Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jan 9;64(Pt 2):o389. doi: 10.1107/S160053680800007X

Methyl 2-(N-ethyl­methane­sulfonamido)benzoate

Muhammad Shafiq a, M Nawaz Tahir b, Islam Ullah Khan a, Waseeq Ahmad Siddiqui a, Muhammad Nadeem Arshad a,*
PMCID: PMC2960301  PMID: 21201419

Abstract

In the mol­ecule of the title compound, C11H15NO4S, the S atom environment is distorted tetrahedral. The methoxy­carbonyl group is oriented at a dihedral angle of 11.8 (2)° with respect to the benzene ring. In the crystal structure, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric dimers.

Related literature

For general background, see: Reissenweber & Mangold (1982); Mookherjee et al. (1989); Tadashi et al. (1982). For related literature, see: Siddiqui et al. (2006,2007a ,b ); Lombardino (1972); Hanson & Hitchcook (2004).graphic file with name e-64-0o389-scheme1.jpg

Experimental

Crystal data

  • C11H15NO4S

  • M r = 257.30

  • Triclinic, Inline graphic

  • a = 8.0161 (4) Å

  • b = 8.4386 (4) Å

  • c = 10.5329 (5) Å

  • α = 85.244 (3)°

  • β = 78.721 (3)°

  • γ = 62.650 (3)°

  • V = 620.61 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 296 (2) K

  • 0.25 × 0.18 × 0.12 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.935, T max = 0.958

  • 11895 measured reflections

  • 3012 independent reflections

  • 1817 reflections with I > 3σ(I)

  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.123

  • S = 1.00

  • 3012 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680800007X/hk2412sup1.cif

e-64-0o389-sup1.cif (16.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680800007X/hk2412Isup2.hkl

e-64-0o389-Isup2.hkl (144.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

S1—O1 1.421 (2)
S1—O2 1.4303 (19)
S1—N1 1.6269 (18)
S1—C9 1.747 (2)
O1—S1—O2 119.88 (12)
O1—S1—N1 107.29 (11)
O2—S1—N1 107.34 (11)
O1—S1—C9 108.32 (13)
O2—S1—C9 106.53 (13)
N1—S1—C9 106.83 (11)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9B⋯O1i 0.96 2.50 3.372 (5) 151
C7—H7B⋯O3 0.97 2.57 3.044 (4) 110
C9—H9C⋯O3 0.96 2.59 3.152 (4) 117

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors acknowledge the Higher Education Com­mision, Islamabad, Pakistan, and Bana International, Karachi, Pakistan, for funding the purchase of the diffractometer and for technical support, respectively.

supplementary crystallographic information

Comment

Alkyl anthranilates are valuable starting materials for the preparation of pesticides, dyes and drugs (Reissenweber & Mangold, 1982). They find organoleptic uses in augmenting the aroma or taste of perfume compositions, colognes, perfumed articles, foodstuffs, medicinal products and in enhancing the effects of deodorancy (Mookherjee et al., 1989). Particularly, the N-substituted thioesters of anthranilic acid have been found potent inhibitors of the serine proteases human leukocyte (HL) elastase, porcine pancreatic elastase, cathepsin G, and bovine chymotrypsin Aα (Tadashi et al., 1982). In continuation of our research program to synthesize new biologically important 1,2-benzothiazine 1,1-dioxide molecules (Siddiqui et al., 2006; Siddiqui et al., 2007a,b), we embarked on the syntheses of 2,1-benzothiazine 2,2-dioxide, as well. Contrary to the N-methyl substituent (Lombardino, 1972), the N-ethyl derivative is being reported for the first time.

The title compound, (I), is an important precursor for the synthesis of 2,1-benzothiazine 2,2-dioxide molecule. The structure determination of (I) is undertaken in order to understand the conformational geometry around the sulfur and nitrogen atoms, due to the addition of ethyl group.

In the molecule of (I), (Fig. 1) S1 atom adopts a distorted tetrahedral coordination geometry with two O, one N and one C atoms of methylsulfonyl amino group (Table 1). The sulfur bonds are shortened, while the bond angles aroud it are different with respect to the corresponding values reported in methyl anthranilate N-methanesulfonamide, (II), (Hanson & Hitchcook, 2004).

In (I), the addition of ethyl group at N1, instead of H-atom in (II), has changed the orientation of CH3 group and O4 atom as compared with (II). On the other hand, the O3—C10 [1.193 (3) Å] and O4—C10 [1.328 (3) Å] bonds in (I), are reported as 1.2202 (16) Å and 1.3324 (16) Å, respectively, in (II). The methyl carboxylate group (O3/O4/C10/C11) is oriented at a dihedral angle of 11.8 (2)° with respect to the phenyl ring (C1—C6).

In the crystal structure, intermolecular C—H···O hydrogen bonds (Table 2) link the molecules into centrosymmetric dimers (Fig. 2), in which they may be effective in the stabilization of the structure.

Experimental

For the preparation of the title compound, the suspension of hexane-washed sodium hydride (50% in mineral oil) was prepared in dry dimethylformamide (3 ml). A solution of methyl N-methylsulfonylanthranilate (70 mg, 0.306 mmol) in dry dimethylformamide (5 ml) was added to the suspension (76 mg, 0.368 mmol), and stirred for 45 min at room temperature. Then, a solution of ethyl iodide (144 mg, 0.92 mmol) in ether (5 ml) was added to it. The resulting white suspension was stirred for 1.5 h and poured into hydrochloric acid (3 N, 50 ml) to produce a yellow suspension which was extracted with chloroform (4 × 25 ml). The combined extract was dried over calcium sulfate and evaporated under reduced pressure (11 torr) to get the title compound (yield; 58 mg, 73%, m.p. 330–331 K). Crystals suitable for X-ray analysis were obtained by slow evaporation of CHCl3.

Refinement

H atoms were positioned geometrically, with C—H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

A partial packing diagram of (I). Hydrogen bonds are shown as dashed lines [symmetry code: (a) -x, -y, -z].

Crystal data

C11H15NO4S Z = 2
Mr = 257.30 F000 = 272
Triclinic, P1 Dx = 1.377 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 8.0161 (4) Å Cell parameters from 3596 reflections
b = 8.4386 (4) Å θ = 2.7–24.8º
c = 10.5329 (5) Å µ = 0.26 mm1
α = 85.244 (3)º T = 296 (2) K
β = 78.721 (3)º Prismatic, colourless
γ = 62.650 (3)º 0.25 × 0.18 × 0.12 mm
V = 620.61 (5) Å3

Data collection

Bruker KAPPA APEXII CCD diffractometer 3012 independent reflections
Radiation source: fine-focus sealed tube 1817 reflections with I > 3σ(I)
Monochromator: graphite Rint = 0.032
Detector resolution: 8.33 pixels mm-1 θmax = 28.3º
T = 296(2) K θmin = 2.0º
ω scans h = −10→10
Absorption correction: multi-scan(SADABS; Bruker, 2005) k = −11→11
Tmin = 0.935, Tmax = 0.958 l = −14→14
11895 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043 H-atom parameters constrained
wR(F2) = 0.123   w = 1/[σ2(Fo2) + (0.0727P)2 + 0.1532P] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max < 0.001
3012 reflections Δρmax = 0.37 e Å3
154 parameters Δρmin = −0.36 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.14595 (10) 0.13878 (8) 0.07989 (5) 0.0507 (2)
O1 −0.0510 (3) 0.1954 (3) 0.08167 (19) 0.0688 (6)
O2 0.2655 (3) 0.1495 (3) −0.03718 (16) 0.0707 (6)
O3 0.2630 (3) 0.0251 (3) 0.40332 (17) 0.0811 (7)
O4 0.0983 (3) 0.1413 (3) 0.59441 (16) 0.0700 (6)
N1 0.1604 (3) 0.2545 (3) 0.18962 (17) 0.0457 (5)
C1 −0.0041 (3) 0.3538 (3) 0.2846 (2) 0.0443 (6)
C2 −0.0200 (3) 0.3048 (3) 0.4158 (2) 0.0436 (6)
C3 −0.1825 (4) 0.4142 (4) 0.5006 (3) 0.0605 (7)
H3 −0.195 0.3845 0.5878 0.073*
C4 −0.3251 (4) 0.5646 (4) 0.4595 (4) 0.0758 (9)
H4 −0.4337 0.6344 0.5181 0.091*
C5 −0.3076 (5) 0.6121 (4) 0.3320 (4) 0.0801 (10)
H5 −0.4039 0.7146 0.3039 0.096*
C6 −0.1476 (4) 0.5080 (4) 0.2458 (3) 0.0654 (8)
H6 −0.1356 0.542 0.1596 0.078*
C7 0.3401 (4) 0.2613 (4) 0.1897 (2) 0.0565 (7)
H7A 0.4445 0.1594 0.1417 0.068*
H7B 0.3614 0.2524 0.2781 0.068*
C8 0.3412 (5) 0.4294 (5) 0.1310 (3) 0.0872 (11)
H8A 0.4615 0.427 0.1332 0.131*
H8B 0.2402 0.5307 0.1794 0.131*
H8C 0.3228 0.4378 0.0429 0.131*
C9 0.2485 (4) −0.0838 (3) 0.1283 (2) 0.0573 (7)
H9A 0.3819 −0.1245 0.1276 0.086*
H9B 0.2333 −0.1556 0.0697 0.086*
H9C 0.1866 −0.0938 0.2141 0.086*
C10 0.1286 (4) 0.1421 (3) 0.4659 (2) 0.0457 (6)
C11 0.2403 (5) −0.0050 (4) 0.6546 (3) 0.0754 (9)
H11A 0.204 0.0075 0.747 0.113*
H11B 0.3615 −0.0042 0.6282 0.113*
H11C 0.2499 −0.1157 0.6285 0.113*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0718 (5) 0.0469 (4) 0.0342 (3) −0.0235 (3) −0.0201 (3) 0.0011 (2)
O1 0.0720 (13) 0.0634 (12) 0.0718 (12) −0.0208 (10) −0.0347 (10) −0.0126 (9)
O2 0.1094 (17) 0.0694 (13) 0.0324 (9) −0.0411 (12) −0.0106 (9) 0.0037 (8)
O3 0.0977 (16) 0.0587 (12) 0.0408 (10) 0.0047 (11) −0.0141 (10) −0.0030 (9)
O4 0.0661 (13) 0.0920 (15) 0.0355 (9) −0.0220 (11) −0.0101 (9) 0.0021 (9)
N1 0.0579 (13) 0.0471 (11) 0.0337 (9) −0.0239 (10) −0.0109 (9) −0.0018 (8)
C1 0.0527 (15) 0.0365 (12) 0.0475 (12) −0.0200 (11) −0.0169 (11) −0.0023 (9)
C2 0.0484 (14) 0.0446 (13) 0.0417 (12) −0.0224 (12) −0.0104 (11) −0.0062 (10)
C3 0.0547 (17) 0.0681 (18) 0.0569 (15) −0.0256 (15) −0.0035 (13) −0.0186 (13)
C4 0.0540 (19) 0.065 (2) 0.095 (2) −0.0127 (16) −0.0083 (17) −0.0345 (17)
C5 0.067 (2) 0.0508 (17) 0.106 (3) −0.0015 (15) −0.038 (2) −0.0169 (17)
C6 0.079 (2) 0.0450 (15) 0.0677 (17) −0.0174 (15) −0.0307 (16) 0.0023 (12)
C7 0.0632 (17) 0.0686 (17) 0.0439 (13) −0.0347 (15) −0.0087 (12) −0.0046 (12)
C8 0.122 (3) 0.094 (3) 0.075 (2) −0.077 (2) −0.013 (2) 0.0089 (18)
C9 0.0779 (19) 0.0455 (14) 0.0483 (14) −0.0252 (14) −0.0173 (13) −0.0010 (11)
C10 0.0556 (16) 0.0491 (14) 0.0348 (11) −0.0255 (13) −0.0077 (11) −0.0016 (10)
C11 0.082 (2) 0.095 (2) 0.0440 (14) −0.0339 (18) −0.0227 (15) 0.0166 (14)

Geometric parameters (Å, °)

S1—O1 1.421 (2) C4—H4 0.93
S1—O2 1.4303 (19) C5—C6 1.372 (4)
S1—N1 1.6269 (18) C5—H5 0.93
S1—C9 1.747 (2) C6—H6 0.93
O3—C10 1.193 (3) C7—C8 1.503 (4)
O4—C10 1.328 (3) C7—H7A 0.97
O4—C11 1.443 (3) C7—H7B 0.97
N1—C1 1.431 (3) C8—H8A 0.96
N1—C7 1.468 (3) C8—H8B 0.96
C1—C6 1.380 (3) C8—H8C 0.96
C1—C2 1.408 (3) C9—H9A 0.96
C2—C3 1.387 (3) C9—H9B 0.96
C2—C10 1.485 (3) C9—H9C 0.96
C3—C4 1.369 (4) C11—H11A 0.96
C3—H3 0.93 C11—H11B 0.96
C4—C5 1.368 (5) C11—H11C 0.96
O1—S1—O2 119.88 (12) N1—C7—C8 112.8 (2)
O1—S1—N1 107.29 (11) N1—C7—H7A 109
O2—S1—N1 107.34 (11) C8—C7—H7A 109
O1—S1—C9 108.32 (13) N1—C7—H7B 109
O2—S1—C9 106.53 (13) C8—C7—H7B 109
N1—S1—C9 106.83 (11) H7A—C7—H7B 107.8
C10—O4—C11 116.5 (2) C7—C8—H8A 109.5
C1—N1—C7 119.82 (18) C7—C8—H8B 109.5
C1—N1—S1 119.87 (16) H8A—C8—H8B 109.5
C7—N1—S1 120.29 (16) C7—C8—H8C 109.5
C6—C1—C2 119.3 (2) H8A—C8—H8C 109.5
C6—C1—N1 118.0 (2) H8B—C8—H8C 109.5
C2—C1—N1 122.6 (2) S1—C9—H9A 109.5
C3—C2—C1 117.9 (2) S1—C9—H9B 109.5
C3—C2—C10 119.3 (2) H9A—C9—H9B 109.5
C1—C2—C10 122.8 (2) S1—C9—H9C 109.5
C4—C3—C2 121.8 (3) H9A—C9—H9C 109.5
C4—C3—H3 119.1 H9B—C9—H9C 109.5
C2—C3—H3 119.1 O3—C10—O4 121.8 (2)
C5—C4—C3 119.9 (3) O3—C10—C2 126.8 (2)
C5—C4—H4 120 O4—C10—C2 111.4 (2)
C3—C4—H4 120 O4—C11—H11A 109.5
C4—C5—C6 119.7 (3) O4—C11—H11B 109.5
C4—C5—H5 120.1 H11A—C11—H11B 109.5
C6—C5—H5 120.1 O4—C11—H11C 109.5
C5—C6—C1 121.3 (3) H11A—C11—H11C 109.5
C5—C6—H6 119.3 H11B—C11—H11C 109.5
C1—C6—H6 119.3
O1—S1—N1—C1 14.2 (2) C10—C2—C3—C4 −179.2 (2)
O2—S1—N1—C1 144.26 (18) C2—C3—C4—C5 −1.2 (4)
C9—S1—N1—C1 −101.8 (2) C3—C4—C5—C6 0.4 (5)
O1—S1—N1—C7 −164.23 (18) C4—C5—C6—C1 1.0 (5)
O2—S1—N1—C7 −34.2 (2) C2—C1—C6—C5 −1.7 (4)
C9—S1—N1—C7 79.8 (2) N1—C1—C6—C5 −178.6 (3)
C7—N1—C1—C6 104.8 (3) C1—N1—C7—C8 −78.2 (3)
S1—N1—C1—C6 −73.6 (3) S1—N1—C7—C8 100.3 (2)
C7—N1—C1—C2 −72.0 (3) C11—O4—C10—O3 2.3 (4)
S1—N1—C1—C2 109.6 (2) C11—O4—C10—C2 −176.2 (2)
C6—C1—C2—C3 0.9 (3) C3—C2—C10—O3 170.1 (3)
N1—C1—C2—C3 177.6 (2) C1—C2—C10—O3 −9.6 (4)
C6—C1—C2—C10 −179.4 (2) C3—C2—C10—O4 −11.5 (3)
N1—C1—C2—C10 −2.7 (3) C1—C2—C10—O4 168.9 (2)
C1—C2—C3—C4 0.5 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C9—H9B···O1i 0.96 2.50 3.372 (5) 151
C7—H7B···O3 0.97 2.57 3.044 (4) 110
C9—H9C···O3 0.96 2.59 3.152 (4) 117

Symmetry codes: (i) −x, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2412).

References

  1. Bruker (2007). APEX2 (Version 1.27), SAINT (Version 7.12a) and SADABS (Version 2004/I). Bruker AXS Inc. Madison, Wisconsion, USA.
  2. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  3. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  4. Hanson, J. R. & Hitchcook, P. B. (2004). J. Chem. Res (M)., pp. 642–648.
  5. Lombardino, J. G. (1972). J. Heterocyclic Chem.9, 315–317.
  6. Mookherjee, B. D., Trenkle, R. W., Calderone, N. & Sands, K. P. (1989). US Patent 4 879 271.
  7. Reissenweber, G. & Mangold, D. (1982). US Patent 4 310 677.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Siddiqui, W. A., Ahmad, S., Khan, I. U. & Malik, A. (2006). J. Chem. Soc. Pak.28, 583–589.
  10. Siddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Ahmad, V. U. (2007a). J. Chem. Soc. Pak.29, 44–47.
  11. Siddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Weaver, G. W. (2007b). Synth. Commun.37, 767–773.
  12. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  13. Tadashi, T., Jeffrey, C. G. & James, C. P. (1982). J. Biol. Chem.257, 5085–5091.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680800007X/hk2412sup1.cif

e-64-0o389-sup1.cif (16.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680800007X/hk2412Isup2.hkl

e-64-0o389-Isup2.hkl (144.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES