Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jan 23;64(Pt 2):o492. doi: 10.1107/S1600536808001578

5-(1H-Inden-2-yl)-1,3-benzodioxole

Rui-Xue Deng a, Wei-Yi Zhou b, Xiao-Juan Deng b, Liang-Dong Sun a,*
PMCID: PMC2960328  PMID: 21201515

Abstract

In the title compound, C16H12O2, the non-H atoms are coplanar with a mean r.m.s. deviation of 0.0260 (2) Å. The deviations of the bond angles from normal values at the indenyl junction C atom and the indenyl bridgehead C atom nearest the junction are imposed by the five-membered ring geometry. Due to conjugation, the single bond linking the two ring systems [1.455 (3) Å] is significantly shorter than the formal single bonds in the five-membered carbocyclic ring [1.500 (3) and 1.489 (3) Å].

Related literature

For related literature, see: Rayabarapu et al. (2003); Senanayake et al. (1995).graphic file with name e-64-0o492-scheme1.jpg

Experimental

Crystal data

  • C16H12O2

  • M r = 236.26

  • Orthorhombic, Inline graphic

  • a = 22.277 (10) Å

  • b = 6.892 (3) Å

  • c = 7.580 (3) Å

  • V = 1163.7 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 294 (2) K

  • 0.24 × 0.22 × 0.12 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.979, T max = 0.990

  • 6325 measured reflections

  • 1286 independent reflections

  • 1072 reflections with I > 2σ(I)

  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.091

  • S = 1.08

  • 1286 reflections

  • 164 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.11 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808001578/kp2152sup1.cif

e-64-0o492-sup1.cif (16.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808001578/kp2152Isup2.hkl

e-64-0o492-Isup2.hkl (63.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Indene ring frameworks are present in a large number of biologically active compounds, and their metallocene complexes are able to catalyze olefin polymerization (Senanayake et al., 1995; Rayabarapu et al., 2003). Some derivatives have shown analgesic and myorelaxation activity whereas others are used as valuable intermediates for the synthesis of indenyl chrysanthemates that possess insecticidal properties. In the recent three decades, many chemists have been attracted by the synthesis of indenes. In this context, we report the synthesis and crystal structure of the title compound, (I). The molecul of (I) (Fig. 1) is almost planar (except the H atoms) with the mean value of r.m.s. deviation of 0.0260 (2) Å. The bonding angles of C16—C8—C5 and C16—C8—C9 are 128.3 (2) and 108.88 (19)°, respectively; their deviations from ideal values are imposed by request of a five-ring geometry. The similar deviation is also observed for the C15 with the angles of C14—C15—C16 [132.2 (2)°] and C10—C15—C16 [108.1 (2)°]. Due to the π-π conjugation of the C5?C6 and C8?C16, the single bond distance of the C5—C8 [1.455 (3) Å] is significantly shorter than that of C8—C9 [1.500 (3) Å].

Experimental

o-Bromobenzyl zinc bromide (3.5 mmol, 3.5 equiv) in 3.5 ml CH2Cl2 was added to a degassed refluxing CH2Cl2 solution (8 ml) of 5-ethynyl benzo [1,3] dioxole (1.0 mmol, 1.0 equiv) and Ni(PPh3)2I2 (0.1 mmol, 0.1 equiv). After stirring at 313 K for 6 h, the solution was cooled to room temperature. The solution obtained was diluted with 50 ml e thyl acetate. The organic layer was washed with 10 ml aqueous HCl solution, saturated by NaCl. The aqueous layer was back-extracted with ethyl acetate. The combined organic layer was dried over anhydrous Na2SO4. After filtration, the solvent was removed under reduced pressure and the residue was purified via flash chromatography (SiO2) to afford the compound. Crystals suitale for X-ray analysis were obtained by slow evaporation from a CH2Cl2 solution at 298 K.

Refinement

All H atoms were positioned geometrically and refined as riding (C—H = 0.93 and 0.97%A) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(parent). In the absence of significant anomalous scattering effects the Friedel pairs were merged.

Figures

Fig. 1.

Fig. 1.

View of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level.

Crystal data

C16H12O2 F000 = 496
Mr = 236.26 Dx = 1.348 Mg m3
Orthorhombic, Pca21 Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2c -2ac Cell parameters from 2528 reflections
a = 22.277 (10) Å θ = 2.7–25.2º
b = 6.892 (3) Å µ = 0.09 mm1
c = 7.580 (3) Å T = 294 (2) K
V = 1163.7 (9) Å3 Plate, colourless
Z = 4 0.24 × 0.22 × 0.12 mm

Data collection

Bruker SMART CCD area-detector diffractometer 1286 independent reflections
Radiation source: fine-focus sealed tube 1072 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.035
T = 294(2) K θmax = 26.4º
φ and ω scans θmin = 1.8º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −27→13
Tmin = 0.979, Tmax = 0.990 k = −8→8
6325 measured reflections l = −8→9

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.032   w = 1/[σ2(Fo2) + (0.0567P)2 + 0.0272P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.091 (Δ/σ)max < 0.001
S = 1.08 Δρmax = 0.12 e Å3
1286 reflections Δρmin = −0.11 e Å3
164 parameters Extinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraint Extinction coefficient: 0.006 (2)
Primary atom site location: structure-invariant direct methods Absolute structure: indeterminate
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.33678 (7) 0.3967 (2) 0.9508 (3) 0.0629 (5)
O2 0.41993 (8) 0.2623 (2) 1.0832 (3) 0.0676 (6)
C1 0.35772 (11) 0.2393 (4) 1.0539 (5) 0.0686 (8)
H1A 0.3366 0.2362 1.1658 0.082*
H1B 0.3502 0.1180 0.9929 0.082*
C2 0.38388 (9) 0.5252 (3) 0.9457 (3) 0.0472 (5)
C3 0.38568 (10) 0.7034 (3) 0.8718 (4) 0.0512 (6)
H3 0.3523 0.7568 0.8162 0.061*
C4 0.43988 (10) 0.8035 (3) 0.8829 (3) 0.0480 (5)
H4 0.4425 0.9262 0.8326 0.058*
C5 0.49008 (9) 0.7272 (3) 0.9662 (3) 0.0415 (5)
C6 0.48641 (10) 0.5410 (3) 1.0401 (3) 0.0468 (5)
H6 0.5192 0.4849 1.0966 0.056*
C7 0.43337 (10) 0.4460 (3) 1.0263 (3) 0.0472 (5)
C8 0.54537 (9) 0.8392 (3) 0.9756 (3) 0.0417 (5)
C9 0.55116 (10) 1.0396 (3) 0.9004 (3) 0.0482 (5)
H9A 0.5435 1.0394 0.7744 0.058*
H9B 0.5234 1.1284 0.9570 0.058*
C10 0.61447 (10) 1.0948 (3) 0.9384 (3) 0.0488 (6)
C11 0.64540 (11) 1.2630 (4) 0.9035 (4) 0.0606 (7)
H11 0.6271 1.3649 0.8438 0.073*
C12 0.70444 (12) 1.2778 (4) 0.9592 (4) 0.0703 (8)
H12 0.7259 1.3910 0.9372 0.084*
C13 0.73163 (11) 1.1275 (4) 1.0462 (4) 0.0692 (8)
H13 0.7714 1.1399 1.0822 0.083*
C14 0.70099 (10) 0.9578 (4) 1.0814 (4) 0.0611 (7)
H14 0.7198 0.8564 1.1405 0.073*
C15 0.64208 (10) 0.9406 (3) 1.0277 (3) 0.0489 (6)
C16 0.59838 (10) 0.7872 (3) 1.0480 (3) 0.0483 (5)
H16 0.6057 0.6691 1.1032 0.058*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0482 (8) 0.0638 (10) 0.0767 (12) −0.0047 (7) −0.0055 (9) 0.0074 (10)
O2 0.0584 (10) 0.0524 (10) 0.0920 (15) −0.0043 (8) −0.0100 (10) 0.0205 (10)
C1 0.0586 (15) 0.0618 (15) 0.085 (2) −0.0056 (12) −0.0049 (15) 0.0124 (16)
C2 0.0460 (12) 0.0512 (12) 0.0443 (12) 0.0027 (9) −0.0027 (11) −0.0031 (11)
C3 0.0485 (13) 0.0532 (12) 0.0519 (13) 0.0110 (10) −0.0098 (11) 0.0034 (12)
C4 0.0531 (13) 0.0433 (11) 0.0477 (12) 0.0069 (10) −0.0060 (11) 0.0016 (10)
C5 0.0479 (12) 0.0410 (10) 0.0357 (10) 0.0080 (8) −0.0030 (10) −0.0034 (9)
C6 0.0482 (12) 0.0446 (12) 0.0476 (12) 0.0082 (9) −0.0083 (10) 0.0005 (11)
C7 0.0523 (12) 0.0428 (11) 0.0466 (12) 0.0080 (10) −0.0005 (11) −0.0005 (10)
C8 0.0470 (11) 0.0414 (10) 0.0365 (10) 0.0086 (9) −0.0040 (9) −0.0039 (9)
C9 0.0536 (12) 0.0425 (11) 0.0485 (13) 0.0069 (10) −0.0049 (11) −0.0001 (10)
C10 0.0521 (13) 0.0539 (12) 0.0404 (12) 0.0021 (10) 0.0062 (10) −0.0082 (11)
C11 0.0640 (16) 0.0615 (15) 0.0564 (15) −0.0072 (12) 0.0080 (13) −0.0007 (12)
C12 0.0664 (17) 0.0803 (18) 0.0644 (16) −0.0188 (13) 0.0157 (16) −0.0118 (16)
C13 0.0431 (13) 0.094 (2) 0.0701 (18) −0.0063 (13) 0.0081 (14) −0.0234 (17)
C14 0.0461 (14) 0.0761 (18) 0.0612 (16) 0.0082 (12) 0.0014 (12) −0.0127 (13)
C15 0.0450 (12) 0.0569 (13) 0.0450 (12) 0.0079 (10) 0.0026 (11) −0.0102 (11)
C16 0.0517 (12) 0.0459 (11) 0.0473 (12) 0.0076 (10) −0.0047 (11) −0.0022 (11)

Geometric parameters (Å, °)

O1—C2 1.374 (3) C8—C9 1.500 (3)
O1—C1 1.416 (3) C9—C10 1.489 (3)
O2—C7 1.370 (3) C9—H9A 0.9700
O2—C1 1.412 (3) C9—H9B 0.9700
C1—H1A 0.9700 C10—C11 1.375 (3)
C1—H1B 0.9700 C10—C15 1.402 (3)
C2—C3 1.351 (3) C11—C12 1.385 (4)
C2—C7 1.373 (3) C11—H11 0.9300
C3—C4 1.393 (3) C12—C13 1.369 (4)
C3—H3 0.9300 C12—H12 0.9300
C4—C5 1.387 (3) C13—C14 1.380 (4)
C4—H4 0.9300 C13—H13 0.9300
C5—C6 1.402 (3) C14—C15 1.379 (3)
C5—C8 1.455 (3) C14—H14 0.9300
C6—C7 1.355 (3) C15—C16 1.446 (3)
C6—H6 0.9300 C16—H16 0.9300
C8—C16 1.350 (3)
C2—O1—C1 104.93 (18) C5—C8—C9 122.86 (17)
C7—O2—C1 105.56 (18) C10—C9—C8 104.06 (17)
O2—C1—O1 108.9 (2) C10—C9—H9A 110.9
O2—C1—H1A 109.9 C8—C9—H9A 110.9
O1—C1—H1A 109.9 C10—C9—H9B 110.9
O2—C1—H1B 109.9 C8—C9—H9B 110.9
O1—C1—H1B 109.9 H9A—C9—H9B 109.0
H1A—C1—H1B 108.3 C11—C10—C15 120.8 (2)
C3—C2—C7 121.5 (2) C11—C10—C9 130.8 (2)
C3—C2—O1 128.4 (2) C15—C10—C9 108.4 (2)
C7—C2—O1 110.1 (2) C10—C11—C12 118.6 (3)
C2—C3—C4 116.8 (2) C10—C11—H11 120.7
C2—C3—H3 121.6 C12—C11—H11 120.7
C4—C3—H3 121.6 C13—C12—C11 120.8 (3)
C5—C4—C3 122.6 (2) C13—C12—H12 119.6
C5—C4—H4 118.7 C11—C12—H12 119.6
C3—C4—H4 118.7 C12—C13—C14 121.0 (2)
C4—C5—C6 118.8 (2) C12—C13—H13 119.5
C4—C5—C8 120.23 (19) C14—C13—H13 119.5
C6—C5—C8 120.99 (18) C15—C14—C13 119.1 (3)
C7—C6—C5 117.51 (19) C15—C14—H14 120.4
C7—C6—H6 121.2 C13—C14—H14 120.4
C5—C6—H6 121.2 C14—C15—C10 119.7 (2)
C6—C7—O2 127.8 (2) C14—C15—C16 132.2 (2)
C6—C7—C2 122.8 (2) C10—C15—C16 108.1 (2)
O2—C7—C2 109.38 (19) C8—C16—C15 110.6 (2)
C16—C8—C5 128.3 (2) C8—C16—H16 124.7
C16—C8—C9 108.88 (19) C15—C16—H16 124.7
C7—O2—C1—O1 10.4 (3) C4—C5—C8—C9 0.9 (3)
C2—O1—C1—O2 −9.7 (3) C6—C5—C8—C9 −179.3 (2)
C1—O1—C2—C3 −176.1 (3) C16—C8—C9—C10 0.3 (2)
C1—O1—C2—C7 5.4 (3) C5—C8—C9—C10 −179.4 (2)
C7—C2—C3—C4 −0.7 (3) C8—C9—C10—C11 −178.7 (2)
O1—C2—C3—C4 −179.0 (2) C8—C9—C10—C15 −0.2 (2)
C2—C3—C4—C5 −0.4 (4) C15—C10—C11—C12 −0.3 (4)
C3—C4—C5—C6 0.9 (4) C9—C10—C11—C12 178.0 (3)
C3—C4—C5—C8 −179.3 (2) C10—C11—C12—C13 0.4 (4)
C4—C5—C6—C7 −0.3 (3) C11—C12—C13—C14 −0.2 (4)
C8—C5—C6—C7 179.9 (2) C12—C13—C14—C15 −0.1 (4)
C5—C6—C7—O2 177.9 (2) C13—C14—C15—C10 0.1 (4)
C5—C6—C7—C2 −0.8 (4) C13—C14—C15—C16 −178.2 (3)
C1—O2—C7—C6 174.2 (3) C11—C10—C15—C14 0.1 (3)
C1—O2—C7—C2 −7.0 (3) C9—C10—C15—C14 −178.6 (2)
C3—C2—C7—C6 1.3 (4) C11—C10—C15—C16 178.8 (2)
O1—C2—C7—C6 179.9 (2) C9—C10—C15—C16 0.1 (3)
C3—C2—C7—O2 −177.6 (2) C5—C8—C16—C15 179.4 (2)
O1—C2—C7—O2 1.0 (3) C9—C8—C16—C15 −0.2 (3)
C4—C5—C8—C16 −178.7 (2) C14—C15—C16—C8 178.6 (2)
C6—C5—C8—C16 1.1 (4) C10—C15—C16—C8 0.1 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2152).

References

  1. Bruker (1997). SMART (Version 5.611), SAINT (Version 6.0) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Rayabarapu, D. K., Yang, C. H. & Cheng, C. H. (2003). J. Org. Chem.68, 6726–6731. [DOI] [PubMed]
  3. Senanayake, C. H., Roberts, F. E., DiMichele, L. M., Ryan, K. M., Liu, J., Fredenburgh, L. E., Foster, B. S., Douglas, A. W., Larsen, R. D., Verhoeven, T. R. & Reider, P. J. (1995). Tetrahedron Lett.36, 3993–3996.
  4. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808001578/kp2152sup1.cif

e-64-0o492-sup1.cif (16.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808001578/kp2152Isup2.hkl

e-64-0o492-Isup2.hkl (63.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES