Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jan 4;64(Pt 2):o350. doi: 10.1107/S1600536807067633

4-Hydr­oxy-2,2,6,6-tetra­methyl­piperidinium hydrogensulfate monohydrate

Li Xiao a, Yun-Hui Zhang a, Ying Cui a, Xing-Hua Jin a, Wei Wang b,*
PMCID: PMC2960323  PMID: 21201382

Abstract

In the title compound, C9H20NO+·HO4S·H2O, the piperi­dinium ring adopts a chair conformation. Inter­molecular O—H⋯O and N—H⋯O hydrogen bonds form an extensive three-dimensional network, which consolidates the crystal structure.

Related literature

For useful applications of tetra­methyl­piperidinol, see: Gray (1991); Liu et al. (2006).graphic file with name e-64-0o350-scheme1.jpg

Experimental

Crystal data

  • C9H20NO+·HO4S·H2O

  • M r = 273.34

  • Triclinic, Inline graphic

  • a = 8.334 (3) Å

  • b = 8.518 (3) Å

  • c = 10.245 (3) Å

  • α = 78.465 (5)°

  • β = 82.546 (5)°

  • γ = 71.586 (4)°

  • V = 674.3 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 294 (2) K

  • 0.26 × 0.24 × 0.20 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997) T min = 0.936, T max = 0.951

  • 3506 measured reflections

  • 2374 independent reflections

  • 1929 reflections with I > 2σ(I)

  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.108

  • S = 1.06

  • 2374 reflections

  • 176 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807067633/cv2376sup1.cif

e-64-0o350-sup1.cif (17.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807067633/cv2376Isup2.hkl

e-64-0o350-Isup2.hkl (116.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1 0.83 (2) 1.76 (2) 2.576 (3) 168 (4)
N1—H1A⋯O5i 0.86 (2) 1.933 (17) 2.795 (3) 178 (2)
N1—H1B⋯O3ii 0.86 (2) 2.154 (19) 3.002 (3) 168 (2)
O6—H6D⋯O3iii 0.82 (2) 2.06 (2) 2.874 (3) 169 (4)
O6—H6E⋯O4iv 0.81 (2) 2.00 (2) 2.790 (3) 165 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

supplementary crystallographic information

Comment

Tetramethylpiperidinol is an important intermediate used in the synthesis of hindered amine light stabilizer (HALS) (Gray, 1991; Liu et al., 2006). The title compound, (I), is a new derivative of tetramethylpiperidinol. Herein we report its crystal structure.

In (I) (Fig. 1), the piperidinium ring adopts a chair conformation. The hydroxy group attached at C1 is in equatorial position. In the crystal, the intermolecular O—H···O and N—H···O hydrogen bonds (Table 1) form an extensive three-dimensional network, which consolidates the packing.

Experimental

2,2,6,6-Tetramethylpiperidin-4-ol (40.0 g, 254 mmol) was dissolved in 98% H2SO4 (24.5 g) and then cooled to 278 K. With stirring, water (100 ml) was then added dropwise to the mixture over a period of 0.5 h. The mixture was stirred at 273–278 K for a further 3 h. The title compound (54.50 g) was obtained in powder form in a yield of 75.6%. Crystals of (I) were obtained by slow evaporation of a solution of water.

Refinement

H atoms attached to atoms N and O were located in a difference map and refined with bond restraints O—H = 0.82 (2) Å, N—H = 0.86 (2) Å. C-bound H atoms were positioned geometrically (C—H 0.96–0.98 Å). All H atoms wrere refined as riding, with Uiso(H)=1.2–1.5Ueq of the parent atom.

Figures

Fig. 1.

Fig. 1.

The content of asymmetric unit of (I) with the atomic numbering and 35% probability displacement ellipsoids.

Crystal data

C9H20NO+·HO4S·H2O Z = 2
Mr = 273.34 F000 = 296
Triclinic, P1 Dx = 1.346 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 8.334 (3) Å Cell parameters from 1816 reflections
b = 8.518 (3) Å θ = 2.6–26.2º
c = 10.245 (3) Å µ = 0.26 mm1
α = 78.465 (5)º T = 294 (2) K
β = 82.546 (5)º Plate, colourless
γ = 71.586 (4)º 0.26 × 0.24 × 0.20 mm
V = 674.3 (3) Å3

Data collection

Bruker SMART CCD area-detector diffractometer 2374 independent reflections
Radiation source: fine-focus sealed tube 1929 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.016
T = 294(2) K θmax = 25.0º
φ and ω scans θmin = 2.0º
Absorption correction: multi-scan(SADABS; Bruker, 1997) h = −9→6
Tmin = 0.936, Tmax = 0.951 k = −10→9
3506 measured reflections l = −11→12

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.108   w = 1/[σ2(Fo2) + (0.045P)2 + 0.4673P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
2374 reflections Δρmax = 0.41 e Å3
176 parameters Δρmin = −0.33 e Å3
5 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.14016 (7) 0.73866 (7) 0.24152 (5) 0.03302 (19)
O1 0.4452 (2) 0.7411 (3) 0.46414 (17) 0.0535 (5)
H1 0.547 (2) 0.720 (4) 0.457 (4) 0.080*
O2 0.3063 (3) 0.7840 (3) 0.24406 (19) 0.0642 (6)
H2 0.344 (5) 0.760 (5) 0.319 (2) 0.096*
O3 0.0141 (2) 0.8333 (2) 0.33050 (17) 0.0468 (5)
O4 0.1771 (3) 0.5626 (3) 0.2834 (2) 0.0752 (7)
O5 0.0982 (3) 0.7967 (3) 0.10455 (17) 0.0676 (6)
N1 0.1898 (2) 0.8477 (2) 0.83066 (18) 0.0273 (4)
H1A 0.164 (3) 0.832 (3) 0.9156 (11) 0.033*
H1B 0.124 (2) 0.9428 (18) 0.795 (2) 0.033*
C1 0.3968 (3) 0.7257 (3) 0.6054 (2) 0.0361 (5)
H1C 0.4668 0.6187 0.6519 0.043*
C2 0.4211 (3) 0.8696 (3) 0.6595 (2) 0.0349 (5)
H2A 0.3553 0.9749 0.6101 0.042*
H2B 0.5396 0.8656 0.6444 0.042*
C3 0.3682 (3) 0.8660 (3) 0.8082 (2) 0.0302 (5)
C4 0.1464 (3) 0.7153 (3) 0.7725 (2) 0.0325 (5)
C5 0.2122 (3) 0.7299 (3) 0.6255 (2) 0.0368 (5)
H5A 0.1989 0.6383 0.5891 0.044*
H5B 0.1442 0.8343 0.5763 0.044*
C6 0.4904 (3) 0.7243 (3) 0.8968 (2) 0.0427 (6)
H6A 0.4410 0.7137 0.9870 0.064*
H6B 0.5952 0.7495 0.8946 0.064*
H6C 0.5116 0.6208 0.8645 0.064*
C7 0.3528 (3) 1.0332 (3) 0.8499 (3) 0.0435 (6)
H7A 0.2729 1.1223 0.7972 0.065*
H7B 0.4614 1.0530 0.8359 0.065*
H7C 0.3145 1.0291 0.9427 0.065*
C8 −0.0472 (3) 0.7621 (3) 0.7869 (3) 0.0463 (6)
H8A −0.0831 0.6808 0.7552 0.069*
H8B −0.0942 0.8711 0.7354 0.069*
H8C −0.0859 0.7639 0.8792 0.069*
C9 0.2196 (4) 0.5397 (3) 0.8522 (3) 0.0497 (7)
H9A 0.1695 0.4635 0.8278 0.075*
H9B 0.1950 0.5431 0.9459 0.075*
H9C 0.3401 0.5023 0.8328 0.075*
O6 0.7835 (3) 0.6591 (3) 0.4742 (2) 0.0653 (6)
H6D 0.858 (4) 0.702 (5) 0.442 (4) 0.098*
H6E 0.814 (5) 0.591 (4) 0.540 (3) 0.098*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0324 (3) 0.0395 (3) 0.0236 (3) −0.0090 (2) 0.0009 (2) −0.0016 (2)
O1 0.0404 (10) 0.0952 (15) 0.0292 (9) −0.0222 (11) 0.0056 (8) −0.0224 (9)
O2 0.0442 (11) 0.1171 (19) 0.0365 (11) −0.0394 (12) 0.0015 (8) −0.0028 (11)
O3 0.0428 (10) 0.0516 (11) 0.0402 (10) −0.0059 (8) 0.0048 (8) −0.0131 (8)
O4 0.0928 (17) 0.0381 (11) 0.0867 (17) −0.0123 (11) −0.0044 (13) −0.0057 (11)
O5 0.0535 (12) 0.1205 (19) 0.0234 (9) −0.0260 (12) −0.0040 (8) 0.0006 (10)
N1 0.0263 (10) 0.0300 (10) 0.0244 (9) −0.0080 (8) 0.0000 (7) −0.0038 (8)
C1 0.0352 (13) 0.0462 (14) 0.0251 (12) −0.0095 (11) 0.0008 (9) −0.0083 (10)
C2 0.0320 (12) 0.0450 (14) 0.0287 (12) −0.0159 (10) 0.0019 (9) −0.0040 (10)
C3 0.0272 (11) 0.0382 (12) 0.0264 (11) −0.0122 (9) −0.0018 (9) −0.0043 (9)
C4 0.0349 (12) 0.0315 (12) 0.0345 (13) −0.0155 (10) −0.0001 (10) −0.0055 (9)
C5 0.0376 (13) 0.0440 (14) 0.0328 (12) −0.0144 (11) −0.0019 (10) −0.0123 (10)
C6 0.0321 (13) 0.0579 (16) 0.0334 (13) −0.0081 (11) −0.0067 (10) −0.0030 (11)
C7 0.0448 (15) 0.0486 (15) 0.0456 (15) −0.0221 (12) −0.0031 (11) −0.0139 (12)
C8 0.0398 (14) 0.0552 (16) 0.0521 (16) −0.0243 (12) 0.0039 (12) −0.0158 (13)
C9 0.0630 (18) 0.0324 (13) 0.0528 (16) −0.0184 (12) −0.0020 (13) 0.0003 (11)
O6 0.0456 (12) 0.0785 (16) 0.0653 (15) −0.0238 (11) 0.0011 (10) 0.0083 (11)

Geometric parameters (Å, °)

S1—O4 1.419 (2) C4—C8 1.529 (3)
S1—O5 1.4411 (18) C4—C9 1.530 (3)
S1—O3 1.4476 (18) C4—C5 1.530 (3)
S1—O2 1.555 (2) C5—H5A 0.9700
O1—C1 1.443 (3) C5—H5B 0.9700
O1—H1 0.81 (2) C6—H6A 0.9600
O2—H2 0.83 (2) C6—H6B 0.9600
N1—C3 1.528 (3) C6—H6C 0.9600
N1—C4 1.529 (3) C7—H7A 0.9600
N1—H1A 0.86 (2) C7—H7B 0.9600
N1—H1B 0.86 (2) C7—H7C 0.9600
C1—C5 1.515 (3) C8—H8A 0.9600
C1—C2 1.519 (3) C8—H8B 0.9600
C1—H1C 0.9800 C8—H8C 0.9600
C2—C3 1.528 (3) C9—H9A 0.9600
C2—H2A 0.9700 C9—H9B 0.9600
C2—H2B 0.9700 C9—H9C 0.9600
C3—C7 1.529 (3) O6—H6D 0.82 (2)
C3—C6 1.531 (3) O6—H6E 0.81 (2)
O4—S1—O5 114.56 (15) N1—C4—C5 107.47 (17)
O4—S1—O3 112.68 (13) C8—C4—C5 111.10 (19)
O5—S1—O3 111.13 (12) C9—C4—C5 112.8 (2)
O4—S1—O2 107.34 (14) C1—C5—C4 112.66 (18)
O5—S1—O2 103.30 (11) C1—C5—H5A 109.1
O3—S1—O2 107.04 (12) C4—C5—H5A 109.1
C1—O1—H1 106 (3) C1—C5—H5B 109.1
S1—O2—H2 114 (3) C4—C5—H5B 109.1
C3—N1—C4 120.80 (17) H5A—C5—H5B 107.8
C3—N1—H1A 107.9 (16) C3—C6—H6A 109.5
C4—N1—H1A 107.7 (16) C3—C6—H6B 109.5
C3—N1—H1B 105.5 (16) H6A—C6—H6B 109.5
C4—N1—H1B 105.6 (16) C3—C6—H6C 109.5
H1A—N1—H1B 109 (2) H6A—C6—H6C 109.5
O1—C1—C5 108.04 (18) H6B—C6—H6C 109.5
O1—C1—C2 109.83 (19) C3—C7—H7A 109.5
C5—C1—C2 110.27 (19) C3—C7—H7B 109.5
O1—C1—H1C 109.6 H7A—C7—H7B 109.5
C5—C1—H1C 109.6 C3—C7—H7C 109.5
C2—C1—H1C 109.6 H7A—C7—H7C 109.5
C1—C2—C3 113.44 (18) H7B—C7—H7C 109.5
C1—C2—H2A 108.9 C4—C8—H8A 109.5
C3—C2—H2A 108.9 C4—C8—H8B 109.5
C1—C2—H2B 108.9 H8A—C8—H8B 109.5
C3—C2—H2B 108.9 C4—C8—H8C 109.5
H2A—C2—H2B 107.7 H8A—C8—H8C 109.5
N1—C3—C2 107.19 (16) H8B—C8—H8C 109.5
N1—C3—C7 105.65 (18) C4—C9—H9A 109.5
C2—C3—C7 111.28 (19) C4—C9—H9B 109.5
N1—C3—C6 110.75 (18) H9A—C9—H9B 109.5
C2—C3—C6 112.80 (19) C4—C9—H9C 109.5
C7—C3—C6 108.92 (19) H9A—C9—H9C 109.5
N1—C4—C8 105.19 (18) H9B—C9—H9C 109.5
N1—C4—C9 111.11 (19) H6D—O6—H6E 111 (4)
C8—C4—C9 108.9 (2)
O1—C1—C2—C3 178.44 (18) C3—N1—C4—C8 −167.05 (19)
C5—C1—C2—C3 59.5 (2) C3—N1—C4—C9 75.2 (2)
C4—N1—C3—C2 47.9 (2) C3—N1—C4—C5 −48.6 (2)
C4—N1—C3—C7 166.70 (19) O1—C1—C5—C4 −179.71 (19)
C4—N1—C3—C6 −75.5 (2) C2—C1—C5—C4 −59.7 (3)
C1—C2—C3—N1 −50.8 (2) N1—C4—C5—C1 51.7 (3)
C1—C2—C3—C7 −165.8 (2) C8—C4—C5—C1 166.3 (2)
C1—C2—C3—C6 71.4 (2) C9—C4—C5—C1 −71.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2···O1 0.83 (2) 1.76 (2) 2.576 (3) 168 (4)
N1—H1A···O5i 0.86 (2) 1.933 (17) 2.795 (3) 178 (2)
N1—H1B···O3ii 0.86 (2) 2.154 (19) 3.002 (3) 168 (2)
O6—H6D···O3iii 0.82 (2) 2.06 (2) 2.874 (3) 169 (4)
O6—H6E···O4iv 0.81 (2) 2.00 (2) 2.790 (3) 165 (4)

Symmetry codes: (i) x, y, z+1; (ii) −x, −y+2, −z+1; (iii) x+1, y, z; (iv) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2376).

References

  1. Bruker (1997). SMART (Version 5.611), SAINT (Version 6.0), SADABS (Version 2.03) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Gray, R. L. (1991). Plast. Eng 47, 21–23.
  3. Liu, X., Ju, C. X., Hu, R. S. & Gu, D. P. (2006). J. Heibei Normal Univ. (Nat. Sci. Ed.), 30, 326–328.
  4. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807067633/cv2376sup1.cif

e-64-0o350-sup1.cif (17.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807067633/cv2376Isup2.hkl

e-64-0o350-Isup2.hkl (116.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES