (3)
C10—N4—RU1 113.08 (18) C32—C31—C30 123.6 (3)
C10—N5—C11 117.3 (2) C31—C32—C33 119.4 (3)
C21—N6—C25 118.5 (3) C31—C32—H32 120.3
C21—N6—RU1 127.5 (2) C33—C32—H32 120.3
C25—N6—RU1 113.9 (2) C34—C33—C32 119.5 (3)
C26—N7—C30 123.0 (2) C34—C33—H33 120.3
C26—N7—RU1 118.3 (2) C32—C33—H33 120.3
C30—N7—RU1 117.8 (2) C33—C34—C35 118.4 (3)
C35—N8—C31 118.5 (3) C33—C34—H34 120.8
C35—N8—RU1 127.7 (2) C35—C34—H34 120.8
C31—N8—RU1 113.8 (2) N8—C35—C34 122.9 (3)
N1—C1—C2 121.0 (3) N8—C35—H35 118.6
N1—C1—H1 119.5 C34—C35—H35 118.6
C2—C1—H1 119.5 F13—P1—F15 179.9 (2)
C3—C2—C1 119.3 (3) F13—P1—F16 89.53 (13)
C3—C2—CL1 120.6 (2) F15—P1—F16 90.45 (13)
C1—C2—CL1 120.0 (2) F13—P1—F14 90.07 (13)
N2—C3—C2 120.9 (3) F15—P1—F14 89.98 (15)
N2—C3—H3 119.6 F16—P1—F14 91.42 (15)
C2—C3—H3 119.6 F13—P1—F11 90.51 (12)
N2—C4—N1 125.1 (3) F15—P1—F11 89.51 (13)
N2—C4—C5 119.1 (3) F16—P1—F11 179.77 (18)
N1—C4—C5 115.7 (2) F14—P1—F11 88.81 (14)
N3—C5—C6 120.9 (3) F13—P1—F12 89.74 (14)
N3—C5—C4 112.8 (2) F15—P1—F12 90.21 (13)
C6—C5—C4 126.3 (3) F16—P1—F12 89.14 (15)
C5—C6—C7 118.5 (3) F14—P1—F12 179.41 (16)
C5—C6—H6 120.8 F11—P1—F12 90.63 (14)
C7—C6—H6 120.8 F22—P2—F24 179.57 (19)
C8—C7—C6 119.7 (2) F22—P2—F21 89.79 (15)
C8—C7—H7 120.2 F24—P2—F21 90.59 (18)
C6—C7—H7 120.2 F22—P2—F23 90.44 (15)
C7—C8—C9 119.9 (3) F24—P2—F23 89.76 (15)
C7—C8—H8 120.1 F21—P2—F23 90.67 (14)
C9—C8—H8 120.1 F22—P2—F25 90.61 (16)
N3—C9—C8 119.8 (2) F24—P2—F25 89.19 (15)
N3—C9—C10 112.4 (2) F21—P2—F25 90.15 (13)
C8—C9—C10 127.8 (2) F23—P2—F25 178.67 (18)
N5—C10—N4 125.1 (3) F22—P2—F26 89.60 (12)
N5—C10—C9 118.7 (2) F24—P2—F26 90.02 (16)
N4—C10—C9 116.2 (2) F21—P2—F26 179.30 (17)
N5—C11—C12 121.1 (3) F23—P2—F26 89.68 (13)
N5—C11—H11 119.5 F25—P2—F26 89.51 (14)
C12—C11—H11 119.5 C42—C41—H41A 109.5
C13—C12—C11 119.0 (3) C42—C41—H41B 109.5
C13—C12—CL2 120.3 (2) H41A—C41—H41B 109.5
C11—C12—CL2 120.7 (2) C42—C41—H41C 109.5
N4—C13—C12 120.9 (3) H41A—C41—H41C 109.5
N4—C13—H13 119.5 H41B—C41—H41C 109.5
C12—C13—H13 119.5 N43—C42—C41 179.1 (5)
N6—C21—C22 122.3 (3) C52—C51—H51A 109.5
N6—C21—H21 118.9 C52—C51—H51B 109.5
C22—C21—H21 118.9 H51A—C51—H51B 109.5
C23—C22—C21 119.4 (3) C52—C51—H51C 109.5
C23—C22—H22 120.3 H51A—C51—H51C 109.5
C21—C22—H22 120.3 H51B—C51—H51C 109.5
C22—C23—C24 118.9 (3) N53—C52—C51 179.4 (5)
C22—C23—H23 120.5
N3—RU1—N1—C1 178.0 (3) N1—C4—C5—N3 −1.7 (4)
N7—RU1—N1—C1 −1.6 (3) N2—C4—C5—C6 −1.3 (5)
N8—RU1—N1—C1 77.1 (3) N1—C4—C5—C6 177.6 (3)
N4—RU1—N1—C1 176.7 (3) N3—C5—C6—C7 −1.1 (5)
N6—RU1—N1—C1 −80.8 (3) C4—C5—C6—C7 179.7 (3)
N3—RU1—N1—C4 0.1 (2) C5—C6—C7—C8 −0.5 (6)
N7—RU1—N1—C4 −179.5 (2) C6—C7—C8—C9 2.5 (6)
N8—RU1—N1—C4 −100.8 (2) C5—N3—C9—C8 1.3 (5)
N4—RU1—N1—C4 −1.3 (4) RU1—N3—C9—C8 179.5 (3)
N6—RU1—N1—C4 101.3 (2) C5—N3—C9—C10 −178.7 (3)
N8—RU1—N3—C5 87.7 (3) RU1—N3—C9—C10 −0.5 (4)
N4—RU1—N3—C5 178.4 (3) C7—C8—C9—N3 −2.9 (5)
N6—RU1—N3—C5 −92.3 (3) C7—C8—C9—C10 177.1 (3)
N1—RU1—N3—C5 −1.1 (3) C11—N5—C10—N4 −2.5 (5)
N8—RU1—N3—C9 −90.5 (3) C11—N5—C10—C9 177.4 (3)
N4—RU1—N3—C9 0.2 (3) C13—N4—C10—N5 0.7 (5)
N6—RU1—N3—C9 89.5 (3) RU1—N4—C10—N5 179.5 (3)
N1—RU1—N3—C9 −179.3 (3) C13—N4—C10—C9 −179.2 (3)
N3—RU1—N4—C13 178.7 (3) RU1—N4—C10—C9 −0.4 (4)
N7—RU1—N4—C13 −1.7 (3) N3—C9—C10—N5 −179.4 (3)
N8—RU1—N4—C13 −80.8 (3) C8—C9—C10—N5 0.6 (5)
N6—RU1—N4—C13 77.2 (3) N3—C9—C10—N4 0.6 (4)
N1—RU1—N4—C13 −179.9 (2) C8—C9—C10—N4 −179.4 (3)
N3—RU1—N4—C10 0.1 (2) C10—N5—C11—C12 1.7 (4)
N7—RU1—N4—C10 179.7 (2) N5—C11—C12—C13 0.7 (5)
N8—RU1—N4—C10 100.6 (2) N5—C11—C12—CL2 −180.0 (2)
N6—RU1—N4—C10 −101.4 (2) C10—N4—C13—C12 1.9 (4)
N1—RU1—N4—C10 1.4 (4) RU1—N4—C13—C12 −176.7 (2)
N3—RU1—N6—C21 3.4 (3) C11—C12—C13—N4 −2.6 (5)
N7—RU1—N6—C21 178.7 (3) CL2—C12—C13—N4 178.1 (2)
N8—RU1—N6—C21 −176.7 (2) C25—N6—C21—C22 −3.4 (5)
N4—RU1—N6—C21 82.9 (3) RU1—N6—C21—C22 175.4 (2)
N1—RU1—N6—C21 −76.5 (2) N6—C21—C22—C23 −0.8 (5)
N3—RU1—N6—C25 −177.8 (2) C21—C22—C23—C24 3.9 (5)
N7—RU1—N6—C25 −2.5 (2) C22—C23—C24—C25 −2.9 (5)
N8—RU1—N6—C25 2.2 (4) C21—N6—C25—C24 4.5 (4)
N4—RU1—N6—C25 −98.3 (2) RU1—N6—C25—C24 −174.5 (2)
N1—RU1—N6—C25 102.3 (2) C21—N6—C25—C26 −174.9 (3)
N8—RU1—N7—C26 179.8 (2) RU1—N6—C25—C26 6.1 (3)
N4—RU1—N7—C26 88.3 (2) C23—C24—C25—N6 −1.3 (5)
N6—RU1—N7—C26 −2.0 (2) C23—C24—C25—C26 178.0 (3)
N1—RU1—N7—C26 −92.4 (2) C30—N7—C26—C27 0.2 (4)
N8—RU1—N7—C30 10.2 (2) RU1—N7—C26—C27 −168.9 (2)
N4—RU1—N7—C30 −81.4 (2) C30—N7—C26—C25 174.8 (3)
N6—RU1—N7—C30 −171.6 (2) RU1—N7—C26—C25 5.7 (3)
N1—RU1—N7—C30 98.0 (2) N6—C25—C26—N7 −7.7 (4)
N3—RU1—N8—C35 −12.3 (3) C24—C25—C26—N7 172.9 (3)
N7—RU1—N8—C35 172.5 (3) N6—C25—C26—C27 166.5 (3)
N4—RU1—N8—C35 −91.9 (3) C24—C25—C26—C27 −12.9 (5)
N6—RU1—N8—C35 167.8 (2) N7—C26—C27—C28 0.4 (5)
N1—RU1—N8—C35 67.2 (3) C25—C26—C27—C28 −173.5 (3)
N3—RU1—N8—C31 167.6 (2) C26—C27—C28—C29 −0.2 (5)
N7—RU1—N8—C31 −7.6 (2) C27—C28—C29—C30 −0.4 (5)
N4—RU1—N8—C31 87.9 (2) C26—N7—C30—C29 −0.9 (4)
N6—RU1—N8—C31 −12.3 (4) RU1—N7—C30—C29 168.3 (2)
N1—RU1—N8—C31 −112.9 (2) C26—N7—C30—C31 −179.7 (3)
C4—N1—C1—C2 1.8 (4) RU1—N7—C30—C31 −10.6 (3)
RU1—N1—C1—C2 −176.1 (2) C28—C29—C30—N7 1.0 (5)
N1—C1—C2—C3 −3.1 (5) C28—C29—C30—C31 179.6 (3)
N1—C1—C2—CL1 175.5 (3) C35—N8—C31—C32 3.9 (4)
C4—N2—C3—C2 1.5 (4) RU1—N8—C31—C32 −176.0 (2)
C1—C2—C3—N2 1.5 (5) C35—N8—C31—C30 −175.6 (3)
CL1—C2—C3—N2 −177.1 (2) RU1—N8—C31—C30 4.5 (3)
C3—N2—C4—N1 −3.0 (4) N7—C30—C31—N8 3.6 (4)
C3—N2—C4—C5 175.8 (3) C29—C30—C31—N8 −175.1 (3)
C1—N1—C4—N2 1.3 (4) N7—C30—C31—C32 −175.9 (3)
RU1—N1—C4—N2 179.6 (2) C29—C30—C31—C32 5.4 (5)
C1—N1—C4—C5 −177.4 (3) N8—C31—C32—C33 −2.8 (5)
RU1—N1—C4—C5 0.8 (3) C30—C31—C32—C33 176.7 (3)
C9—N3—C5—C6 0.7 (6) C31—C32—C33—C34 0.0 (5)
RU1—N3—C5—C6 −177.5 (3) C32—C33—C34—C35 1.6 (5)
C9—N3—C5—C4 180.0 (3) C31—N8—C35—C34 −2.3 (5)
RU1—N3—C5—C4 1.8 (4) RU1—N8—C35—C34 177.6 (2)
N2—C4—C5—N3 179.5 (3) C33—C34—C35—N8 −0.5 (5)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2110).

References

  1. Bruker (1997). SHELXTL Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (1999). SMART (Version 5.059) and SAINT (Version 6.06). Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Fang, Y.-Q., Taylor, N. J., Hanan, G. S., Loiseau, F., Passalacqua, R. & Campagna, S. (2002). J. Am. Chem. Soc.124, 7912–7913. [DOI] [PubMed]
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Groen, J. H., van Leeuwen, P. W. N. M. & Vrieze, K. (1998). Dalton Trans. pp. 113–117.
  6. Medlycott, E. A. & Hanan, G. S. (2005). Chem. Soc. Rev.34, 133–142. [DOI] [PubMed]
  7. Polson, M. I. J., Medlycott, E. A., Hanan, G. S., Mikelsons, L., Taylor, N. J., Watanabe, M., Tanaka, Y., Loiseau, F., Passalacqua, R. & Campagna, S. (2004). Chem. Eur. J.10, 3640–3648. [DOI] [PubMed]
  8. Pyo, S., Perez-Cordero, E., Bott, S. G. & Echegoyen, L. (1999). Inorg. Chem.38, 3337–3343. [DOI] [PubMed]
  9. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807068602/hy2110sup1.cif

e-64-0m326-sup1.cif (33.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807068602/hy2110Isup2.hkl

e-64-0m326-Isup2.hkl (358.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES