Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jan 18;64(Pt 2):o469. doi: 10.1107/S1600536808001281

5,11-Dimethyl­dibenzo[b,f][1,5]diazocine-6,12(5H,11H)-dione

Andrew B Mahon a, Paul Jensen b, Andrew C Try a,*
PMCID: PMC2960302  PMID: 21201495

Abstract

In the mol­ecule of the title compound, C16H14N2O2, an N,N′-dimethyl­dianthranilide, the two methyl groups are disordered over two positions; site occupation factors were kept fixed as 0.75:0.25 and 0.65:0.35. The dihedral angle between the two benzene rings is 75.57 (3)°.

Related literature

For related literature, see: Nadkarni & Hosangadi (1988). For related structures, see: Ebert et al. (1998); Nonnenmacher et al. (2000); Gordon-Wylie et al. (2004); Olszewska et al. (2004).graphic file with name e-64-0o469-scheme1.jpg

Experimental

Crystal data

  • C16H14N2O2

  • M r = 266.29

  • Monoclinic, Inline graphic

  • a = 11.2715 (10) Å

  • b = 7.9113 (7) Å

  • c = 15.4100 (14) Å

  • β = 101.611 (1)°

  • V = 1346.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 (2) K

  • 0.55 × 0.42 × 0.24 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.901, T max = 0.979

  • 12897 measured reflections

  • 3175 independent reflections

  • 2686 reflections with I > 2σ(I)

  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.104

  • S = 1.04

  • 3175 reflections

  • 185 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001) and SHELXTL (Sheldrick, 2008); software used to prepare material for publication: modiCIFer (Guzei, 2005).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808001281/hk2415sup1.cif

e-64-0o469-sup1.cif (18.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808001281/hk2415Isup2.hkl

e-64-0o469-Isup2.hkl (155.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Australian Research Council for a Discovery Project grant to ACT (grant No. DP0345180), and Macquarie University for the award of a Macquarie University Research Development grant to ACT and the award of a PhD scholarship to ABM.

supplementary crystallographic information

Comment

Several structures of the unsubstituted dianthranilide (i.e., lacking methyl groups on the nitrogen atoms) are present in the literature, including ethanol, DMF and pyridine solvates of racemic material (Gordon-Wylie et al., 2004) as well as a DMSO solvate of racemic material, unsolvated racemate and a DMSO solvate of enantiomerically pure crystals (Olszewska et al., 2004).

In the molecule of the title compound, (I), (Fig. 1) the bond lengths and angles are within normal ranges. When the crystal structure was solved, the two methyl groups were found to be disordered. The dihedral angle between the two benzene rings is 75.57 (3)°.

The X-ray crystal structures of three N,N'-disubstituted dianthranilides have also been reported and in all cases they have a smaller dihedral angle between the two aryl rings of the dianthranilide in comparison with the structures of the unsubstituted compounds. The N,N'-di[1-(N-t-butylcarbamoyl)-1-(cyclohexyl)- methyl] (Ebert et al., 1998), N,N'-dibenzyl (Nonnenmacher et al., 2000) and N,N'-dicamphanoyl derivatives (Olszewska et al., 2004) have dihedral angles of 78.2, 83.9 and 77.5°, respectively.

Experimental

The title compound was prepared according to the literature procedure (Nadkarni & Hosangadi, 1988) in 89% yield. Single crystals of (I) were produced from slow evaporation of a dichloromethane solution.

Refinement

When the crystal structure was solved, the two methyl groups were found to be disordered. They were each modelled with disorder over two positions with a common carbon atom. One was assigned a 75:25 split occupancy, the other 65:35. A rotating refinement was used for each methyl position giving staggered orientations for each. H atoms were positioned geometrically, with C—H = 0.95 and 0.98 Å for aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Synthetic scheme for the synthesis of (I).

Crystal data

C16H14N2O2 F000 = 560
Mr = 266.29 Dx = 1.314 Mg m3
Monoclinic, P21/c Melting point: 484 K
Hall symbol: -P 2ybc Mo Kα radiation λ = 0.71073 Å
a = 11.2715 (10) Å Cell parameters from 5797 reflections
b = 7.9113 (7) Å θ = 2.7–28.3º
c = 15.4100 (14) Å µ = 0.09 mm1
β = 101.611 (1)º T = 150 (2) K
V = 1346.0 (2) Å3 Prism, colourless
Z = 4 0.55 × 0.42 × 0.24 mm

Data collection

Bruker 1000 CCD area-detector diffractometer 3175 independent reflections
Radiation source: fine-focus sealed tube 2686 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.022
T = 150(2) K θmax = 28.3º
ω scans θmin = 1.8º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −14→14
Tmin = 0.901, Tmax = 0.979 k = −10→10
12897 measured reflections l = −20→20

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037 H-atom parameters constrained
wR(F2) = 0.104   w = 1/[σ2(Fo2) + (0.0528P)2 + 0.3606P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
3175 reflections Δρmax = 0.23 e Å3
185 parameters Δρmin = −0.23 e Å3
1 restraint Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 −0.03631 (7) 0.20770 (12) 0.36470 (6) 0.0392 (2)
O2 0.32157 (9) 0.56190 (11) 0.51403 (6) 0.0384 (2)
N1 0.26191 (9) 0.43083 (12) 0.38154 (6) 0.0293 (2)
N2 0.11807 (8) 0.19261 (12) 0.48395 (6) 0.0280 (2)
C1 0.07223 (10) 0.19025 (14) 0.39558 (8) 0.0283 (2)
C2 0.15986 (10) 0.16141 (14) 0.33568 (7) 0.0270 (2)
C3 0.14642 (11) 0.01939 (15) 0.28107 (7) 0.0313 (3)
H3 0.0832 −0.0590 0.2833 0.038*
C4 0.22439 (12) −0.00839 (16) 0.22364 (8) 0.0346 (3)
H4 0.2150 −0.1059 0.1869 0.042*
C5 0.31624 (12) 0.10641 (17) 0.21977 (7) 0.0356 (3)
H5 0.3706 0.0864 0.1811 0.043*
C6 0.32876 (11) 0.25014 (15) 0.27217 (8) 0.0323 (3)
H6 0.3905 0.3299 0.2683 0.039*
C7 0.25127 (10) 0.27809 (14) 0.33037 (7) 0.0271 (2)
C8 0.23206 (13) 0.59028 (16) 0.33401 (9) 0.0410 (3) 0.75
H8A 0.2291 0.6813 0.3766 0.049* 0.75
H8B 0.1530 0.5801 0.2939 0.049* 0.75
H8C 0.2941 0.6162 0.2996 0.049* 0.75
C8' 0.23206 (13) 0.59028 (16) 0.33401 (9) 0.0410 (3) 0.25
H8D 0.2974 0.6720 0.3534 0.049* 0.25
H8E 0.1562 0.6349 0.3466 0.049* 0.25
H8F 0.2226 0.5707 0.2702 0.049* 0.25
C9 0.30500 (10) 0.43187 (14) 0.47035 (7) 0.0271 (2)
C10 0.33394 (10) 0.26308 (13) 0.51321 (7) 0.0239 (2)
C11 0.45333 (10) 0.22278 (15) 0.55095 (7) 0.0272 (2)
H11 0.5166 0.2994 0.5460 0.033*
C12 0.48022 (10) 0.07159 (15) 0.59559 (7) 0.0304 (3)
H12 0.5619 0.0443 0.6210 0.036*
C13 0.38820 (11) −0.04021 (15) 0.60338 (7) 0.0309 (3)
H13 0.4071 −0.1439 0.6342 0.037*
C14 0.26895 (11) −0.00143 (14) 0.56646 (7) 0.0291 (2)
H14 0.2059 −0.0777 0.5723 0.035*
C15 0.24198 (9) 0.14978 (14) 0.52073 (7) 0.0243 (2)
C16 0.03856 (11) 0.22890 (17) 0.54596 (9) 0.0363 (3) 0.65
H16A −0.0385 0.2743 0.5134 0.044* 0.65
H16B 0.0774 0.3121 0.5897 0.044* 0.65
H16C 0.0236 0.1246 0.5763 0.044* 0.65
C16' 0.03856 (11) 0.22890 (17) 0.54596 (9) 0.0363 (3) 0.35
H16D −0.0348 0.1596 0.5309 0.044* 0.35
H16E 0.0163 0.3488 0.5421 0.044* 0.35
H16F 0.0810 0.2026 0.6064 0.044* 0.35

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0249 (4) 0.0477 (5) 0.0415 (5) −0.0008 (4) −0.0015 (3) 0.0076 (4)
O2 0.0516 (6) 0.0251 (4) 0.0385 (5) −0.0088 (4) 0.0088 (4) −0.0029 (3)
N1 0.0320 (5) 0.0229 (5) 0.0309 (5) −0.0034 (4) 0.0012 (4) 0.0057 (4)
N2 0.0235 (4) 0.0306 (5) 0.0297 (5) −0.0045 (4) 0.0045 (4) 0.0013 (4)
C1 0.0257 (5) 0.0237 (5) 0.0330 (6) −0.0039 (4) 0.0004 (4) 0.0043 (4)
C2 0.0271 (5) 0.0272 (5) 0.0235 (5) −0.0012 (4) −0.0029 (4) 0.0057 (4)
C3 0.0334 (6) 0.0278 (6) 0.0283 (5) −0.0026 (4) −0.0045 (4) 0.0047 (4)
C4 0.0440 (7) 0.0319 (6) 0.0242 (5) 0.0037 (5) −0.0023 (5) 0.0014 (5)
C5 0.0417 (7) 0.0416 (7) 0.0232 (5) 0.0062 (5) 0.0055 (5) 0.0074 (5)
C6 0.0341 (6) 0.0349 (6) 0.0267 (5) −0.0022 (5) 0.0036 (4) 0.0108 (5)
C7 0.0302 (5) 0.0257 (5) 0.0226 (5) −0.0011 (4) −0.0014 (4) 0.0064 (4)
C8 0.0490 (8) 0.0270 (6) 0.0428 (7) −0.0010 (5) −0.0012 (6) 0.0110 (5)
C8' 0.0490 (8) 0.0270 (6) 0.0428 (7) −0.0010 (5) −0.0012 (6) 0.0110 (5)
C9 0.0255 (5) 0.0248 (5) 0.0311 (6) −0.0062 (4) 0.0055 (4) 0.0019 (4)
C10 0.0268 (5) 0.0245 (5) 0.0204 (5) −0.0039 (4) 0.0044 (4) −0.0015 (4)
C11 0.0253 (5) 0.0316 (6) 0.0245 (5) −0.0051 (4) 0.0047 (4) −0.0022 (4)
C12 0.0277 (5) 0.0365 (6) 0.0257 (5) 0.0022 (4) 0.0024 (4) −0.0006 (4)
C13 0.0392 (6) 0.0279 (6) 0.0247 (5) 0.0016 (5) 0.0045 (4) 0.0038 (4)
C14 0.0333 (6) 0.0277 (6) 0.0258 (5) −0.0071 (4) 0.0046 (4) 0.0016 (4)
C15 0.0244 (5) 0.0262 (5) 0.0217 (5) −0.0042 (4) 0.0031 (4) −0.0008 (4)
C16 0.0297 (6) 0.0417 (7) 0.0390 (7) −0.0057 (5) 0.0107 (5) −0.0040 (5)
C16' 0.0297 (6) 0.0417 (7) 0.0390 (7) −0.0057 (5) 0.0107 (5) −0.0040 (5)

Geometric parameters (Å, °)

O1—C1 1.2280 (13) C6—H6 0.9500
O2—C9 1.2229 (14) C8—H8A 0.9800
N1—C9 1.3569 (15) C8—H8B 0.9800
N1—C7 1.4346 (15) C8—H8C 0.9800
N1—C8 1.4635 (14) C9—C10 1.4964 (15)
N2—C1 1.3558 (15) C10—C11 1.3913 (15)
N2—C15 1.4380 (14) C10—C15 1.3926 (14)
N2—C16 1.4642 (15) C11—C12 1.3827 (16)
C1—C2 1.4990 (16) C11—H11 0.9500
C2—C3 1.3936 (16) C12—C13 1.3867 (17)
C2—C7 1.3980 (15) C12—H12 0.9500
C3—C4 1.3846 (18) C13—C14 1.3844 (17)
C3—H3 0.9500 C13—H13 0.9500
C4—C5 1.3874 (19) C14—C15 1.3906 (15)
C4—H4 0.9500 C14—H14 0.9500
C5—C6 1.3854 (18) C16—H16A 0.9800
C5—H5 0.9500 C16—H16B 0.9800
C6—C7 1.3897 (17) C16—H16C 0.9800
C9—N1—C7 122.20 (9) N1—C8—H8A 109.5
C9—N1—C8 119.94 (10) N1—C8—H8B 109.5
C7—N1—C8 117.74 (9) N1—C8—H8C 109.5
C1—N2—C15 122.43 (9) O2—C9—N1 122.97 (10)
C1—N2—C16 119.90 (10) O2—C9—C10 120.80 (10)
C15—N2—C16 117.55 (9) N1—C9—C10 116.21 (9)
O1—C1—N2 122.43 (11) C11—C10—C15 119.42 (10)
O1—C1—C2 120.47 (10) C11—C10—C9 119.71 (9)
N2—C1—C2 117.09 (9) C15—C10—C9 120.75 (10)
C3—C2—C7 119.27 (11) C12—C11—C10 120.20 (10)
C3—C2—C1 119.31 (10) C12—C11—H11 119.9
C7—C2—C1 121.35 (10) C10—C11—H11 119.9
C4—C3—C2 120.54 (11) C11—C12—C13 120.13 (10)
C4—C3—H3 119.7 C11—C12—H12 119.9
C2—C3—H3 119.7 C13—C12—H12 119.9
C3—C4—C5 119.91 (11) C14—C13—C12 120.29 (11)
C3—C4—H4 120.0 C14—C13—H13 119.9
C5—C4—H4 120.0 C12—C13—H13 119.9
C6—C5—C4 120.11 (12) C13—C14—C15 119.60 (10)
C6—C5—H5 119.9 C13—C14—H14 120.2
C4—C5—H5 119.9 C15—C14—H14 120.2
C5—C6—C7 120.21 (11) C14—C15—C10 120.36 (10)
C5—C6—H6 119.9 C14—C15—N2 119.89 (9)
C7—C6—H6 119.9 C10—C15—N2 119.71 (10)
C6—C7—C2 119.94 (11) N2—C16—H16A 109.5
C6—C7—N1 119.66 (10) N2—C16—H16B 109.5
C2—C7—N1 120.34 (10) N2—C16—H16C 109.5
C15—N2—C1—O1 171.43 (10) C7—N1—C9—O2 175.40 (11)
C16—N2—C1—O1 −4.45 (17) C8—N1—C9—O2 −0.55 (18)
C15—N2—C1—C2 −7.30 (15) C7—N1—C9—C10 −3.60 (15)
C16—N2—C1—C2 176.82 (10) C8—N1—C9—C10 −179.55 (10)
O1—C1—C2—C3 −60.48 (15) O2—C9—C10—C11 −64.70 (15)
N2—C1—C2—C3 118.28 (11) N1—C9—C10—C11 114.32 (11)
O1—C1—C2—C7 116.44 (12) O2—C9—C10—C15 111.25 (12)
N2—C1—C2—C7 −64.81 (14) N1—C9—C10—C15 −69.72 (14)
C7—C2—C3—C4 1.56 (16) C15—C10—C11—C12 −0.08 (16)
C1—C2—C3—C4 178.54 (10) C9—C10—C11—C12 175.93 (10)
C2—C3—C4—C5 −0.46 (17) C10—C11—C12—C13 −0.36 (16)
C3—C4—C5—C6 −1.08 (17) C11—C12—C13—C14 0.11 (17)
C4—C5—C6—C7 1.52 (17) C12—C13—C14—C15 0.59 (17)
C5—C6—C7—C2 −0.41 (16) C13—C14—C15—C10 −1.03 (16)
C5—C6—C7—N1 −177.39 (10) C13—C14—C15—N2 −178.59 (10)
C3—C2—C7—C6 −1.12 (15) C11—C10—C15—C14 0.78 (16)
C1—C2—C7—C6 −178.04 (10) C9—C10—C15—C14 −175.18 (10)
C3—C2—C7—N1 175.84 (9) C11—C10—C15—N2 178.34 (9)
C1—C2—C7—N1 −1.08 (15) C9—C10—C15—N2 2.37 (15)
C9—N1—C7—C6 −109.40 (12) C1—N2—C15—C14 −108.33 (12)
C8—N1—C7—C6 66.63 (14) C16—N2—C15—C14 67.64 (14)
C9—N1—C7—C2 73.63 (14) C1—N2—C15—C10 74.10 (14)
C8—N1—C7—C2 −110.33 (12) C16—N2—C15—C10 −109.93 (12)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2415).

References

  1. Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  2. Bruker (1998). SMART Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2003). SAINT (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Ebert, B. M., Ugi, I. K., Grosche, M., Herdtweck, E. & Herrmann, W. A. (1998). Tetrahedron, 54, 11887–11898.
  5. Gordon-Wylie, S. W., Teplin, E., Morris, J. C., Trombley, M. I., McCarthy, S. M., Cleaver, W. M. & Clark, G. R. (2004). Cryst. Growth Des.4, 789–797.
  6. Guzei, I. A. (2005). modiCIFer Version Dec-16-2005. University of Wisconsin–Madison, Madison, Wisconsin, USA.
  7. Nadkarni, S. S. & Hosangadi, B. D. (1988). Indian J. Chem. Sect. B, 27, 225–228.
  8. Nonnenmacher, E., Brouant, P., Mrozek, A., Karolak-Wojciechowska, J. & Barbe, J. (2000). J. Mol. Struct.522, 263–269.
  9. Olszewska, T., Gdaniec, M. & Polonski, T. (2004). J. Org. Chem.69, 1248–1255. [DOI] [PubMed]
  10. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808001281/hk2415sup1.cif

e-64-0o469-sup1.cif (18.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808001281/hk2415Isup2.hkl

e-64-0o469-Isup2.hkl (155.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES