Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jan 16;64(Pt 2):o454. doi: 10.1107/S1600536807067980

(+)-N-[2-(4-Chloro­phen­yl)propano­yl]bornane-10,2-sultam

Wen-Chang Lu a, Jun Cao a, Chen Cheng a, Guang-Ao Yu a, Sheng-Hua Liu a,*
PMCID: PMC2960315  PMID: 21201481

Abstract

In the mol­ecular structure of the title compound, C19H24ClNO3S, the six-membered ring of the bornane unit shows a boat form, while the five-membered ring of the sultam unit adopts a twist form. Intra­molecular C—H⋯N and C—H⋯O inter­actions are observed. In the crystal structure, mol­ecules are connected by inter­molecular C—H⋯O hydrogen bonds into a chain running along the b axis. The crystal was a partial inversion twin with a twin ratio of 0.73 (1):0.27 (1).

Related literature

For related literature, see: Boiadjiev & Lightner (2001); Oppolzer (1989, 1990).graphic file with name e-64-0o454-scheme1.jpg

Experimental

Crystal data

  • C19H24ClNO3S

  • M r = 381.90

  • Monoclinic, Inline graphic

  • a = 21.0863 (16) Å

  • b = 7.7948 (6) Å

  • c = 12.102 (1) Å

  • β = 107.433 (1)°

  • V = 1897.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 295 (2) K

  • 0.30 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: none

  • 5780 measured reflections

  • 3715 independent reflections

  • 3146 reflections with I > 2σ(I)

  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.180

  • S = 1.10

  • 3715 reflections

  • 229 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983), 1503 Friedel pairs

  • Flack parameter: 0.27 (1)

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807067980/is2250sup1.cif

e-64-0o454-sup1.cif (22.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807067980/is2250Isup2.hkl

e-64-0o454-Isup2.hkl (182.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8B⋯N1 0.96 2.54 3.129 (6) 120
C19—H19⋯O3 0.93 2.59 3.196 (6) 123
C12—H12⋯O1 0.98 2.49 3.268 (6) 137
C10—H10A⋯O3i 0.97 2.36 3.292 (5) 161

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors acknowledge financial support from the National Natural Science Foundation of China (grant No. 20572029), the New Century Excellent Talents in Universities (grant No. NCET-04-0743), and the Cultivation Fund of the Key Scientific and Technical Innovation Project, Ministry of Education of China (grant No. 705039).

supplementary crystallographic information

Comment

Pioneering work of Oppolzer (1990) has resulted in the development of bornane[10,2]sultam serve as popular and widely used chiral auxiliaries in asymmetric synthesis. The resulting asymmetric induction using these auxiliaries are high in carbon-carbon bond formation such as alkylation (Oppolzer, 1989), and we have focused our attention on this field. In this paper, we present X-ray crystallographic analysis of the title compound, (I).

In (I), the six-membered ring of sultam shows a boat form (Fig. 1). The planes constructed by C3/C2/C1/C6and C3/C4/C5/C6 form a dihedral angle of 110.71°. The C7/C8/C9 plane makes dihedral angles of 93.92 and 90.93°, respectively, with C3/C2/C1/C6 and C3/C4/C5/C6 planes. Molecules are linked by the intermolecular C—H···O hydrogen bonds into a one-dimensional chain. No direction-specific interactions were observed between the adjacent chains along the b axis (Fig. 2).

Experimental

For the preparation of compound (I), 2.4 ml n-BuLi (hexane, 2.5 mol/L) was added over 30 min to the THF (25 ml) solution of (+)-N-[2-(4-chlorophenyl)-ethanoyl]bornane-10,2-sultam (1.84 g, 5 mmol) at 193 K. After stirring the mixture at 193 K for 1 h, iodomethane 1.6 ml in 4.5 ml HMPA was added and then stirred at 193 K for 3 h. The solution was slowly warming up to room temperature, quenched with water and extracted bt Et2O to afford a crude product. Single crystals appropriate for data collection were obtained by slow evaporation of a dichloromethane solution at 293 K.

Refinement

All H atoms were constrained to an ideal geometry (C—H = 0.93 - 0.98 Å) and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The ratio of the twin components (major to minor) in crystal selected for diffraction is 0.73 (1):0.27 (1). The absolute configuration of the sultam unit is consistent with the known absolute configuration of (+)-2,10-sultam (Boiadjiev & Lightner, 2001). The major component is (+)-N-[(2S)-(4-chlorophenyl)-propanoyl] bornane-10,2-sultam, and the minor is (+)-N-[(2R)-(4-chlorophenyl)-propanoyl] bornane-10,2-sultam. The result was confirmed by HPLC.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

Part of the crystal packing, showing the formation of the one-dimensional chain formed by a C10—H10A···O3 hydrogen bond.

Crystal data

C19H24ClNO3S F000 = 808
Mr = 381.90 Dx = 1.337 Mg m3
Monoclinic, C2 Mo Kα radiation λ = 0.71073 Å
Hall symbol: C 2y Cell parameters from 2555 reflections
a = 21.0863 (16) Å θ = 2.8–26.0º
b = 7.7948 (6) Å µ = 0.33 mm1
c = 12.102 (1) Å T = 295 (2) K
β = 107.433 (1)º Block, colorless
V = 1897.8 (3) Å3 0.30 × 0.20 × 0.20 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer 3146 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.032
Monochromator: graphite θmax = 27.0º
T = 295(2) K θmin = 1.8º
φ and ω scans h = −25→26
Absorption correction: none k = −9→9
5780 measured reflections l = −14→15
3715 independent reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.052   w = 1/[σ2(Fo2) + (0.1128P)2 + 0.2113P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.180 (Δ/σ)max = 0.001
S = 1.10 Δρmax = 0.34 e Å3
3715 reflections Δρmin = −0.21 e Å3
229 parameters Extinction correction: none
1 restraint Absolute structure: Flack (1983), 1503 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.27 (1)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.41765 (17) 0.1484 (5) 0.2515 (3) 0.0363 (8)
H1 0.4074 0.1971 0.3188 0.044*
C2 0.3700 (2) 0.2236 (6) 0.1388 (4) 0.0492 (10)
H2A 0.3436 0.3165 0.1552 0.059*
H2B 0.3942 0.2647 0.0873 0.059*
C3 0.32641 (19) 0.0678 (7) 0.0869 (4) 0.0501 (10)
H3 0.3002 0.0816 0.0056 0.060*
C4 0.28491 (19) 0.0218 (7) 0.1686 (4) 0.0568 (12)
H4A 0.2497 −0.0582 0.1318 0.068*
H4B 0.2655 0.1236 0.1913 0.068*
C5 0.33625 (18) −0.0616 (6) 0.2743 (4) 0.0463 (10)
H5A 0.3387 −0.0004 0.3453 0.056*
H5B 0.3256 −0.1810 0.2829 0.056*
C6 0.40133 (17) −0.0439 (5) 0.2421 (3) 0.0364 (8)
C7 0.37733 (19) −0.0803 (6) 0.1092 (3) 0.0486 (10)
C8 0.4297 (2) −0.0585 (7) 0.0450 (4) 0.0582 (13)
H8A 0.4640 −0.1429 0.0721 0.087*
H8B 0.4488 0.0542 0.0595 0.087*
H8C 0.4090 −0.0731 −0.0367 0.087*
C9 0.3474 (3) −0.2582 (7) 0.0795 (5) 0.0661 (14)
H9A 0.3291 −0.2688 −0.0030 0.099*
H9B 0.3128 −0.2747 0.1150 0.099*
H9C 0.3813 −0.3433 0.1076 0.099*
C10 0.46138 (18) −0.1414 (5) 0.3168 (4) 0.0421 (9)
H10A 0.4653 −0.2514 0.2819 0.051*
H10B 0.4570 −0.1614 0.3933 0.051*
C11 0.5168 (2) 0.3268 (5) 0.2714 (4) 0.0438 (9)
C12 0.59037 (19) 0.3421 (6) 0.2804 (4) 0.0511 (11)
H12 0.6053 0.2315 0.2587 0.061*
C13 0.5985 (3) 0.4787 (9) 0.1933 (5) 0.0770 (15)
H13A 0.5714 0.4486 0.1168 0.115*
H13B 0.6443 0.4837 0.1947 0.115*
H13C 0.5851 0.5886 0.2142 0.115*
C14 0.63302 (19) 0.3854 (6) 0.4024 (4) 0.0475 (10)
C15 0.7005 (2) 0.3585 (7) 0.4306 (5) 0.0612 (13)
H15 0.7185 0.3183 0.3741 0.073*
C16 0.7427 (2) 0.3902 (9) 0.5418 (5) 0.0722 (16)
H16 0.7879 0.3674 0.5602 0.087*
C17 0.7166 (2) 0.4547 (6) 0.6224 (4) 0.0513 (11)
C18 0.6501 (2) 0.4816 (7) 0.5981 (4) 0.0541 (10)
H18 0.6327 0.5210 0.6555 0.065*
C19 0.6085 (2) 0.4500 (6) 0.4877 (4) 0.0525 (11)
H19 0.5633 0.4726 0.4706 0.063*
Cl1 0.76886 (6) 0.4977 (2) 0.76187 (10) 0.0713 (4)
N1 0.48941 (14) 0.1662 (4) 0.2660 (3) 0.0379 (7)
O1 0.57014 (16) −0.0733 (5) 0.2551 (4) 0.0704 (10)
O2 0.56815 (15) 0.0226 (5) 0.4436 (3) 0.0658 (9)
O3 0.48162 (16) 0.4517 (4) 0.2627 (3) 0.0652 (9)
S1 0.53270 (4) −0.01249 (12) 0.32646 (8) 0.0425 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0282 (16) 0.043 (2) 0.0375 (19) 0.0012 (14) 0.0089 (15) −0.0034 (15)
C2 0.036 (2) 0.055 (3) 0.054 (2) 0.0044 (18) 0.0085 (19) 0.0126 (19)
C3 0.035 (2) 0.070 (3) 0.040 (2) 0.0050 (19) 0.0048 (16) 0.0042 (19)
C4 0.0293 (17) 0.074 (3) 0.064 (3) −0.0003 (19) 0.0094 (18) −0.005 (2)
C5 0.0349 (19) 0.054 (3) 0.050 (2) −0.0066 (16) 0.0133 (17) −0.0024 (18)
C6 0.0295 (16) 0.042 (2) 0.0350 (17) −0.0029 (14) 0.0053 (13) −0.0059 (15)
C7 0.0311 (18) 0.068 (3) 0.040 (2) −0.0032 (18) 0.0003 (16) −0.0083 (19)
C8 0.050 (2) 0.086 (4) 0.039 (2) −0.003 (2) 0.0138 (17) −0.007 (2)
C9 0.050 (3) 0.078 (4) 0.062 (3) −0.019 (2) 0.006 (2) −0.027 (3)
C10 0.0339 (18) 0.042 (2) 0.046 (2) −0.0011 (16) 0.0052 (16) −0.0013 (17)
C11 0.040 (2) 0.040 (2) 0.050 (2) −0.0063 (16) 0.0127 (17) −0.0082 (17)
C12 0.0341 (19) 0.058 (3) 0.064 (3) −0.0119 (18) 0.0193 (19) −0.014 (2)
C13 0.065 (3) 0.094 (4) 0.074 (3) −0.021 (3) 0.024 (3) 0.007 (4)
C14 0.040 (2) 0.039 (2) 0.069 (3) −0.0104 (16) 0.023 (2) −0.0057 (19)
C15 0.044 (2) 0.073 (3) 0.075 (3) −0.001 (2) 0.029 (2) −0.020 (3)
C16 0.032 (2) 0.099 (4) 0.082 (4) 0.000 (2) 0.011 (2) −0.023 (3)
C17 0.045 (2) 0.053 (3) 0.056 (2) −0.0047 (19) 0.0165 (19) −0.002 (2)
C18 0.045 (2) 0.063 (3) 0.060 (2) −0.009 (2) 0.0233 (18) −0.009 (2)
C19 0.0355 (19) 0.049 (3) 0.075 (3) −0.0019 (17) 0.0184 (19) −0.009 (2)
Cl1 0.0574 (6) 0.0895 (9) 0.0600 (7) −0.0096 (7) 0.0069 (5) 0.0001 (7)
N1 0.0274 (14) 0.0417 (17) 0.0414 (17) −0.0041 (13) 0.0053 (13) −0.0031 (13)
O1 0.0474 (17) 0.065 (2) 0.110 (3) 0.0134 (15) 0.0403 (19) 0.0048 (19)
O2 0.0575 (18) 0.068 (2) 0.0543 (17) −0.0164 (16) −0.0104 (14) 0.0087 (16)
O3 0.0473 (16) 0.0416 (19) 0.103 (3) −0.0022 (13) 0.0172 (17) −0.0090 (16)
S1 0.0290 (4) 0.0460 (5) 0.0476 (5) 0.0002 (4) 0.0041 (3) 0.0030 (5)

Geometric parameters (Å, °)

C1—N1 1.477 (4) C10—S1 1.783 (4)
C1—C6 1.535 (6) C10—H10A 0.9700
C1—C2 1.547 (5) C10—H10B 0.9700
C1—H1 0.9800 C11—O3 1.209 (5)
C2—C3 1.539 (6) C11—N1 1.371 (5)
C2—H2A 0.9700 C11—C12 1.528 (5)
C2—H2B 0.9700 C12—C14 1.518 (6)
C3—C7 1.544 (6) C12—C13 1.544 (8)
C3—C4 1.545 (6) C12—H12 0.9800
C3—H3 0.9800 C13—H13A 0.9600
C4—C5 1.549 (6) C13—H13B 0.9600
C4—H4A 0.9700 C13—H13C 0.9600
C4—H4B 0.9700 C14—C15 1.377 (6)
C5—C6 1.541 (5) C14—C19 1.380 (6)
C5—H5A 0.9700 C15—C16 1.395 (7)
C5—H5B 0.9700 C15—H15 0.9300
C6—C10 1.521 (5) C16—C17 1.351 (7)
C6—C7 1.561 (5) C16—H16 0.9300
C7—C9 1.522 (7) C17—C18 1.360 (6)
C7—C8 1.538 (6) C17—Cl1 1.749 (4)
C8—H8A 0.9600 C18—C19 1.384 (6)
C8—H8B 0.9600 C18—H18 0.9300
C8—H8C 0.9600 C19—H19 0.9300
C9—H9A 0.9600 N1—S1 1.706 (3)
C9—H9B 0.9600 O1—S1 1.415 (4)
C9—H9C 0.9600 O2—S1 1.417 (3)
N1—C1—C6 107.4 (3) C7—C9—H9C 109.5
N1—C1—C2 116.2 (3) H9A—C9—H9C 109.5
C6—C1—C2 103.4 (3) H9B—C9—H9C 109.5
N1—C1—H1 109.8 C6—C10—S1 107.0 (3)
C6—C1—H1 109.8 C6—C10—H10A 110.3
C2—C1—H1 109.8 S1—C10—H10A 110.3
C3—C2—C1 102.2 (3) C6—C10—H10B 110.3
C3—C2—H2A 111.3 S1—C10—H10B 110.3
C1—C2—H2A 111.3 H10A—C10—H10B 108.6
C3—C2—H2B 111.3 O3—C11—N1 119.5 (4)
C1—C2—H2B 111.3 O3—C11—C12 121.7 (4)
H2A—C2—H2B 109.2 N1—C11—C12 118.6 (4)
C2—C3—C7 102.7 (3) C14—C12—C11 112.3 (3)
C2—C3—C4 107.8 (4) C14—C12—C13 110.8 (4)
C7—C3—C4 102.3 (4) C11—C12—C13 108.9 (4)
C2—C3—H3 114.3 C14—C12—H12 108.2
C7—C3—H3 114.3 C11—C12—H12 108.2
C4—C3—H3 114.3 C13—C12—H12 108.2
C3—C4—C5 103.6 (3) C12—C13—H13A 109.5
C3—C4—H4A 111.0 C12—C13—H13B 109.5
C5—C4—H4A 111.0 H13A—C13—H13B 109.5
C3—C4—H4B 111.0 C12—C13—H13C 109.5
C5—C4—H4B 111.0 H13A—C13—H13C 109.5
H4A—C4—H4B 109.0 H13B—C13—H13C 109.5
C6—C5—C4 102.0 (3) C15—C14—C19 117.4 (4)
C6—C5—H5A 111.4 C15—C14—C12 118.3 (4)
C4—C5—H5A 111.4 C19—C14—C12 124.2 (4)
C6—C5—H5B 111.4 C14—C15—C16 121.6 (4)
C4—C5—H5B 111.4 C14—C15—H15 119.2
H5A—C5—H5B 109.2 C16—C15—H15 119.2
C10—C6—C1 108.4 (3) C17—C16—C15 118.9 (4)
C10—C6—C5 116.8 (3) C17—C16—H16 120.5
C1—C6—C5 105.4 (3) C15—C16—H16 120.5
C10—C6—C7 118.5 (3) C16—C17—C18 121.1 (4)
C1—C6—C7 104.5 (3) C16—C17—Cl1 119.6 (3)
C5—C6—C7 101.9 (3) C18—C17—Cl1 119.3 (3)
C9—C7—C8 106.9 (4) C17—C18—C19 119.7 (4)
C9—C7—C3 115.0 (4) C17—C18—H18 120.1
C8—C7—C3 113.4 (4) C19—C18—H18 120.1
C9—C7—C6 113.1 (4) C14—C19—C18 121.1 (4)
C8—C7—C6 116.1 (3) C14—C19—H19 119.4
C3—C7—C6 92.2 (3) C18—C19—H19 119.4
C7—C8—H8A 109.5 C11—N1—C1 119.5 (3)
C7—C8—H8B 109.5 C11—N1—S1 124.2 (3)
H8A—C8—H8B 109.5 C1—N1—S1 111.8 (3)
C7—C8—H8C 109.5 O1—S1—O2 116.8 (2)
H8A—C8—H8C 109.5 O1—S1—N1 109.7 (2)
H8B—C8—H8C 109.5 O2—S1—N1 109.0 (2)
C7—C9—H9A 109.5 O1—S1—C10 112.6 (2)
C7—C9—H9B 109.5 O2—S1—C10 110.9 (2)
H9A—C9—H9B 109.5 N1—S1—C10 95.73 (16)
N1—C1—C2—C3 124.3 (3) N1—C11—C12—C14 −103.2 (4)
C6—C1—C2—C3 6.9 (4) O3—C11—C12—C13 −42.4 (6)
C1—C2—C3—C7 −41.2 (4) N1—C11—C12—C13 133.6 (4)
C1—C2—C3—C4 66.3 (4) C11—C12—C14—C15 163.0 (4)
C2—C3—C4—C5 −73.6 (4) C13—C12—C14—C15 −75.0 (6)
C7—C3—C4—C5 34.3 (4) C11—C12—C14—C19 −16.9 (6)
C3—C4—C5—C6 2.8 (5) C13—C12—C14—C19 105.2 (5)
N1—C1—C6—C10 33.0 (4) C19—C14—C15—C16 1.9 (8)
C2—C1—C6—C10 156.4 (3) C12—C14—C15—C16 −178.0 (5)
N1—C1—C6—C5 158.8 (3) C14—C15—C16—C17 −2.4 (9)
C2—C1—C6—C5 −77.8 (3) C15—C16—C17—C18 3.0 (9)
N1—C1—C6—C7 −94.3 (3) C15—C16—C17—Cl1 −179.2 (4)
C2—C1—C6—C7 29.1 (4) C16—C17—C18—C19 −3.0 (8)
C4—C5—C6—C10 −169.3 (4) Cl1—C17—C18—C19 179.2 (4)
C4—C5—C6—C1 70.3 (4) C15—C14—C19—C18 −1.9 (7)
C4—C5—C6—C7 −38.6 (4) C12—C14—C19—C18 178.0 (5)
C2—C3—C7—C9 173.1 (4) C17—C18—C19—C14 2.4 (8)
C4—C3—C7—C9 61.4 (5) O3—C11—N1—C1 −1.0 (6)
C2—C3—C7—C8 −63.5 (4) C12—C11—N1—C1 −177.0 (3)
C4—C3—C7—C8 −175.2 (3) O3—C11—N1—S1 −155.2 (4)
C2—C3—C7—C6 56.3 (4) C12—C11—N1—S1 28.7 (5)
C4—C3—C7—C6 −55.5 (3) C6—C1—N1—C11 177.1 (3)
C10—C6—C7—C9 69.0 (5) C2—C1—N1—C11 61.9 (5)
C1—C6—C7—C9 −170.2 (4) C6—C1—N1—S1 −25.7 (4)
C5—C6—C7—C9 −60.7 (4) C2—C1—N1—S1 −140.9 (3)
C10—C6—C7—C8 −55.2 (5) C11—N1—S1—O1 −78.3 (4)
C1—C6—C7—C8 65.6 (5) C1—N1—S1—O1 125.7 (3)
C5—C6—C7—C8 175.1 (4) C11—N1—S1—O2 50.7 (4)
C10—C6—C7—C3 −172.6 (3) C1—N1—S1—O2 −105.2 (3)
C1—C6—C7—C3 −51.8 (3) C11—N1—S1—C10 165.1 (3)
C5—C6—C7—C3 57.7 (4) C1—N1—S1—C10 9.2 (3)
C1—C6—C10—S1 −26.2 (4) C6—C10—S1—O1 −103.7 (3)
C5—C6—C10—S1 −145.0 (3) C6—C10—S1—O2 123.2 (3)
C7—C6—C10—S1 92.5 (4) C6—C10—S1—N1 10.3 (3)
O3—C11—C12—C14 80.8 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C8—H8B···N1 0.96 2.54 3.129 (6) 120
C19—H19···O3 0.93 2.59 3.196 (6) 123
C12—H12···O1 0.98 2.49 3.268 (6) 137
C10—H10A···O3i 0.97 2.36 3.292 (5) 161

Symmetry codes: (i) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2250).

References

  1. Boiadjiev, S. E. & Lightner, D. A. (2001). Tetrahedron Asymm.12, 2551–2564.
  2. Bruker (2001). SAINT-Plus (Version 6.45), SMART (Version 5.628) and SHELXTL (Version 6.14). Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  4. Oppolzer, W. (1989). Tetrahedron Lett.41, 5603–5606.
  5. Oppolzer, W. (1990). Pure Appl. Chem.62, 1241–1250.
  6. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807067980/is2250sup1.cif

e-64-0o454-sup1.cif (22.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807067980/is2250Isup2.hkl

e-64-0o454-Isup2.hkl (182.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES